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Acquisition of images
We focus on :

1. illumination
2. cameras
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Acquisition of images

We focus on :

1. illumination

2. cameras

Sensor Array

Image Plane

N Lens System

|

Light Source '~~'IS
-

>

Surface Reflection
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Computer lllumination
Vision

Well-designed illumination often is key in
ACQUIS. visual inspection

illumination
cameras

The light was good, but
the hot wax was a problem...




Computer lllumination techniques
Vision

ACQUIS. Simplify the image processing by controlling

the environment
illumination
cameras

An overview of illumination techniques:

. back-lighting

. directional-lighting

. diffuse-lighting

. polarized-lighting

. coloured-lighting

. structured-lighting

. stroboscopic lighting

NOoO oA, WDN -
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Back-lighting

lamps placed behind a transmitting diffuser plate,
light source behind the object

generates high-contrast silhouette images,
easy to handle with binary vision

often used in inspection
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Example backlighting
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Directional and diffuse lighting

‘ Directional-lighting ‘

generate sharp shadows
generation of specular reflection
(e.g. crack detection)

shadows and shading yield information about
shape

| Diffuse-lighting |

illuminates uniformly from all directions

prevents sharp shadows and large intensity
variations over glossy surfaces:

all directions contribute extra diffuse reflection,
but contributions to the specular peak arise from
directions close to the mirror one only
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‘Dark’ and "bright’ field

In the "dark’ field, the camera is placed out of the
area of specular reflection for the normal surface,
and only abnormally oriented parts of the surface
will lighten up (showing specular reflection) — flaws

In the "bright’ field, the camera is placed so to
capture the specular reflection for normally oriented
parts of the surface. Parts with an abnormal
orientation — flaws - will appear dark.

12



Computer
Vision

ACQUIS.

illumination
cameras

Example directional lighting
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Example diffuse lighting
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ACQUIS. 2 uses:

illumination
cameras

1. to improve contrast between Lambertian and
specular reflections

2. to improve contrasts between dielectrics and
metals

15
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Polarised lighting

polarizer/analyzer configurations

analyzer

law of Malus :

1(8)=1(0)cos 6

16



Computer Polarized lighting
Vision

ACQUIS. 2 uses:

illumination
1. to improve contrast between Lambertian and
specular reflections

cameras
2. to improve contrasts between dielectrics and
metals

17
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Polarized lighting

specular reflection keeps polarisation :
diffuse reflection depolarises

suppression of specular reflection :

polarizer/analyzer crossed
prevents the large dynamic range caused by glare



Computer
Vision

ACQUIS.

illumination
cameras

Example pol. lighting (pol./an.crossed)
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Polarized lighting

2 Uses:

1. to improve contrast between Lambertian and
specular reflections

2. to improve contrasts between dielectrics and
metals

20
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Reflection : dielectric

10 REFLECTANCE

0.9
0.8

0.7

0.6

0.5
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0.3 perpendicular

parallel

0 10 20 30 40 S0 60 70 80 90
ANGLE OF INCIDENCE

Polarizer at Brewster angle

21
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Reflection : conductor

REFLECTANCE

1.0 perpendicular

0.9
0L parallel
0.7
0.6
0.5
04

0.3

0.1

0.0!
0O 10 20 30 40 50 60 70 8 90

ANGLE OF INCIDENCE

strong reflectors
more or less preserve polarization

22
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Polarised lighting

distinction between specular reflection from
dielectrics and metals;

works under the Brewster angle for the dielectric
dielectric has no parallel comp. ; metal does

suppression of specular reflection from dielectrics

polarizer/analyzer aligned
distinguished metals and dielectrics 23
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Coloured lighting

ACQUIS. highlight regions of a similar colour

{IMhEGELE with band-pass filter: only light from projected pattern
cameras (e.g. monochromatic light from a laser)

differentiation between specular and diffuse reflection

comparing colours => same spectral composition of
sources!

spectral sensitivity function of the sensors!

