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Fig. 1. Conventional Radar Processing and Radar Fields. Consider a typical urban scene with complex geometry (left), including vehicles and static structures.
Existing radar methods threshold raw radar FFT measurements using a DSP pipeline (top row), producing a sparse 2D bird’s eye view point cloud that is fed
into grid mapping algorithms to recover drivable space. Radar Fields is a neural scene representation method for Frequency-Modulated Continuous-Wave
(FMCW) radar. Operating on raw frequency-domain measurements, Radar Fields can recover dense 3D occupancy from 2D radar scans (bottom row).

Neural fields have been broadly investigated as scene representations for the
reproduction and novel generation of diverse outdoor scenes, including those
autonomous vehicles and robots must handle. While successful approaches
for RGB and LiDAR data exist, neural reconstruction methods for radar as
a sensing modality have been largely unexplored. Operating at millimeter
wavelengths, radar sensors are robust to scattering in fog and rain, and, as
such, offer a complementary modality to active and passive optical sensing
techniques. Moreover, existing radar sensors are highly cost-effective and
deployed broadly in robots and vehicles that operate outdoors. We introduce
Radar Fields — a neural scene reconstruction method designed for active
radar imagers. Our approach unites an explicit, physics-informed sensor
model with an implicit neural geometry and reflectance model to directly
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synthesize raw radar measurements and extract scene occupancy. The pro-
posed method does not rely on volume rendering. Instead, we learn fields
in Fourier frequency space, supervised with raw radar data. We validate
the effectiveness of the method across diverse outdoor scenarios, including
urban scenes with dense vehicles and infrastructure, and in harsh weather
scenarios, where mm-wavelength sensing is especially favorable.

1 INTRODUCTION
Accurate reconstruction of large-scale outdoor scenes is essential
for the development and validation of self-driving robots and drones.
Outdoor reconstructions lay the foundation for in-depth scene un-
derstanding, reliable navigation, and meticulous dataset generation
and validation.While the large body of existing scene reconstruction
methods relies on RGB and LiDAR sensors [Guo et al. 2023; Huang
et al. 2023; Tao et al. 2023; Wang et al. 2023b; Zhang et al. 2023a],
the potential of radar in this arena remains largely untapped. Typi-
cal radar sensors operate at around 77GHz, which offers a sensing
modality complementary in two ways: an exceptional capability to
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detect metallic objects and a resilience against adverse weather [Bi-
jelic et al. 2020; Hwang et al. 2022], e.g., for snow or fog particle sizes
which fall below the mm-wavelength. This makes radar sensing
essential in urban settings cluttered with vehicles and infrastruc-
tural elements, and in scenarios compromised by rain, fog, or snow,
where optical modalities can falter.

These capabilities have been instrumental in the adoption of radar
sensors across multiple fields, including automotive [Caesar et al.
2020; Dickmann et al. 2014], aerospace [Pavlikov et al. 2021], robot-
ics [Stetco et al. 2020], non-invasive medical imaging [Vilesov et al.
2022], and human-machine interfaces [Hayashi et al. 2021; Lien et al.
2016]. As an active sensor at lower cost than LiDAR – an order of
magnitude for automotive systems – radar has emerged as a corner-
stone for safety and efficiency in driver-assistance systems [Caesar
et al. 2020; Dickmann et al. 2014], with ever-growing adoption rates
[Burkacky et al. 2022, 2023] predicted to match 30 million units sold
by 2030. Similarly, for robotics, the reliability and accuracy of radar
data make it a vital sensor modality, both in indoor [Lee et al. 2021;
Lu et al. 2020; Stetco et al. 2020] and outdoor [El Natour et al. 2015;
Reina et al. 2011] settings.
Recent advances in neural rendering and scene reconstruction,

epitomized by neural rendering methods [Mildenhall et al. 2020;
Wang et al. 2021], have relied primarily on RGB camera images.
However, the performance of these methods is only as good as the
quality of the input sensor data, essentially inheriting the fundamen-
tal limitations of this imaging technique. As such, existing neural
rendering methods can fail in challenging light conditions [Milden-
hall et al. 2022; Wang et al. 2023c], or in the presence of challenging
environmental factors, like fog [Levy et al. 2023; Ramazzina et al.
2023], as cameras fail to accurately capture the scene. Radar data,
due to its inherent resiliency, offers a promising avenue for more
versatile approaches to scene reconstruction, ensuring accuracy and
reliability even in harsh weather conditions.

