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Abstract

State-of-the-art semantic segmentation models are typi-
cally optimized in a data-driven fashion, minimizing solely
per-pixel or per-segment classification objectives on their
training data. This purely data-driven paradigm often leads
to absurd segmentations, especially when the domain of in-
put images is shifted from the one encountered during train-
ing. For instance, state-of-the-art models may assign the la-
bel “road” to a segment that is located above a segment that
is respectively labeled as “sky”, although our knowledge
of the physical world dictates that such a configuration is
not feasible for images captured by forward-facing upright
cameras. Our method, Physically Feasible Semantic Seg-
mentation (PhyFea), first extracts explicit constraints that
govern spatial class relations from the semantic segmenta-
tion training set at hand in an offline, data-driven fashion,
and then enforces a morphological yet differentiable loss
that penalizes violations of these constraints during train-
ing to promote prediction feasibility. PhyFea is a plug-and-
play method and yields consistent and significant perfor-
mance improvements over diverse state-of-the-art networks
on which we implement it across the ADE20K, Cityscapes,
and ACDC datasets. Code and models will be made pub-
licly available.

1. Introduction
Semantic segmentation is a fundamental task in computer
vision and enables many downstream applications. The
last decade has witnessed dramatic advances in this dense
prediction task, driven by the introduction of end-to-end
learned network architectures for solving it [2–4, 6, 14, 24,
27, 36, 44, 45, 47] and the development of ever stronger
backbones coming from image classification [10, 15, 23,
32, 37, 46].

Indeed, designing a suitable backbone for dense seman-
tic prediction that balances global context aggregation with
preservation of fine local details has been a primary research
direction in semantic segmentation. However, merely op-
timizing the backbone architecture neglects the structured

Figure 1. Left: A traffic light segment includes a building seg-
ment in a semantic annotation from the ground truth of the dataset,
which is a feasible inclusion. Right: A bus segment includes
a traffic sign segment (marked by red bounding boxes) in a se-
mantic prediction, which is an infeasible inclusion. Our method
addresses such physical infeasibilities in semantic segmentation.
Best viewed on a screen and zoomed in.

prediction character of the problem. In particular, the sim-
ple optimization of cross-entropy loss terms even by state-
of-the-art, foundational network architectures [6, 36] es-
sentially poses semantic segmentation as a set of inde-
pendent pixel-level or—at best—segment-level prediction
problems and only loosely promotes regularity of the com-
plete image-level outputs via the shared computation in the
network across neighboring pixels. Very few deep-learning-
based works [17] have focused on designing objectives that
originate from the interaction between different pixels in
the output predictions, but even these objectives are formu-
lated at a rather local level of pixel neighborhoods and not
across large regions of the image. To the best of our knowl-
edge, no previous method in semantic segmentation with
deep learning has considered high-level pairwise objectives
at the coarse level of semantic segments.

Aiming at promoting conformity of semantic segmen-
tation models to high-level constraints, we present a new
method named Physically Feasible Semantic Segmentation,
or PhyFea. Our method has been empirically motivated by
the observation that various state-of-the-art semantic seg-
mentation networks [6, 41, 45] make errors in their pre-



dictions which are not simple misclassifications but fun-
damentally violate physical constraints which are in force
in images of real-world 3D scenes, as illustrated in Fig. 1,
and which a human would easily avoid. In particular,
based on their prior knowledge about the world, humans
know that a traffic sign segment cannot be entirely included
in/surrounded by a bus segment. We term such segment in-
clusions as infeasible inclusions and consider them as an ex-
emplary type of physical constraint that can be exploited to
provide a segmentation model with higher-level objectives
based on the feasible spatial configurations of semantic seg-
ments in the output.

While it could be possible to exhaustively consider all
pairs of semantic classes in the segmentation dataset at hand
and conceptually determine which of these pairs correspond
to such infeasible inclusions, we argue that this knowledge
can be directly extracted from the data. More specifically,
our method first processes the training set offline before
training in a single pass and automatically identifies all class
pairs for which a segment of the one class includes a seg-
ment of the other at least once in the data. These are valid
inclusion pairs (cf. Fig. 1-left) and PhyFea should and does
not penalize similar inclusions in the outputs of the segmen-
tation network. By contrast, pairs of co-occurring classes
for which a complete inclusion of one class by the other
is never found in the data are deemed as infeasible inclu-
sion pairs (given the large size of the training set) and they
contribute to a feasibility objective that we define for opti-
mization during training.