25
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Structured and stroboscopic lighting

spatially or temporally modulated light pattern
ACQUIS.

illumination Structured lighting
cameras

e.g. : 3D shape : objects distort the projected
pattern
(more on this later)

Stroboscopic lighting

high intensity light flash

to eliminate motion blur
27
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Vision

ACQUIS.

illumination
cameras

28



SUulUE App: vegetable inspection (colored light + polarization)
Vision

ACQUIS. ’

illumination
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MAT 2000
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Optics for image formation

the pinhole model :

31
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VAslor Optics for image formation

the pinhole model :
ACQUIS.

illumination
cameras

hence the name:
CAMERA
obscura
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Optics for image formation

the pinhole model :

X, Y, f
X Y -Z

(m = linear magnification)

33
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Camera obscura + lens
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The thin-lens equation

lens to capture enough light :
A

assuming

 spherical lens surfaces

d incoming light £+ parallel to axis
 thickness << radi

 same refractive index on both sides

35



Computer
Vision

ACQUIS.

illumination
cameras

The depth-of-field

Only reasonable sharpness in Z-interval

AN =7 —7 = ZO(ZO_f)
P Y Zo+fdib-f

decreases with d, increases with Z,,

strike a balance between incoming light (d) and
large depth-of-field (usable depth range) 36
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The depth-of-field

AZO—:ZO_ZO—: ZO(ZO_f)

Z,+fdlb-f

. . . +
Similar expression for Z, - £,

37
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The depth-of-field

AZO—:ZO_ZO—: ZO(ZO_f)

Zo+fd/Ib—f

Ex 1: microscopes -> small DoF

Ex 2: special effects -> flood miniature scene with light
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Vision Deviations from the lens model

ACQUIS.

3 assumptions :

ilumination , : :
cameras 1. all rays from a point are focused onto 1 image point
2. all image points in a single plane

3. magnification is constant

deviations from this ideal are aberrations

39
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Aberrations

2 types :

1. geometrical

2. chromatic

geometrical : small for paraxial rays

chromatic : refractive index function of
wavelength (Snell’s law !!)

40
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ACQUIS.

 spherical aberration
illumination

cameras . .
J astigmatism

the most important type

Q radial distortion —

J coma

41
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Spherical aberration

rays parallel to the axis do not converge

outer portions of the lens yield smaller
focal lenghts

42
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Radial Distortion
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magnification different for different angles of inclination

illumination
cameras

43
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Radial Distortion

ACQUIS.

— magnification different for different angles of inclination
illumination

cameras

barrel none pincushion

The result is pixels moving along lines
through the center of the distortion
— typically close to the image center — over a distance d,
depending on the pixels’ distance r to the center

d = (14 kir® + kor* +...) 44
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Radial Distortion

magnification different for different angles of inclination

File Calibration
Radial Distortion radial.pnm
©Intrinsic Calibration [~~~

This aberration type can be corrected by software
if the parameters (x1,x2 , ... ) are known %
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Radial Distortion

magnification different for different angles of inclination

File Calibration
Radial Distortion
~ Intrinsic Calibration

Some methods do this by looking how straight lines
curve instead of being straight 46



Chromatic aberration

Computer
Vision

rays of different wavelengths focused in different planes

ACQUIS. . ‘,’

illumination
cameras

Y o

~—

— The ima?e is blurred and

appears colored at the fringe.

cannot be removed completely
but achromatization can be achieved at some well
chosen wavelength pair, by ferent types
combining lenses made of A
different glasses

e
Z single focal point

sometimes achromatization Achromatic Lens
is achieved for more than 2 wavelengths

47
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Cameras

we consider 2 types :

1. CCD

2. CMOS

48
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Cameras

) photon to electron CMOS

conversion
\ cha[ge P [ [ [
! to voltage | [ (R [ [
) conversign g g § %g
" 1 I T i ms
.’ (5 [y [t [k
r e e e

T1
| 1,
A

o
I

CCD = Charge-coupled device
CMOS = Complementary Metal Oxide Semiconductor
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The CCD (inter-line) camera
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Lo dFEiRERAREASERENE T

CMOS

Same sensor elements as CCD

Each photo sensor has 1ts own amplifier

More noise (reduced by subtracting ‘black’ image)
Lower sensitivity (lower fill rate)

Uses standard CMOS technology

Allows to put other components on chip

‘Smart’ pixels

......................

FIRNAGNIAY

CMOS image sensor

on

imager
(354x202)

1

Color Correct

Statistics

gL

EOS-1Ds Mark lll image sensor (Approx. 21.1 million p xels)




Computer CMOS

Vision

INele S|l Resolution trend in mobile phones
Volume and revenue opportunity for high resolution sensors

illumination
cameras 230
2000 m 16+ MP
_ =14+ MP
7]
S 1500 =12 MP
= m8 MP
% m5MP
£ 1000 m3MP
= m2 MP
500 m1.3 MP
B\ GA & beloy
O = e ] B [