The potential of radar in 3D scene reconstruction is largely unex-
plored. This is at least partly because recovering dense geometry
from radar scans is not a straightforward task. Due to the relatively
large wavelengths used – three orders of magnitude larger than
LiDAR wavelengths – FMCW radar angular resolution is lower and
point targets are drastically sparser than with other sensor modali-
ties, like LiDAR or RGB. Moreover, many common radar sensors are
just 2-dimensional, providing only azimuth-resolution with limited
elevation information. These types of radars do not produce 3D
point clouds. Rather, as the beam diverges, signals from objects are
mixed into a single return at each range. This leads to a flattened
2D scan of the environment and makes it challenging to recover a
3D scene representation without a radar-specific signal formation
model. Radar data is also uniquely challenging in its sensitivity
to reflective objects, as direction-dependent sensor saturation arti-
facts are difficult to disentangle from scene occupancy. Altogether,
these challenges render existing methods and their forward models
ineffective for reconstructing scenes from radar data.

In this work, we propose a neural reconstruction method for raw
radar data. Our approach bypasses both the resolution limitations
of processed radar data and the computational cost of volume ren-
dering by modeling in frequency space. We supervise our model
with raw radar waveform data and recover relationships between

detected power, scene geometry, distance from the sensor and scene
reflectivity. This allows our method to access the high radial resolu-
tion of the correlated waveform, which is otherwise unavailable to
existing methods that operate on post-processed range estimates.

To learn in frequency space, we introduce a FMCW radar signal
formation model, which draws from the physics of these sensors to
differentiably decompose the received radar power at a specific dis-
tance into occupancy and reflectance-dependent components that
can be learned and predicted by neural networks. With geometry
disentangled from view and material-dependent reflectance, our
model can reconstruct dense scene geometry in addition to syn-
thesizing radar waveforms, which would otherwise be impossible
without such a decomposition. In order to leverage our sensor model
effectively, we train on a new dataset of raw frequency-space radar
measurements, allowing us to directly predict received power at
specific ranges, instead of simply predicting depth-per-ray.

Specifically, we make the following contributions in this work:
• We present a neural reconstruction method for active radar
sensors, which both recovers scene geometry from a sequence
of radar scans and leverages its implicit scene model to syn-
thesize raw radar data from novel views.

• We devise an optimization method which fits the model di-
rectly to raw frequency-space radar measurements without
requiring volume rendering.

• We introduce a new dataset of automotive radar captures, and
we validate the effectiveness of our approach on scene recon-
struction and novel view synthesis on in-the-wild scenes.

2 RELATED WORK
Radar as a Sensing Modality. has become indispensable in object

recognition and scene understanding, especially in robotic, maritime
[Cheng et al. 2021], and autonomous driving domains [Bijelic et al.
2020; Hwang et al. 2022; Wang et al. 2023a]. The capability of mm-
wave radiation in weather penetration [Bijelic et al. 2020; Hwang
et al. 2022] sets it apart from optical sensors. Beyond this, radar
contributes significantly to constructing detailed environmental
models that can predict depth [Lin et al. 2020], semantics [Ouaknine
et al. 2021; Zhang et al. 2023b], scene flow [Ding et al. 2023], object
presence [Bijelic et al. 2020; Hwang et al. 2022; Kim et al. 2023; Li
et al. 2022] and non-line-of-sight imaging [Scheiner et al. 2020].
When fused with camera [Ding et al. 2023; Lin et al. 2020] or LiDAR
data [Hwang et al. 2022; Li et al. 2022], the inherent sparsity of
radar data can be mitigated. Other approaches for MIMO radar
leverage beam steering techniques and neural networks to super-
resolve measurements. [Farrell et al. 2023; Guan et al. 2020; Li et al.
2023a]. The progress in this field owes much to datasets [Caesar
et al. 2020; Meyer and Kuschk 2019; Rebut et al. 2022], which have
provided invaluable data and benchmarks. We introduce a new
dataset curated for radar neural rendering to further advance the
state-of-the-art.

Radar Maps. provide a layer of information, in addition to LiDAR
and camera reconstructions, allowing for improved understanding
of the free space around an autonomous vehicle [Adams et al. 2012;
Vivet et al. 2013]. To this end, existing methods accumulate radar
measurements and interpret them to classify if each individual grid



Radar Fields:
Frequency-Space Neural Scene Representations for FMCW Radar SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

cell is occupied, thereby enhancing scene reasoning capabilities
[Grebner et al. 2022; Lu et al. 2020]. This detailed grid mapping,
combined with advanced radar perception, assists in translating
raw radar data into interpretable occupancy information. Existing
methods differentiate between static and dynamic entities and apply
techniques like Doppler processing for object categorization based
on relative velocity [Vahidpour and Sarabandi 2012]. With chal-
lenges such as multipath interference, beam divergence, and clutter
from unwanted reflections, signal post-processing techniques like
adaptive filtering [Werber et al. 2015a] and polarimetric backscat-
ter analysis [Moallem and Sarabandi 2014] become crucial. Our
proposed representation substantially expands the convex hull of
existing methods, and allows us to model object geometry due to the
separation of radar cross-section into occupancy and reflectance.