More specifically, the major contribution of PhyFea is a
novel inclusion loss which is used as an additional objective
besides standard cross-entropy for optimizing a generic seg-
mentation network. Our inclusion loss is computed based
on the softmax outputs of the employed network, similarly
to cross-entropy, which allows its general application to the
vast majority of deep-learning-based semantic segmenta-
tion models. The key idea of computing this loss is to iden-
tify “soft” infeasible inclusions, which occur as regions in
the softmax score maps of infeasible inclusion class pairs
in which the ranking of the two softmax values is inverted
compared to their surroundings. We recognize that this sim-
ply amounts to a grayscale morphological area opening [13]
and derive a differentiable, parameter-free and thus efficient
implementation of it, which is normally included in the for-
ward and backward pass of standard backpropagation.

We have achieved a consistent performance improve-
ment with PhyFea across three central semantic segmen-
tation benchmarks, i.e. ADE20K [49], Cityscapes [8], and
ACDC [31], and across a variety of state-of-the-art se-
mantic segmentation networks on which we have imple-
mented our method, i.e. SegFormer [41], OCRNet [45], and
Mask2Former [6]. Importantly, we have also observed a re-
duction of infeasible inclusions in our outputs.

2. Related Work

Physical priors using local correlations. Physical do-
main knowledge in the medical domain is implemented es-
pecially in MRA, PET, and MRI scan images concerning
optimizing energy function or implementation in Markov
Random Field [22] (a graphical model approach). Other
approaches to implementing physical priors in the seman-
tic segmentation model are AAF [17] (Adaptive Affinity
Field) and a few similar approaches [1, 9, 12, 14, 40, 43, 50]
which are very closely related to CRF (Conditional Ran-
dom Field) [20]. In AAF, the predicted feature map of
PSPNet [47] is compared with the input feature map us-
ing multiple-sized kernel windows using KL divergence as
a loss function.

Physical priors via full supervision. Zhang et al. [39]
stated that physical priors can be implemented in a neural
framework in four different ways. The first strategy is to
integrate constraints into data by generating synthetic train-
ing datasets. The second strategy is to design non-trainable
custom layers of physical operators and pre-conditioners
in the DNN architecture to modify or shape feature maps
calculated within the network to make them consistent
with the prior knowledge. Implementing physical priors
in semantic segmentation networks is also done by mod-
ern techniques using Self-attention [34, 48]. CCNet [16]
is one such example and a few other similar approaches
are [11, 25, 38, 48, 50]. In CCNet, ResNet-101 [46] is used
as the backbone to extract the feature map and dilated con-
volution is applied to increase the spatial dimension of the
feature map. Then using 1-D convolution to obtain the nec-
essary parameters to apply self-attention map the semantic
structures. In this model, the key factor is applying self-
attention to capture the semantic relationships between the
classes.

Physical priors in the loss function. Physical priors can
be enforced in the loss function as regularization loss as
in the Potts model [33] in a discrete domain that penalizes
appearance discontinuity between neighboring pixels. The
regularization term formulated in the discrete setting is bi-
ased by the discrete grid and favors curves to orient along
with the grid, e.g. in horizontal and vertical or diagonal di-
rections in a 4-connected lattice of pixels. Previous attempts
have been made to implement physical priors by incorporat-
ing shape information in the architecture [18, 21, 28, 42].
Shape information is a powerful semantic descriptor for
specifying targeted objects in an image. Shape priors can
be modeled in three ways: geometrical [35], statistical, and
physical.

There are special types of neural architectures where
physical priors can be implemented in loss functions. These
types of networks are also called Physics Informed Neural
Networks (PINNs) [29]. PINNs are differential equation



Figure 2. Overview of PhyFea. Top left: the complete network architecture, where the standard cross-entropy loss lce from the baseline
network ϕ is added to the inclusion loss linclusion computed by PhyFea. Bottom: The pipeline of PhyFea. For the softmax outputs Pϕ(I) of
the network and for each pair of classes (ci, cj) ∈ C′ that signifies an infeasible inclusion where ci cannot include cj , we take the difference
of the respective softmax scores, Pϕcj

(I)− Pϕci
(I), and rectify it with a ReLU. After concatenating all such C′ rectified difference maps

channel-wise into P̂ϕ(I), we negate the latter and set its border pixels to 1. Then an iterative operation for area opening is performed T
times on P̂ϕ(I). In each iteration, we perform max-pooling with a 3x3 kernel and a stride of 1, and the result is multiplied with P̂ϕ(I)
element-wise. The final area-opened tensor channels differ from their counterparts in P̂ϕ(I) only across regions of incorrect inclusions.
This element-wise difference is stored in H(I) and the L1 norm of the latter, capturing both the spatial extent and the intensity of infeasible
inclusions, constitutes the inclusion loss linclusion employed in PhyFea.

solvers where a differential equation encodes the physical
constraint. The neural network approximates the solution of
the equation using boundary constraints. There are studies
done in the geophysics domain to implement geophysical
priors and laws in deep neural networks as regularization
terms in loss functions for training the DNNs.