CY2010 CY2011 CY2012 CY2013 CY2014 CY2015 52

Source: TSR, CCD/CMOS Area Image Sensor Market Analysis, dated June 2011




Computer CCD vs. CMOS

Vision
* Niche applications « Consumer cameras
AOEE * Specific technology e Standard IC technology
illumination e High production cost e Cheap
cameras « High power consumption ¢ Low power
* Higher fill rate * Less sensitive
* Blooming * Per pixel amplification
* Sequential readout « Random pixel access

e Smart pixels

* On chip integration with other
components

2006 was year of sales cross-over s
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CCD vs. CMOS

* Niche applications « Consumer cameras

* Specific technology e Standard IC technology
e High production cost e Cheap

« High power consumption ¢ Low power

* Higher fill rate * Less sensitive

* Blooming * Per pixel amplification
* Sequential readout « Random pixel access

e Smart pixels

* On chip integration with other
components

In 2015 Sony said to stop CCD chip production
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Colour cameras

We consider 3 concepts:

1. Prism (with 3 sensors)
2. Filter mosaic
3. Filter wheel

55
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Prism colour camera

ACQUIS. : : : : : :
< Separate light in 3 beams using dichroic prism

illumination Requires 3 sensors & precise alighment

cameras .
Good color separation

Blue

K.
‘. Green

Red
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Prism colour camera
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Filter mosaic

Coat filter directly on sensor

* Bayer filter

Demosaicing (obtain full colour & full resolution image)

™

ORIGINAL CCD ARRAY WITH ALIASED IMAGE
IMAGE BAYER PATTERN
SHOWING LOCATION
OF WHITE/BLACK 58
TRANSITION
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Filter mosaic

Sensor Architecture

Microlens

Color
Filter
Array

Sensor
Substrate

Horizontal transmission path

Color filters lower the effective resolution,
Fuji Corporation hence microlenses often added to gain
more light on the small pixeds
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Filter wheel

Rotate multiple filters in front of lens

Allows more than 3 colour bands

Only suitable for static scenes
60



Computer Prism vs. mosaic vs. wheel
Vision

approach Prism Mosaic Wheel
ACQUIS. # sensors 3 1 1
Resolution High Average Good
Cost High Low Average
Framerate High High Low
Artefacts Low Aliasing Motion
Bands 3 3 3 or more

illumination
cameras

High-end Low-end Scientific
cameras cameras applications

61
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Geometric camera model

perspective projection

b 14 T Gt SRS g B

(Man Drawing a Lute, woodcut, 1525, Albrecht Diyrer)
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Models for camera projection

the pinhole model revisited :

center of the lens = center of projection

notice the virtual image plane

this is called perspective projection

63
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Models for camera projection

We had the virtual plane also in the original reference sketch:

|

Light Source \ﬂ”s
Image Plane -7

Sensor Array

Surface Reflection

64
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Perspective projection

principal point

center of projection > "N\_ | (V)

image plane

Y Yec
A origin lies at the center of projection

J the Zc axis coincides with the optical axis
d Xc-axis || to image rows, Yc-axis || to columnss
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Perspective projection

principal point

—

center of projection

image plane

66
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Pseudo-orthographic projection
X Y
u=f— v=f —
/ YA / Y4

If Zis constant=> x = kX and y = kY,
where k =f/Z
l.e. orthographic projection + a scaling

Good approximation if f/Z * constant, i.e. if objects
are small compared to their distance from the camera

67
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Pictoral comparison

Pseudo -
orthographic

Perspective

68
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Projection matrices

the perspective projection model is incomplete :
what if :

1. 3D coordinates are specified in a
world coordinate frame

2. Image coordinates are expressed as
row and column numbers

We will not consider additional refinements,
such as radial distortions,...

69
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Projection
matrices

o P (X,Y,2)

X -G+, -C)+r,(Z£-G)

u=f

B(X —C)+r,(Y -C)+r(Z-C)
H(X —C)+n,(Y -C)+n(Z£-C;)

v=f

(X —C)+r(Y —C,) +15(Z #C)



Computer
Vision

ACQUIS.

illumination
cameras

Projection matrices

Image coordinates are to be expressed as
pixel coordinates

X
>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

— (x0, y0) the pixel coordinates of the principal point
— kxthe number of pixels per unit length horizontally
— ky the number of pixels per unit length vertically

— § Indicates the skew ; typically s =0 o
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Projection matrices

Image coordinates are to be expressed as

pixel coordinates
X

>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB1: often only integer pixel coordinates matter

72
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Projection matrices

Image coordinates are to be expressed as

pixel coordinates
X

>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB2 : ky/kx is called the aspect ratio