Neural Rendering. A large body of work uses single-sensor mea-
surements to create detailed scene representations primarily from
camera and LiDAR data [Huang et al. 2023; Tao et al. 2023; Zhang
et al. 2023a]. The use of radar data remains unexplored in this do-
main. Recognizing this gap, we propose the first neural rendering
approach to generate geometric representations from radar data,
paving the way for navigation and control applications using this
representation in autonomous robotics and beyond.
Learned representations have driven recent advancements in

novel-view generation [Barron et al. 2021; Chen et al. 2022; Milden-
hall et al. 2020; Müller et al. 2022] and depth estimation [Tosi et al.
2023a,b]. Central to these advancements are neural radiance field
methods [Barron et al. 2021; Chen et al. 2022; Mildenhall et al. 2020;
Müller et al. 2022], which model scenes as continuous volumetric
fields of radiance. These techniques utilize volumetric rendering
as a forward model, facilitating smooth interpolation between sen-
sor poses. Various scene representations have been investigated
for this task: coordinate-based networks [Barron et al. 2021, 2022;
Mildenhall et al. 2020; Zhang et al. 2021], 3D voxel-grids [Chen
et al. 2022; Fridovich-Keil et al. 2022; Yu et al. 2021], and hybrid
models [Barron et al. 2023; Müller et al. 2022; Tancik et al. 2023].
To enhance efficiency during both training and testing, approaches
like [Barron et al. 2023; Chen et al. 2022; Müller et al. 2022; Yu et al.
2021] have been developed. Recent works have extended these tech-
niques to capture vast outdoor scenes [Barron et al. 2022; Zhang
et al. 2020]. Representing extensive terrains, especially when cap-
tured by moving vehicles, presents unique challenges. This is due to
the restricted and aligned views stemming from a single trajectory
[Guo et al. 2023; Kundu et al. 2022; Liu et al. 2023; Ost et al. 2022;
Rematas et al. 2022; Tancik et al. 2022; Turki et al. 2023; Wang et al.
2023b; Yang et al. 2023]. To overcome these challenges, researchers
have incorporated supplemental supervisory cues, such as sparse
LiDAR scans [Guo et al. 2023; Ost et al. 2022; Rematas et al. 2022;
Turki et al. 2023], estimated depths [Deng et al. 2022; Guo et al. 2023;
Roessle et al. 2022], optical flow data [Meuleman et al. 2023; Turki
et al. 2023], and semantic segmentation [Kundu et al. 2022; Turki
et al. 2023; Wang et al. 2023b].
Recent work aims to learn scene representations from LiDAR

data, which presents challenges due to its sparsity — often at two
orders of magnitude less dense than camera data. These methods
incorporate precise LiDAR point registration [Huang et al. 2023], or

apply a two-tiered approach, using weak semantic supervision to
filter out points below a registration threshold [Zhang et al. 2023a].
Others directly predict point drop likelihoods [Tao et al. 2023].
Beyond optical sensors, non-optical sensors like imaging sonar

[Qadri et al. 2023; Reed et al. 2023] have leveraged neural represen-
tations and physics-based rendering techniques to achieve state of
the art 3D reconstructions of single objects in isolation. Applying
neural radiance methods to radar data arguably poses an even big-
ger challenge due to its lower density and long range that enable it
to capture large outdoor scenes. We harness raw radar waveforms,
which offer improved estimates of empty space.

3 RADAR FIELDS
We introduce Radar Fields as a scene representation capable of re-
covering dense geometry and synthesizing radar signals at unseen
views by fitting to a single trajectory of raw radar measurements.
The method is illustrated in Fig. 2. It hinges on a physics-based
forward model that allows us to disentangle occupancy and re-
flectance (Sec. 3.1). Tailored to this physical model, we introduce
a novel implicit radar field representation (Sec. 3.2) and a physics-
based importance sampling schema (Sec. 3.3). We fit the model by
reconstructing raw radar signals in frequency space (Sec. 3.4).

3.1 Radar Signal Formation Model
Radar systems emit electromagnetic waves and analyze their re-
flections from objects to derive distance and velocity information.
Frequency-modulated continuous-wave (FMCW) radar is distinct
in that it emits a continuous radio waveform with a frequency that
varies over time, often with a sawtooth-modulated ‘chirp’ pattern
[Jankiraman 2018]. Assuming sawtooth modulation, the frequency
of the transmitted signal, 𝑓𝜏 changes linearly over time 𝑡 as

𝑓𝜏 (𝑡) = 𝜔 + 𝜃 (𝑡), with 𝜃 (𝑡) = 2Δ𝑓 ·mod
(
𝑡

𝑇𝑠
, 1
)
, (1)

where 𝜔 is the constant carrier frequency and 𝜃 (𝑡) is a periodic
sawtooth function with period 𝑇𝑠 and half-amplitude Δ𝑓 .
When the chirp reflects off an object and returns to the sensor,

the time delay introduced by the distance traveled results in a phase
offset and therefore a frequency difference between the transmitted
waveform 𝑓𝜏 and the received waveform 𝑓𝑟 . For a single object,