Nosrati et al. [26] surveyed incorporating prior knowl-
edge in medical image segmentation. This work reviews
various ways to device prior knowledge information to im-
prove image segmentation. The said physical priors are im-
plemented with global or local optimization; as implemen-
tation of physical priors in continuous or discrete domains.
Rother et al. [30] suggest ways to incorporate appearance
priors in image segmentation using Gaussian mixture mod-
els [19]. In the literature, there are two ways to model the
appearance: 1) learning the appearance in an adaptive man-
ner during the segmentation procedure, and 2) knowing the
appearance model before performing segmentation (e.g. by
observing the appearance distribution of the training data).

Comparison of our method with the related works. All
the above methods to enforce physical priors into a deep
neural architecture do not take into account the semantic
relation among the classes in the image. For example, in
outdoor scenes, the sky should be above the road, a pole
cannot be included by a bus or a sidewalk cannot be sur-
rounded by the wall of a building. This shows that during
training the model; is not being trained keeping in mind all
these semantic relations among the classes. PINN although
takes into account shape priors in the medical domain, it
cannot extend semantic segmentation of general scenes, be-
cause we cannot enforce a fixed structure of any class in out-
door scenes unlike fixed shape anatomical structures, which
are required to formulate the differential equation approxi-
mated in PINN.



Figure 3. Visualization of feature maps within PhyFea for a class pair corresponding to an infeasible inclusion. In this example
semantic prediction of SegFormer [41] on Cityscapes [8], bus infeasibly includes traffic sign. In the blue frame, we first show the difference
map between the softmax scores of the two classes using the coolwarm colormap, where blue tones indicate larger scores for traffic sign
and red for bus, respectively. We rectify the difference between the two softmax maps and show only the respective channel of the 3D
tensor P̂ϕ(I), where black indicates zeros and red tones indicate positive values. The area opening operation is performed on P̂ϕ(I) and
the regions in which P̂ϕ(I) is positive (red) but which are not connected to the border, i.e. traffic sign segments infeasibly included in bus
segments, are opened. Exactly these segments are isolated in the final tensor H(I) and are used to compute our inclusion loss linclusion.

3. PhyFea
3.1. Method Overview

Fig. 2 shows the architectural overview of PhyFea. A 2D
semantic segmentation network ϕ(X) is fed with an im-
age I ∈ R(3×H×W ) and produces the initial output ϕ(I) ∈
R(C×H×W ), where C is the number of classes. PhyFea
takes ϕ(I) as input and computes a novel inclusion loss,
linclusion. We identify infeasible inclusions for class pairs of
interest via a morphological area opening operation, which
is fully differentiable and is normally included in the for-
ward and backward pass during training. Our loss linclusion
is then added to the standard cross-entropy loss lce for ϕ(X)
to obtain the total loss as

ltotal = lce + αlinclusion, 0 < α < 1. (1)

ltotal is normally backpropagated to optimize the weights of
ϕ. Thus, PhyFea is a differentiable morphological module
that incorporates data-driven physical priors in the form of
infeasible inclusions to improve the optimization and con-
formity of any segmentation network. Notably, PhyFea is
fully parameter-free. In (1), α is a hyperparameter that is
used to balance the inclusion loss and the standard cross-
entropy loss.

3.2. Computing Infeasible Inclusion Pairs

We apply Algorithm 1 to the training set of the dataset at
hand for optimizing and evaluating the segmentation model,
to compute the set U of class pairs corresponding to feasi-
ble, or valid, inclusions. Intuitively, this set contains class
pairs for which a segment of the first class includes a seg-
ment of the second one at least in one case in the train-
ing set. The set of class pairs corresponding to infeasible

inclusions, C′, is then simply the set-theoretic difference
C′ = P \ U , where P is the set of all possible non-identical
class pairs.

In Algorithm 1, we first compute for each annotation I
in the training set two binary masks of the same dimension
as I , in which pixels labeled as class p and class q are set as
foreground, respectively. We then compute the connected
components of class q, i.e. the class whose possibility to be
included is checked, in mask 2. For each such connected
component, we fill any holes inside it to remove any interior
contour in the next step as it is irrelevant. After that, we
compute the outer contour of the connected component at
hand based on an 8-neighborhood and check whether it fully
falls into pixels belonging to class p. If the latter is true and
the length of the contour is non-negligible, we declare the
case at hand as a valid inclusion and add the pair (p, q) to
the set U .