73
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Projection matrices

Image coordinates are to be expressed as
pixel coordinates

X
>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB3 : kx,ky,s,x0 and yo are called internal camera
parameters

74
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Projection matrices

Image coordinates are to be expressed as
pixel coordinates

X
>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB4 : when they are known, the camera is
internally calibrated

75
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Projection matrices

Image coordinates are to be expressed as

pixel coordinates
X

>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NBS5 : vector C and matrix Re SO (3) are the 7@

external camera parameters
76
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Projection matrices

Image coordinates are to be expressed as

pixel coordinates
X

>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB6 : when these are known, the camera is > /4@
externally calibrated
77
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Projection matrices

Image coordinates are to be expressed as
pixel coordinates

X
>
012 m
0
Yi|1
2 r
x=ku+ sv+x,
4
V= k,v+y,
+n | with :

NB7 : fully calibrated means internally and

externally calibrated
78
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Homogeneous coordinates

ACQUIS. Often used to linearize non-linear relations
illumination ( \
cameras X x/Z
2D y %( )
y/z
\<
(X))
v (X /W)
3D ~ —>|Y/W
\Z/W)
W) .

Homogeneous coordinates are only defined up to a factor



Computer
Vision

ACQUIS.

illumination
cameras

Projection matrices

X -C)+n,(Y -C)+1r,(Z-C))
n (X —C)+n,(Y -C)+nr(Z-C)

=/

(X —C)+1,(Y =C,)+1,(Z - C5)

f’%l(X CH+r,(Y =C)+n1(Z2-C)

Exploiting homogeneous coordinates :

(u) /f”n I n, f’/i3\/X_C1\
v =S frn fn|Y-GC
d) Un m o \Z2-G ),
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Projection matrices

\y:

Exploiting homogeneous coordinates :

(x)
Ty

A

XxX=ku+ sv+x,

kyv + ¥,

(kx S xo\
0 ky Yo
0 0 T,

m

v

1

81
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Projection matrices

(1)

TV

U

Thus, we have :

/f’”n S 1, f’”13\
fr fr fr,

1 I I3

(x) (kx S xo\
y O ky yO

W 0 0 1,

(X -C)
Y -C,

\Z_C:S)

(u)

1

82
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Projection matrices

Concatenating the results :

illumination (x (kx § xo\/f n Jf hy f”13\(X_C1\
camEras YI=I0 kYo || fr frn fr|| Y =G,
1) 0 0 1)U 5 135 ry \Z—C)

ACQUIS.

Or, equivalently :
(x) /kx S Xy \/f 0 O\/”n h2 733\/X_C1\
Ty:Okyyo 0 f Ofn nn|Y-GC
dJ) 00 1 00 AR n m\Z2-G )

83
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Projection matrices

Re-combining matrices in the concatenation :
S (x) /kx S Xy \(f 0 O\(’”u "o 713\(X_C1\
illumination

cameras YI=10 Kk, yy [0 f Ol n ny| Y =0,

ACQUIS.

d) o 01 \OO 1An n n\Z-C,

yields the calibration matrix K:
(k. s x,)(f00) (fk, fs x,
=10 &k, IO f O|=|0 [fk, y
0 0 1 Q00 1) (o o0 1,
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Projection matrices

(x) (X))
We define p=lyl P=|Y

) Z )

yielding

!

Y
/Z

\

X

J

‘,OP — KRt(P— C)‘ for some non-zero p € R

o, pp=K(R'|-R'C)P

or, D :(M“)ﬁ with rank M =3

85
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From object radiance to pixel grey levels

After the geometric camera model...
ca UNUTUIE S camera model

2 steps:

1. from object radiance to |

86
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Image irradiance and object radiance

we look at the irradiance that an object patch
will cause in the image

assumptions :
radiance R assumed known and
object at large distance compared to the focal length

Is image irradiance directly related to the radiance
of the image patch?

87



Computer The viewing conditions
Vision

ACQUIS.
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SNTAN

A
I=R-—Lcos*x

f2

the cos? law 8
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e The cos? law cont’ d
1S101N

ACQUIS. _
Especially strong effects

fuminaion for wide-angle and
ca .
fisheye lenses I w7k
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From irradiance to gray levels

f= gl +d

v [
Gain

v
“gammau

v
Dark reference

90
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Vision From irradiance to gray levels

ACQUIS.

f= gl +d

set w. size diaphragm éain

M 7
close to 1 nowadays "gamma

v
signal w. cam cap on Dark reference

91