𝑓𝑟 (𝑡) = 𝜔 + 𝜃 (𝑡 − 𝑡𝑑 ), with 𝑡𝑑 =
2𝑅
𝑐
, (2)

where 𝑡𝑑 is the two-way time delay for light reflecting off the object
at range 𝑅 and returning to the radar, assuming that the target is
stationary and the Doppler frequency shift is zero.
Both signals are then processed through a mixer and low-pass

filter to compute their instantaneous frequency and phase differ-
ences. These computed differences can be treated as a new signal,
called the intermediate frequency (IF) waveform, whose frequency
𝑓𝐼𝐹 and phase are equal to the computed differences, respectively

𝑓𝐼𝐹 (𝑡) = 𝑓𝜏 (𝑡) − 𝑓𝑟 (𝑡) = 𝜃 (𝑡) − 𝜃 (𝑡 − 𝑡𝑑 ). (3)

In the case of a single target, the IF waveform is a sinusoid with
frequency 𝑓𝐼𝐹 . But In practice, multiple objects are usually detected,
meaning that the IF signal would be a sum of many different fre-
quency sinusoids, each of which corresponds to the range and 𝑓𝑟 (𝑡)
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Fig. 2. Radar Fields recovers a 3D scene from raw FFTs of 2D bird’s eye view radar scans. Each radar frame captures information centered around a 2D
circular disk (bottom-left), from which a volume-rendering-free representation of the scene is learned (right). Following the antenna gain profile, points along
super-sampled azimuthal rays are converted by 𝑓𝜒 into an embedding. This embedding is subsequently processed by 𝑓𝛼 and 𝑓𝜌𝛾 , which decompose the signal
intensity into occupancy 𝛼 and reflectance 𝜌𝛾 . To reconstruct FFT measurements, we integrate the super-sampled returns from both representations for each
range-azimuth point, and apply our forward model (top-right).

of a different target [Jankiraman 2018]. Subsequently, a Fast Fourier
Transform (FFT) yields the observable targets at any distance 𝑅𝑏 ,

𝑃𝑟 (𝑏) =
𝑁𝑏−1∑︁
𝑛=0

𝐼𝐹 (𝑛) · 𝑒
−𝑖2𝜋𝑏𝑛
𝑁𝑏 , with 𝑏 = 𝑓𝐼𝐹𝑏 , (4)

where 𝐼𝐹 is the IF waveform and 𝑁𝑏 is the total number of frequency
bins, such that each bin 𝑏 corresponds to a different tone in the IF
frequency 𝑓𝐼𝐹𝑏 and is correlated with a different range via

𝑅𝑏 = 𝑓𝐼𝐹𝑏
𝑐𝑇𝑠

4Δ𝑓
. (5)

We aim to fit the raw radar FFT signal described above. As such,
our method needs to predict the detected power 𝑃𝑟 (𝑏) at every bin
𝑏, thereby reconstructing a frequency-space waveform for every
azimuth-resolved beam. To this end, we rely on the known physics
of FMCW radar to formulate a signal formation model. Due to the
correlation between range and IF frequency in Eq. 5, the detected
power in Fourier space at a given frequency bin 𝑏, 𝑃𝑟 (𝑏), can be
modeled as the returned power detected by the sensor at corre-
sponding range 𝑅𝑏 . Therefore, we can assume that for an FFT bin
𝑏, whose frequency corresponds to a distributed target at range 𝑅𝑏
from the sensor, the received power 𝑃𝑟 (𝑏) can be calculated as,

𝑃𝑟 (𝑏) =
𝑃𝑡 ·𝐺2 · 𝜎
(4𝜋)3𝑅2

𝑏

, (6)

where 𝑃𝑡 is the transmitted power, 𝐺 is the antenna gain and, 𝜎 is
the total radar cross-section of the distributed target [Richards 2010;
Skolnik 2001]. Note that every term in this equation is known except
for 𝜎 . The radar cross-section considers object shape, material, and
reflective properties, describing how detectable it is by a radar.

However, predicting 𝜎 directly is insufficient for geometry recon-
struction. Instead, we aim to disentangle the geometry-dependent
component of 𝜎 from its specular and material components. The
radar cross section 𝜎 can be further decomposed into three terms,
as 𝜎 = 𝛼 · 𝜌 · 𝛾 , with 𝛼 being the object size projected onto the
cross-section of the radar beam, and with 𝜌 being the reflectivity

and 𝛾 being the directivity of the object. Here, 𝛼 depends solely
on object geometry, while 𝜌 and 𝛾 also depend on how metallic
an object is, as well as the incident angle of the radar beam. This
defines an interpretable forward model as the foundation of this
method, where separate neural fields can be learned for each term.