3.3. Inclusion Loss

To compute our novel inclusion loss, we operate on the soft-
max maps Pϕ(I) output by the segmentation network and
index them channel-wise for each of the |C′| infeasible in-
clusion pairs. Our core intuition is to identify in the pairs of
softmax score maps that correspond to each infeasible in-
clusion type in C′ those regions across which class cj—the
includee—has a larger score than class ci—the includer—
and around which the opposite is true. These regions indi-
cate “soft” infeasible inclusions in the softmax predictions,
which should be penalized proportionally to the area they
occupy and to the variable “intensity” of the inclusion, i.e.
the magnitude of the difference between the softmax scores
of classes ci and cj at each pixel of these regions. The
computation of such a loss, which we term the inclusion
loss, can be directly achieved in a differentiable formula-



Algorithm 1 Computing the set U of feasible inclusion
class pairs from the training set ground-truth annotations
S. The set P contains all pairs of non-identical class la-
bels for the dataset taxonomy. We aim to check whether
the first element of the pair, p, can include the second one,
q. We are taking 5 pixels as the minimum threshold for a
contour of q completely overlapping with any segment
of p. Function C returns (i) the number of connected seg-
ments of class q in the input annotation, and (ii) a discrete
image, with each pixel labeled with its connected compo-
nent ID or 0 for the background. Function F fills the holes
of the mask of the connected component at hand. Then,
function Cont returns a binary image in which only pixels
belonging to the outer contour of the respective connected
component are set. All variables except component
are discrete images ∈ N(1×H×W ). Function NNZ returns
the number of non-zero pixels of its input.

Require: P = {(p, q) : p ∈ {1, . . . , C}, q ∈ {1, . . . , C} \
{p}}

Require: S = {I : I ∈ N1,H,W }
Ensure: Set U of feasible inclusion class pairs

1: U ← ∅
2: for (p, q)← P do
3: for I ← S do
4: mask 1← 1[I = p] ∈ R1×H×W

5: mask 2← 1[I = q] ∈ R1×H×W

6: component , noOFLabels← C(mask 2)
7: for l← 1 to noOFLabels do
8: comp mask← (1[component = l])
9: comp filled← F(comp mask)

10: contour← Cont(comp filled)
11: result← contour ∧ mask 1
12: if NNZ(result) = NNZ(contour) ∧

NNZ(contour) ≥ 5 then
13: U ← U ∪ {(p, q)}
14: end if
15: end for
16: end for
17: end for

tion, amenable to standard backpropagation, via a grayscale
morphological area opening of the aforementioned softmax
difference maps. We implement this opening through an
iterative algorithm, detailed in the following.

For each “infeasible pair” (ci, cj) ∈ C′, we denote with
Pϕci,cj

(I) ∈ R(2×H×W ) the concatenation of Pϕci
(I) and

Pϕcj
(I). The difference between the two channels of the

latter tensor is rectified with a ReLU as ReLU(Pϕcj
(I) −

Pϕci
(I)) ∈ R(1×H×W ) (cf. Fig. 2). After that, all |C′|

pairwise differences are concatenated to obtain the tensor
P̂ϕ(I) ∈ R(|C′|×H×W ).

For each (ci, cj) ∈ C′, we initialize a running map
o
(0)
(ci,cj)

∈ R(1×H×W ) so that its border pixels are set to
1 and the rest are equal to 0. The intuition here is that
infeasibly included regions are always disconnected from
the border of the image. Thus, positive values of the map
o
(t)
(ci,cj)

that are gradually propagated from the border to the
interior of the image via iterative 8-neighborhood-based di-
lation (a.k.a. max-pooling) will never reach the aforemen-
tioned regions if at each iteration they are multiplied with
ReLU(Pϕcj

(I) − Pϕci
(I)), as the latter is 0 everywhere

around infeasibly included regions. The above, intuitively
described iterative operation can be formally written as

o
(t+1)
(ci,cj)

(p) = max
qϵN(p)

{
o
(t)
(ci,cj)

(q)
}
⊙ P̂ϕ,(ci,cj)(I)|p, (2)

where N(p) denotes the structuring element of the dilation
operator or equivalently the max-pooling kernel, which we
set to an 8-connected neighborhood, i.e. a 3x3 kernel. We
iterate (2) T times, where T = max{2,min{H,W}/2}
and H and W are the height and width of the input im-
age. Namely, we iterate for the minimal number of times
that is required for initial positive values at image borders
in o

(0)
(ci,cj)

to be able to reach any pixel in the interior. The

final map o
(T )
(ci,cj)

is by construction 0 at all pixels that be-
long to infeasibly included regions. This property implies
that

P̂ϕ,(ci,cj)(I)⊙ o
(T )
(ci,cj)

max
{
o
(T )
(ci,cj)

, ϵ
} (3)

constitutes the grayscale area opening we are after for the
infeasible inclusion class pair (ci, cj) (cf. Fig. 3).