3.2 Implicit Neural Field Representation
We learn an implicit neural model to render our two-dimensional
radar measurements 𝑃𝑟 ∈ R𝑁𝜙×𝑁𝑏 for 𝑁𝑏 range bins and 𝑁𝜙

azimuth angles. The radar cross-section 𝜎 ∈ R is predicted for
each measurement grid cell. 𝜎 is decomposed into projected cross-
sectional area 𝛼 ∈ R, which represents scene occupancy, and the
product of reflectivity and directivity, 𝜌𝛾 ∈ R, which represents
scene reflectance. We fit our model to a sequence of raw radar cap-
tures, and corresponding poses from an on-board Global Navigation
Satellite System (GNSS), as in Fig. 2.
We reconstruct ground truth FFT data using two neural fields,

𝑓𝛼 and 𝑓𝜌𝛾 , which represent scene occupancy and reflectance, re-
spectively. Both fields are conditioned on an embedding 𝜒 ∈ R𝑑
from the neural field 𝑓𝜒 . Given a point in space x ∈ R3 and view
direction d ∈ R3, the total scene decomposition can be written as

𝑓𝜒 : {H (x)} −→{𝜒} Feature Embedding
𝑓𝛼 : {𝜒} −→{𝛼} Occupancy

𝑓𝜌𝛾 : {S(d), 𝜒} −→{𝜌𝛾} Reflectance

whereH and S are multi-resolution hash encodings as in Müller
et al. [2022], and spherical harmonic positional encoding as in
Fridovich-Keil and Yu et al. [2022], respectively.
The embedding field 𝑓𝜒 : {H (x)} −→ {𝜒} predicts geometric

and material features 𝜒 from hashgrid-encoded position. These la-
tent scene features are shared by both components of our scene
representation. We predict occupancy with field 𝑓𝛼 : {𝜒} −→ {𝛼}
as projected cross-sectional area 𝛼 onto the radar beam. We predict
reflectance with field 𝑓𝜌𝛾 : {S(d), 𝜒} → {𝜌𝛾}, which is also con-
ditioned on view direction d encoded with spherical harmonics S.
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Fig. 3. Multi-modal Dataset for Training and Validation. The waterproof sensor rig (left) which is used to collect our dataset and 5 exemplary scenes (right)
with (1st row) 40-meter-radius BEV radar returns with the car in the center and pointing to the right, and (2nd row) point clouds from our forward-facing
LiDAR, color-coded by height, with the car in the bottom-left and (3rd row) images from our forward-facing RGB camera.

This field directly predicts the product of surface reflectivity and
directivity, 𝜌 · 𝛾 , as there is no clear way to disambiguate these two
values and supervise them independently.

One advantage of this representation is its versatility, as 𝛼 can
be used alone to reconstruct basic scene geometry, but can also
be multiplied with 𝜌 · 𝛾 at unseen locations or novel views to syn-
thesize returned waveforms directly. It is worthwhile to highlight
that this model does not require volume rendering. The ground truth
radar signal is a raw time-resolved waveform and the ray samples
themselves are the predictions.

3.3 Physics-Based Importance Sampling
Radar beams diverge as they travel through a scene. This divergence
is not negligible in FMCW radar sensing, given both the long range
capabilities of radio detection and the large elevation opening angles
in automotive settings. Note that most low-cost FMCW radars do not
have any elevation resolution. However, these sensors still capture
information in three dimensions, as they integrate signals across
elevation and azimuth for each beam. We model these properties
by super-sampling additional rays within the elliptical cone defined
by our radar azimuth and elevation opening angles, allowing us to
model our ground truth range-azimuth measurements in 3D.

FMCW radar systems do not use isotropically-radiating antennas
that would distribute and receive power evenly across the open-
ing angles of the beam. Instead, they rely on antennas with a bias
towards a specific direction. These exhibit the highest signal gain
in the direction of the beam center while dropping off steeply at
increasingly divergent angles off-boresight. This can be represented
as a radiation pattern, which measures signal gain as a function of
angular offset relative to the center of a beam, and affects returned
power as in Eq. 6. We consider two radiation patterns, A(𝑎) and
E(𝑒), which map azimuth and elevation angular offsets 𝑎 and 𝑒 to
signal gain, respectively.
To model these sensor properties, we super-sample additional

rays, distributed uniformly within the elliptical cone of beam di-
vergence around each beam center. For each of the 𝑁 beam cen-
ters randomly sampled at any given training step, we sample an
additional 𝑆 − 1 rays to create a set S = {𝑠1, 𝑠2, ..., 𝑠𝑆 } such that
|S| = 𝑆 . Each ray super-sample consists of angular offsets 𝑎𝑖 and

𝑒𝑖 from the beam center, such that 𝑠𝑖 = {𝑎𝑖 , 𝑒𝑖 } ∀𝑠𝑖 ∈ S. The super-
samples 𝑠𝑖 are drawn from a pair of uniform distributions, such that
𝑎𝑖 ∼ U(−A,A) and 𝑒𝑖 ∼ U(−E, E), whereU is a uniform distribu-
tion over all of the possible angular offsets from the beam center
with azimuthal field of view 2A and elevation field of view 2E. We
query our model with 𝑆 uniformly-distributed rays per beam and
predict a separate radar cross-section 𝜎𝑖 = 𝛼𝑖 · ˆ𝜌𝛾𝑖 , for each super-
sampled ray 𝑠𝑖 ∈ S and average them proportional to our sensor
radiation profiles A and E to compute the final predicted radar
cross-section 𝜎̂ at each range bin,

𝜎̂ =

∑𝑆
𝑖=1 𝜎𝑖 · A(𝑠𝑖 [0]) · E(𝑠𝑖 [1])∑𝑆
𝑖=1 A(𝑠𝑖 [0]) · E(𝑠𝑖 [1])

, (7)

from which we compute the predicted power return. This way,
samples that lie further from each beam center contribute less to
the received signal intensity, mirroring the physics of the radar
measurement process and establishing a link between our learned
3D scene representation and our 2D ground truth data.

3.4 Training
We train our model to reconstruct a scene from a sequence of radar
frames applying the total loss L. The sole supervision signal is the
raw radar waveform itself. Predicted occupancy is also regularized
to enforce its geometric interpretation.

The total loss L is a weighted sum of the reconstructed FFT loss
L𝑊 , and the regularization terms L𝑅 and L𝑃 for the occupancy,
leading to,

L = 𝜂
𝑊
L𝑊 + 𝜂

𝑅
L𝑅 + 𝜂

𝑃
L𝑃 (8)

L𝑊 =
1

𝑁𝜙𝑁𝑏

∑︁
𝜙,𝑏






𝑃𝑡 ·𝐺2 · (𝛼𝜙,𝑏 · 𝜌𝛾𝜙,𝑏 )
(4𝜋)3𝑅4

𝑏

− 𝑃𝑟𝜙,𝑏






 (9)

L𝑅 =
1

𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

∑︁
𝜙,𝑏

O(𝑃𝑟 )𝜙,𝑏
(
𝑙𝑜𝑔(O(𝑃𝑟 )𝜙,𝑏 ) − 𝑙𝑜𝑔(𝛼𝜙,𝑏 )

)
(10)

L𝑃 = std
(
𝛼 |O(𝑃𝑟 )>0.5

)
+ std

(
𝛼 |O(𝑃𝑟 )<0.5

)
(11)

where the weights are 𝜂
𝑊
, 𝜂

𝑅
and 𝜂

𝑝
. In detail, 𝐿𝑊 assesses the

quality of the reconstructed FFT signal. L𝑅 ensures that the learned
scene geometry aligns with the occupancy derived from the raw



SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
David Borts, Erich Liang, Tim Brödermann, Andrea Ramazzina, Stefanie Walz, Edoardo Palladin, Jipeng Sun, David Bruggemann, Christos Sakaridis, Luc Van Gool, Mario Bijelic,

and Felix Heide

signal. Occupancy from a 2D raw radar signal can be estimated by
applying an occupancy estimator O(𝑃𝑟 ) ∈ R𝑁𝜙×𝑁𝑏 . Our occupancy
probability estimation algorithm O(𝑃𝑟 ) follows previous work, like
[Werber et al. 2015b], scanning over ground truth bins for each
frame and estimating occupancy likelihood per-bin with a simple
Bayesian update rule and occlusion model. More details are in the
Supplementary Material. L𝑃 enforces a bimodal distribution of
occupancy probabilities, ensuring that empty space is correctly
modeled and removing floater artifacts.

To prevent the model from over-fitting to noisy data and getting
trapped in local minima, we employ a coarse-to-fine optimization
procedure, as in [Li et al. 2023b]. We mask our multi-resolution
hashgrid encodingsH(x) as

H(x) =
{
H(x) if 𝑖

|𝛾 | < 0.4 + 0.6
(
sin

(
epoch

max. epoch

))
0 otherwise

, (12)

gradually providing the model with higher-resolution grid features
over the course of training. This way, reconstruction noise cannot
accumulate in higher frequency features during early training.

4 DATASET
We train and validate our method on a novel multi-modal dataset.
The recorded modalities include raw radar, LiDAR, RGB camera,
and GNSS, with their sensor specifications described in Tab. 1 of
the Supplementary Material. Our FMCW radar, which is a cus-
tom Navtech CIR-DEV, recording 360° around the vehicle and pro-
viding a long range of 330 m at a range resolution of ca. 4 cm.
The camera, a TRI023S-C with 2 MPix, and the LiDAR both span
a frontal field of view (FOV). We incorporate a state-of-the-art
microelectromechanical-system (MEMS) LiDAR (RS-LiDAR-M1)
with a horizontal FOV of 120°.