The relevant quantity for computing our inclusion loss is
the difference between the original rectification output and
its area opening in (3). This difference is given by

H(ci,cj)(I) = P̂ϕ,(ci,cj)(I)−
P̂ϕ,(ci,cj)(I)⊙ o

(T )
(ci,cj)

max
{
o
(T )
(ci,cj)

, ϵ
} . (4)

We perform the above computations for all (ci, cj) ∈ C′.
Finally, our inclusion loss is computed as the sum of the L1

norms of tensors H across all (ci, cj) ∈ C′ via

linclusion =
∑

(ci,cj)∈C′

∥∥H(ci,cj)(I)
∥∥
1
. (5)

4. Experiments
4.1. Datasets

Cityscapes. Cityscapes [8] is a driving dataset, containing
various road images of European cities. The dataset has
19 classes and includes 2975 training, 500 validation, and



1525 test images with fine annotations. Moreover, 20000
additional training images are coarsely annotated.

ADE20K. We have used the dataset ADE20K [49]. It
was earlier used in the ImageNet scene parsing challenge in
2016. There are 150 classes and diverse scenes with 1038
image-level labels. The dataset is divided into 20K/2K/3K
images for training, validation, and test set.

ACDC. The ACDC dataset [31] consists of driving scenes
under adverse conditions such as fog, night, rain, and snow.
It has 19 classes similar to Cityscapes. The dataset is di-
vided into 1600 training, 406 validation, and 2000 test im-
ages.

4.2. Implementation Details

Input to PhyFea ϕ(I) is first interpolated to shape
R(C×256×256). The kernel size of the max-pooling used
is 3 × 3 with a stride of 1 and a padding of 1 to keep the
dimensions the same and to check for any connected com-
ponents not sharing the border pixels. For ADE20K, the
number of infeasible inclusion pairs |C′| is very large, so
random sampling is applied offline in each iteration to re-
duce the memory footprint. PhyFea computes linclusion on
average for each iteration in 0.14 seconds. We report se-
mantic segmentation performance using mean Intersection
over Union (mIoU). The value of α (ref Eq. 1) is decided
using a random search from the set [1e-5, 1e-10]. For all
reported datasets, the value of α is taken as 1e-9. We have
used 4 A100 GPUs each with memory 80GB.

Training setup. For all the baselines, we have used a batch
size of 4 for the Cityscapes [8] dataset and ACDC [31]
datasets and 8 for the ADE20K [49] dataset. Optimizers,
number of iterations, and learning rate parameters are kept
similar to what is mentioned in the respective papers of the
baselines for the respective datasets. For the ACDC [31]
dataset, we applied the same setup as the corresponding
baselines applied on the Cityscapes [8] dataset except for
the crop size of the input.

We used mmsegmentation [7] to implement PhyFea on
the baseline network SegFormer-B4 [41]. Random crop-
ping of 1080× 1080 for the ACDC [31] dataset is used.

For OCRNet without SegFix [45], their official imple-
mentation is taken. For ACDC 769× 769 cropping is used.

For Mask2former [6], their official implementation is
taken. For the ACDC dataset, we have taken a crop size
of 540× 960.

4.3. Comparison to The State of The Art

Tab. 1 compares PhyFea with a wide range of state-of-the-
art methods for semantic segmentation on Cityscapes [8],
ADE20K [49], and ACDC [31]. Overall, PhyFea achieves
significant improvements in mIoU across all three network
architectures on which we have implemented it and across

Table 1. Comparison with state-of-the-art semantic segmenta-
tion methods on ADE20K, Cityscapes and ACDC. ’*’: multi-
scale testing. Results are reported in mean IoU (%) on the
Cityscapes test set, the ADE20K validation set, and the ACDC
test set.

Method \ Dataset Backbone ADE20K Cityscapes ACDC

PSPNet [47] 44.4 78.5 -
DeepLabv2 [3] - 71.4 55.3
DeepLabv3+ [5] 44.1 80.9 70.0
HRNet [36] 43.1 80.9 75.0

OCRNet [45] HRNetV2-W48 45.6* 82.4* 66.5
PhyFea w/ OCRNet (ours) HRNetV2-W48 46.8* 82.9* 67.6

SegFormer [41] MiT-B4 50.3 82.2 67.1
PhyFea w/ SegFormer (ours) MiT-B4 51.0 82.7 69.2

Mask2Former [6] Swin-L 56.1 83.5* 77.2
PhyFea w/ Mask2Former (ours) Swin-L 56.7 84.0* 77.8

Figure 4. Qualitative comparison on Cityscapes. From left to
right: input image, ground-truth semantic labels, and predictions
of Mask2Former [6] and PhyFea.