To ensure accurate sensor supervision, we performed both geo-
metric calibration and synchronization of our sensors. We calibrate
the RGB camera intrinsics with conventional checkerboard calibra-
tion [Bradski 2000], while the intrinsic calibration for both LiDAR
and radar is provided by the vendor. Our extrinsic calibration for
LiDAR-camera uses mutual information maximization [Pandey et al.
2015]. For radar-LiDAR calibration, we follow [Burnett et al. 2023]
and estimate the rotation via correlative scan matching using the
Fourier Mellin transform [Checchin et al. 2010], with the translation
directly measured. GNSS-LiDAR calibration uses u-center [u-blox
AG 2023] and LiDAR point cloud consistency optimization. We syn-
chronize all internal clocks and record each sensor independently.

We completed extensive in-the-wild driving sessions in Switzer-
land, capturing multiple hours of footage. We selected 15 sequences,
emphasizing scene diversity and ensuring a high quality GNSS
signal. Each sequence has a duration of 10-23 seconds, containing
40-90 radar frames. These authentically represent real-world driving
scenarios, with the vehicle moving at speeds from 5 to 30 km/h.

The dataset includes diverse conditions, including day, night, and
fog, and types of scenes, including urban streets and parking lots,
with example scenes visualized in Fig. 3. This diversity allows us to
investigate the impact of varying scenes and environmental condi-
tions. We include recordings from both day and night in the same
scene, enabling detailed examinations of ambient light effects. We

investigate sensor disparities between radar and LiDAR by including
adverse weather scenes recorded in strong fog. We anticipate the
radar maintaining performance in these adverse conditions, while
the LiDAR and camera are expected to be more affected.

5 ASSESSMENT
In this section, we assess the proposed method with the novel mul-
timodal dataset described in the previous section. Specifically, we
investigate scene reconstruction across day, night, and fog scenes,
for bird’s eye view (BEV) occupancy reconstruction and novel view
synthesis in 2D, and with geometry reconstruction in 3D. Specifi-
cally, we validate that the method is capable of recovering 3D scene
representations from conventional 2D radar scans by incorporating
the angular-dependent antenna response in the forward model.

5.1 Experimental Setup
The collected outdoor scenes in our dataset fall into three main cat-
egories: parking lots featuring a high number of dielectric surfaces
on parked vehicles that appear in radar returns, urban, where scene
composition is complex, including vehicles, and adverse weather
scenes, including rain and fog. We withhold 20 % of all frames,
consecutively, in a single observation gap to form a train-test split.

Evaluation Criteria. We evaluate our method both with quanti-
tative metrics and qualitatively. We measure the PSNR and RSME
of the reconstructed radar FFT signal compared to the withheld
ground-truth radar FFT data. To assess the quality of BEV occu-
pancy reconstructions, we also report the Chamfer Distance (CD)
and Relative Chamfer Distance (RCD) between the 2D BEV point
cloud estimated with our method and the one from the ground
truth data. Note that estimating ground truth geometry from radar
data alone is challenging due to the low angular sampling, entan-
gled multipath effects, and sensor noise. Therefore, we additionally
derive ground truth scene geometry from LiDAR, which provides
geometry with a resolution that is an order of magnitude higher.
We accumulate LiDAR data for the entire scene to create a dense
ground truth, which is filtered and projected into the radar frame
and combined with highly probable radar predictions.

5.2 Scene Reconstruction
We report qualitative scene reconstruction results in Fig. 5. We ob-
serve that accumulated radar point clouds from conventional DSP
processing are too sparse to provide dense scene information, and
therefore the occupancy grid-maps recovered from these inputs are
unreliable and minimally informative, only tracing out a rough con-
tour of large structures in the immediate vicinity of the sensor. Row
three of Fig. 5 shows that these types of methods completely fail
to reconstruct any vehicles in the scene - which is problematic for
safety-critical automotive settings - as the inconsistent multipath
returns from these small objects average out instead of coinciding
into a dense silhouette. These methods are largely unable to see
behind occluding structures. Moreover, the 2D nature of processed
radar point clouds confine occupancy to BEV, as there are no 3D
cues available. Access to raw FFT data makes it possible for Radar
Fields to reconstruct the scene, including all vehicles in test scenes.
Crucially, our neural occupancy field is 3D. Our physics-based ray
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Table 1. Quantitative Assessment. We measure geometry and reconstruction accuracy of our method compared to a radar grid mapping baseline [Werber et al.
2015b] and LiDAR-NeRF [Tao et al. 2023]. We also validate the effectiveness of importance sampling & regularization as an ablation. The proposed method
compares favorably in CD and RCD on the scene reconstruction task (see text for metrics), and in terms of RMSE and PSNR for novel view synthesis. These
metrics confirm the findings from Fig 5. We note our method outperforms LiDAR-NeRF in adverse weather conditions as visibly proven in Fig. 6.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene Fog
CD ↓ RCD ↓ RMSE↓ PSNR ↑ CD ↓ RCD ↓ RMSE↓ PSNR ↑ CD ↓ RCD ↓ RMSE↓ PSNR ↑ CD ↓ RCD ↓ RMSE↓ PSNR ↑ CD ↓ RCD ↓ RMSE↓ PSNR ↑ CD ↓ RCD ↓ RMSE↓ PSNR ↑
[𝑚] - - [𝑑𝐵] [𝑚] - - [𝑑𝐵] [𝑚] - - [𝑑𝐵] [𝑚] - - [𝑑𝐵] [𝑚] - - [𝑑𝐵] [𝑚] - - [𝑑𝐵]

Proposed 0.163 0.013 0.185 20.660 0.296 0.007 0.190 20.431 0.166 0.022 0.169 21.461 0.227 0.025 0.198 20.108 0.193 0.018 0.184 20.738 0.382 0.015 0.185 20.738
Ablation 0.260 0.014 0.231 18.740 0.482 0.012 0.262 17.647 0.243 0.023 0.199 20.030 0.284 0.026 0.278 17.132 0.194 0.018 0.261 17.691 0.013 0.356 0.217 19.32

Grid Mapping [2015b] 0.240 0.019 0.212 19.492 1.222 0.047 0.228 18.850 0.164 0.027 0.220 19.171 0.241 0.036 0.206 19.732 0.361 0.033 0.248 18.148 0.614 0.048 0.255 17.887
LiDAR-NeRF [2023] 0.189 0.012 - - 0.312 0.008 - - 0.187 0.022 - - 0.325 0.093 - - 0.399 0.083 - - 0.797 0.087 - -

importance sampling, described in section 3.3, models radio beam
divergence to extract 3D information from a sensor with no ele-
vation resolution. In these 3D reconstructions, it is again possible
to distinguish vehicles and walls that were not visible in previous
approaches. The last row in Fig. 5 validates that the importance
sampling and regularization terms are essential. Without them, our
method struggles to disentangle occupancy from reflectance, as
specular effects become more prevalent in the occupancy field.

In Table 1, we use CD and RCD as metrics to evaluate BEV scene
reconstruction. Confirming our findings from qualitative evaluation,
our method consistently improves on grid mapping [Werber et al.
2015b] with conventional radar post-processing. The metrics also
validate the physics-based importance sampling and regularization.

5.3 Adverse Weather
Radar Fields retains reconstruction quality across weather and light-
ing conditions. Fig. 6 reports reconstructions in fog, validating that
the proposed method is able to reliably recover both 2D occupancy
and 3D geometry in extreme conditions where other methods us-
ing LiDAR or camera input fail. We compare Radar Fields against
LiDAR-NeRF [Tao et al. 2023] using LiDAR input and Instant-NGP
[Müller et al. 2022] relying on RGB camera input, trained on the
same day-time and night-time foggy scenes from our dataset. In
these extreme conditions, LiDAR-NeRF performance degrades due
to limited range information in dense fog, while Instant-NGP fails
to reconstruct any meaningful occupancy due to the severe scatter-
ing in the scene. In contrast Radar Fields recovers crisp outlines of
buildings, steel road barriers, and even vehicles remain visible. The
last scene in Table 1 shows metrics for fog. Our method achieves
lower CD and RCD than LiDAR-NeRF for scene reconstructions.

5.4 Novel Radar View Synthesis
Radar Fields is grounded in reconstructing raw frequency wave-
forms, which is our only source of scene information. As such, it
is capable of synthesizing raw radar returns at novel views. Fig. 4
confirms that these synthesized views can capture view-dependent
reflective artifacts, like specular highlights and ray saturation. We
validate the method with RMSE and PSNR as quantitative metrics.
Table 1 confirms also that the absence of importance sampling and
regularization terms in the model leads to less accurate signal pre-
diction for novel views and inconsistent convergence.

6 CONCLUSION
We introduce a neural rendering method for raw radar data. While a
large body of work on neural scene representations investigates the
reconstruction and generation of novel views from RGB and LiDAR

point cloud data, neural rendering for radar measurements has been
unexplored. Operating at millimeter wavelengths, radar sensors
provide a signal complementary to optical imaging techniques –
radar signals penetrate fog and smoke with scattering particle sizes
smaller than the wavelength. Unfortunately, the longer wavelength
also inherently limits the angular resolution which existing neural
rendering methods fundamentally rely on in multi-view consistent
training. The proposed method tackles the resolution limitations of
processed radar data and the computational cost of volume render-
ing by modeling scene parameters in frequency space. We supervise
our models with raw radar waveform data in Fourier frequency
space to recover relationships between detected power and distance
from the sensor. We validate our method across diverse scenarios,
especially in urban environments with dense vehicles and infras-
tructure, where mm-wavelength sensing is favorable. As a first step
towards practical scene representations for radar, in the future, the
proposed fusion methods could benefit from cross-modal input and
supervision with LiDAR data, thereby bridging the resolution dis-
parity, and optimizing geometry reconstruction despite the inherent
angular resolution limitations of radar data.
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