Figure 5. Qualitative comparison on ADE20K. From left to
right: input image, ground-truth semantic labels, and predictions
of OCRNet [45] and PhyFea.

all three datasets. On Cityscapes, where all examined state-
of-the-art architectures already achieve very high perfor-
mance, we observe a consistent 0.5–0.6% improvement in
mIoU with PhyFea on all architectures, which indicates
that our method can directly serve as a plug-in module for
generic segmentation networks. PhyFea achieves 1.2% im-
provement on the baseline OCRNet [45] for the ADE20K
dataset and 0.7% on the baseline SegFormer-B4. PhyFea
achieves 1.1% improvement on the baseline OCRNet for
the ACDC dataset and 2.17% on the baseline SegFormer-
B4. We can observe that Mask2Former has the highest
mIoU score across all the 3 datasets. PhyFea can gain im-
provement on the respective baselines on all the 3 datasets
by enforcing the Infeasible Inclusion prior but PhyFea is
baseline-independent. It means it can improve the image
segmentation of a given baseline network on which it is ap-



Table 2. Comparison of class-level IoU of OCRNet, SegFormer, and Mask2Former to their PhyFea-upgraded versions on the
Cityscapes validation set. Training and evaluation are performed using the complete training and validation sets, respectively.
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OCRNet [45] 98.2 86.8 93.1 65.1 63.6 68.4 74.3 81.2 92.8 63.9 95.5 84.3 66.4 95.2 77.6 88.7 83.1 69.2 79.0 80.3
Ours 98.3 86.9 93.4 64.4 64.2 68.5 74.8 81.0 92.9 64.9 95.4 84.6 67.9 95.4 86.1 90.8 83.2 72.3 80.0 81.3

SegFormer [41] 98.4 87.8 93.7 68.4 65.4 69.6 75.6 81.6 93.1 70.6 95.4 84.8 68.3 95.6 81.8 90.7 83.9 73.6 80.0 82.0
Ours 99.2 91.3 93.8 72.1 72.3 56.2 73.5 79.3 93.5 74.0 93.8 85.0 74.8 95.7 90.8 95.2 84.7 83.3 79.1 83.6

Mask2Former [6] 98.6 88.7 94.0 66.7 69.6 71.6 76.2 84.3 93.4 68.4 95.7 86.1 70.7 96.2 89.7 92.7 84.5 74.6 81.5 83.3
Ours 99.0 91.0 94.8 81.4 78.5 73.7 77.3 85.9 93.8 74.4 95.6 87.7 77.6 96.5 92.4 94.8 63.8 78.6 83.3 85.3

Table 3. Comparison of class-level IoU of OCRNet, SegFormer, and Mask2Former to their PhyFea-upgraded versions on the ACDC
test set. Training and evaluation are performed using the complete training and test sets, respectively.
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OCRNet [45] 93.4 77.2 87.1 50.0 45.2 48.6 60.4 61.3 85.4 59.4 95.5 58.5 40.5 87.4 63.6 76.3 80.6 41.6 53.2 66.5
Ours 92.5 71.6 87.2 45.3 39.9 54.2 70.2 68.2 86.4 50.8 94.8 65.2 45.5 87.2 60.9 69.9 84.5 50.6 59.9 67.6

SegFormer [41] 94.6 78.3 88.4 51.6 47.4 48.0 62.1 61.2 87.0 66.8 95.6 59.8 39.0 87.0 63.1 73.8 79.1 38.4 52.7 67.1
Ours 94.8 79.5 88.5 54.2 50.4 48.7 63.7 64.2 87.9 66.2 95.9 61.2 42.0 88.2 70.8 77.9 84.1 42.3 54.6 69.2

Mask2Former [6] 96.5 84.7 93.2 64.7 59.5 72.0 80.6 78.9 91.1 72.1 96.7 77.7 44.4 91.6 75.9 71.0 92.4 58.5 65.9 77.2
Ours 96.4 84.3 92.9 65.7 61.2 66.7 78.7 79.5 91.0 71.9 97.0 77.5 56.6 91.3 76.9 73.3 91.6 58.9 67.0 77.8

plied by enforcing the physical prior.
Table 2 is the class-wise comparison of IoU on

Cityscapes val set for PhyFea and the corresponding base-
lines. We can observe that PhyFea achieved an overall im-
provement in IoU scores across the classes. PhyFea with
OCRNet [45] shows improvement in 16 classes from the
baseline, especially in the small classes like fence, rider,
motorcycle, and bicycle which are very difficult concern-
ing the semantic segmentation task. SegFormer [41] with
PhyFea shows improvement in 14 classes from the baseline
and despite performing poorly in the pole class, PhyFea has
managed to acquire good improvement in other small and
big classes. Mask2Former [6] shows improvement in 17
classes from the baseline. Mask2Former with PhyFea has
the best improvement out of the other two baselines.

Table 3 is the class-wise comparison of IoU on the
ACDC test set for PhyFea and the corresponding baselines.
Here also we can observe that PhyFea achieved an over-
all improvement in IoU scores across the classes, especially
over the SegFormer baseline. PhyFea achieved significant
gains across all the baselines for the small classes like mo-
torcycle, bicycle, and rider.

In Fig. 6 we can observe the training losses of base-
line Mask2Former and when re-trained with PhyFea on the
Cityscapes and ACDC datasets. At first, in both of the
graphs we can see the loss with PhyFea is slightly higher
than the baseline loss because, at first the linclusion loss

is very high up to 20k iterations roughly. The training
loss tends to decrease after 20k iterations with PhyFea im-
plementation slightly. Mask2Former implementation with
PhyFea does not lose the ability to generalization on the
test set. So we can confirm that Mask2Former with PhyFea
is not over-fitting on the train set.

Cityscapes results. In Fig. 4, we note in the prediction of
the basic SegFormer a segment of truck included by build-
ing, which is an infeasible inclusion. PhyFea, on the con-
trary, successfully opens (in morphological terminology)
this truck segment. Moreover, in the SegFormer prediction,
a segment of a motorcycle is completely included by a bi-
cycle on the right of the image. PhyFea managed to com-
pletely open the motorcycle segment.

ADE20K results. In Fig. 5, in the baseline prediction in
the top row, a segment of vegetation is incorrectly included
by another class, while PhyFea successfully opens the for-
mer segment. We can also observe that the overall condition
of the prediction image after PhyFea re-training is not de-
graded from the baseline prediction. In the bottom row, a
segment of the sea class is included by building class which
is an infeasible inclusion. PhyFea managed to successfully
open the included segment.

ACDC results. In Fig. 7 we can see in baseline prediction
that some segments of the sidewalk class are included by
the wall class. And PhyFea has successfully opened those



Figure 6. Training loss graph for Mask2Former and when
re-trained with PhyFea on Cityscapes(top) and ACDC(bottom)
datasets.

Figure 7. Qualitative comparison on ACDC. From left to right:
input image, ground-truth semantic labels, and predictions of base-
line SegFormer network and PhyFea (ours).

Table 4. Ablation Study performed on PhyFea with
Mask2Former-SwinB on Cityscapes val set. Number of Itera-
tions used for max-pooling Kernels 5× 5 and 7× 7 is 60k.

Kernel-size Stride Padding T mIoU

3× 3 1 1 128 85.3
5× 5 1 2 60 81.8
7× 7 1 3 3 79.8

segments. In the bottom row, we can observe that a wall
segment is included by the building class which falls under
the infeasible inclusion. PhyFea successfully opened the

Table 5. Feasible and infeasible inclusion pair statistics for dif-
ferent datasets. The statistics are computed on the training set of
each dataset. Infeasible pair counts exclude the non-cooccurring
pairs.

Dataset \ Type of class pair Feasible Infeasible

Cityscapes (19 classes) 162 180
ADE20K (150 classes) 11070 11280
ACDC (19 classes) 118 224

included segment in the final re-trained image.

4.4. Ablation Study

Tab 4 is the ablation study of PhyFea on the Cityscapes
dataset using the Mask2Former as the baseline. We have
shown the mIOU score on the val set. We can observe that
by increasing the kernel size with a decrease in the number
of iterations for max-pooling the mIOU score tends to de-
crease. We have kept the stride as 1 to compute for every
possible position. We adjusted the padding appropriately
to keep the dimensions the same for each iteration. The
motivation behind the decrease in the mIOU score is that
a bigger structuring element i.e. the max-pooling kernel,
enables the propagation of the border pixels to the interior
portion of the feature map which should otherwise be dis-
connected and as a result, the infeasible included segment
will not be opened correctly. Thus, inclusion loss will be
computed with a very high value penalizing non-infeasible
included segments.

4.5. Empirical Analysis

The feasible inclusion pairs are computed offline individu-
ally from the training set of each dataset using Algorithm 1.
The complete count of the feasible and infeasible pairs of
inclusion are given in Table 5. Every dataset is divided into
train/val/test set. Algorithm 1 is applied to the train set of
every dataset even when we jointly re-trained the models on
train+ val sets.

5. Conclusion and Future Work
In this paper, rather than building a new semantic seg-
mentation architecture, we have attempted to enhance
any existing state-of-the-art network by enforcing a phys-
ical, data-driven prior into the network. Our method,
PhyFea, constitutes a light-weight, plug-and-play mod-
ule for semantic segmentation, which can be coupled
with any network architecture to improve accuracy and
conformity to our exemplary inclusion prior. We thus
believe it is a first yet firm step towards physically-
informed semantic perception. Overall, we are successful
in attaining our goal of physical feasibility in seg-
mentation both in the qualitative and quantitative sense.
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[19] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In
Proceedings of the 24th International Conference on Neural
Information Processing Systems, page 109–117, Red Hook,
NY, USA, 2011. Curran Associates Inc. 3

[20] John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proceedings of
the Eighteenth International Conference on Machine Learn-
ing, page 282–289, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc. 2

[21] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen
Xiong, Rui Hu, and Raquel Urtasun. PolyTransform:
Deep Polygon Transformer for Instance Segmentation . In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9128–9137, Los Alamitos,
CA, USA, 2020. IEEE Computer Society. 2

[22] Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, and
Xiaoou Tang. Deep learning markov random field for se-
mantic segmentation. IEEE transactions on pattern analysis
and machine intelligence, 40(8):1814–1828, 2017. 2

[23] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows . In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 9992–10002, Los Alamitos, CA, USA,
2021. IEEE Computer Society. 1

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation . In 2015
IEEE Conference on Computer Vision and Pattern Recog-

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation


nition (CVPR), pages 3431–3440, Los Alamitos, CA, USA,
2015. IEEE Computer Society. 1

[25] Jiajia Ni, Jianhuang Wu, Jing Tong, Zhengming Chen, and
Junping Zhao. Gc-net: Global context network for medical
image segmentation. Computer Methods and Programs in
Biomedicine, 190:105121, 2020. 2

[26] Masoud S Nosrati and Ghassan Hamarneh. Incorporating
prior knowledge in medical image segmentation: a survey.
arXiv preprint arXiv:1607.01092, 2016. 3

[27] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and
Alan L Yuille. Weakly- and semi-supervised learning of a
dcnn for semantic image segmentation. In ICCV, 2015. 1

[28] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 2

[29] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019. 2

[30] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
”grabcut”: Interactive foreground extraction using iterated
graph cuts. ACM Trans. Graph., 23(3):309–314, 2004. 3

[31] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. ACDC:
The Adverse Conditions Dataset with Correspondences for
semantic driving scene understanding. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 2, 6

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In In-
ternational Conference on Learning Representations, 2015.
1

[33] Andrea Tirelli, Danyella O. Carvalho, Lucas A. Oliveira,
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6. Additional Qualitative Comparisons

ADE20K. In Fig. 8 showing additional qualitative results
on the ADE20K val set, we observe that in the prediction
of the basic OCRNet network on the first example build-
ing includes sky, which is rectified in the PhyFea-upgraded
version of the network. In the second example, we observe
that a segment of bed is infeasibly included in a cupboard
segment, which is corrected by our PhyFea model.

ACDC. In the first example of Fig. 9, we observe that a
segment of sky is completely included in a building, which
is a physical anomaly and is solved by PhyFea.

Cityscapes. In Fig. 10, we note that a rider segment corre-
sponding to the rider’s arm is infeasibly included in a bus
segment in the prediction of Mask2Former [6], whereas
PhyFea manages to correctly connect this part of the arm
with the rest of the rider’s body. In the second example, a
sky segment is infeasibly included in a building segment in
the Mask2Former prediction, while PhyFea avoids this er-
ror and better segments distant people which appear very
small in the image.

7. Analysis of Prediction Feasibility
We define a metric named mean infeasibility normalized
frequency (mINF) on an evaluation set using:

mINF =
1

|C′|
∑

(ci,cj)∈C′

finclusion(ci, cj)

fco-occur(ci, cj)
(6)

We compute fco-occur(ci, cj), i.e., the frequency of co-
occurrence of the classes in the infeasible class pair (ci, cj)
in the set of predicted labelings on the evaluation set.
finclusion(ci, cj) is the frequency of the occurrence of in-
feasible inclusions for class pair (ci, cj) in the set of pre-
dicted labelings on the evaluation set. An mINF of 0 sig-
nifies the complete absence of infeasible inclusions in the
predicted labelings. We report mINF scores in Tab. 6 for
SegFormer and Mask2Former models on Cityscapes and
ACDC. These results show that PhyFea can almost entirely
solve the anomaly of infeasible Inclusions. It achieved an
mINF of almost 0

Table 6. Comparison of prediction feasibility with state-of-the-
art models on Cityscapes and ACDC. Results are reported with
our mINF metric (%, lower is better) on the Cityscapes test set and
the ACDC test set.

Method \ Dataset Cityscapes ACDC

SegFormer [41] 4.0 8.0
PhyFea w/ SegFormer (ours) 0.1 0.2

Mask2Former [6] 3.2 7.3
PhyFea w/ Mask2Former (ours) 0.1 0.1



Figure 8. Additional qualitative comparison on ADE20K. From left to right: input image, ground-truth semantic labels, and predictions
of OCRNet [45] and PhyFea. Best viewed on a screen and zoomed in.

Figure 9. Additional qualitative comparison on ACDC. From left to right: input image, ground-truth semantic labels, and predictions of
SegFormer [41] and PhyFea. Best viewed on a screen and zoomed in.

Figure 10. Additional qualitative comparison on Cityscapes. From left to right: input image, ground-truth semantic labels, and predic-
tions of Mask2Former [6] and PhyFea. Best viewed on a screen and zoomed in.
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