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Abstract

Monocular depth estimation is vital for scene under-

standing and downstream tasks. We focus on the super-

vised setup, in which ground-truth depth is available only

at training time. Based on knowledge about the high reg-

ularity of real 3D scenes, we propose a method that learns

to selectively leverage information from coplanar pixels to

improve the predicted depth. In particular, we introduce a

piecewise planarity prior which states that for each pixel,

there is a seed pixel which shares the same planar 3D sur-

face with the former. Motivated by this prior, we design a

network with two heads. The first head outputs pixel-level

plane coefficients, while the second one outputs a dense off-

set vector field that identifies the positions of seed pixels.

The plane coefficients of seed pixels are then used to predict

depth at each position. The resulting prediction is adap-

tively fused with the initial prediction from the first head

via a learned confidence to account for potential devia-

tions from precise local planarity. The entire architecture is

trained end-to-end thanks to the differentiability of the pro-

posed modules and it learns to predict regular depth maps,

with sharp edges at occlusion boundaries. An extensive

evaluation of our method shows that we set the new state of

the art in supervised monocular depth estimation, surpass-

ing prior methods on NYU Depth-v2 and on the Garg split

of KITTI. Our method delivers depth maps that yield plau-

sible 3D reconstructions of the input scenes. Code is avail-

able at: https://github.com/SysCV/P3Depth

1. Introduction

Depth estimation is a fundamental problem in computer

vision. It consists in predicting the perpendicular coordinate

of the 3D point depicted at each pixel. Applications range

from robotics to autonomous cars. There is experimental

evidence [84] that depth is the most vital vision-level cue for

executing actions, together with semantic segmentation. In

this work, we focus on monocular depth estimation, which

involves the challenge of scale ambiguity, as the same input

image can be generated by infinitely many 3D scenes.

The current trend in solving this task involves fully con-

volutional neural networks that output a dense depth predic-
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Figure 1. Real-world 3D scenes have a high degree of regularity.

We propose a method which can exploit this regularity, by im-

plicitly learning intermediate representations that contain useful

information about local planes in the scene. The proposed end-to-

end model predicts high-quality depth maps with sharp edges at

occlusion boundaries, which yield consistent 3D reconstructions.

tion either with standard supervision on depth [9,12,32,71]

or with self-supervision by using the predicted depth to re-

construct neighboring views of the scene [16, 18, 19, 85].

Most supervised approaches use a pixel-level loss which

treats predictions at different pixels separately. This regime

ignores the high degree of regularity of real-world 3D

scenes, which generally yield piecewise smooth depth maps.

A common choice for modeling this prior knowledge of

the geometry of real 3D scenes are planes [2, 6, 41, 42].

Planes are the local first-order Taylor approximation for lo-

cally differentiable depth maps and they are easy to param-

eterize using three independent coefficients. Once a pixel

is associated with a plane, its depth can be recovered from

the position of the pixel and the coefficients of the associ-

ated plane. In [83], such a plane coefficient representation

is used to learn to predict planes explicitly.

We adopt the plane representation from [83], but we de-

part from the explicit prediction of planes and rather use

this representation as an appropriate output space for defin-

ing interactions between pixels based on planarity priors.

In particular, the first head of our network outputs dense
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plane coefficient maps which are afterwards converted to

depth maps, as shown in Fig. 2. Predicting plane coeffi-

cients is motivated by the fact that two pixels p and q that

belong to the same plane ideally have equal plane coeffi-

cient representations, whereas they generally have different

depth. Thus, using the plane coefficient representation of q

for predicting depth at the position of p results in a correct

prediction if the pixels belong to the same plane.

We leverage this property by learning to identify seed

pixels which share the same plane as the examined pixel,

whenever such pixels exist, in order to selectively use the

plane coefficients of these pixels for improving the pre-

dicted depth. This approach is motivated by a piecewise

planarity prior which states that for each pixel p with an

associated 3D plane, there is a seed pixel q in the neigh-

borhood of p which is associated with the same 3D plane

as p. To predict depth with this scheme, we need to iden-

tify (i) the regions where the prior is valid and (ii) the seed

pixels in these regions, by predicting the offsets q− p. We

thus design a second head in the network, which outputs a

dense offset vector field and a confidence map, as shown in

Fig. 2. The predicted offsets are used to resample the plane

coefficients from the first head and generate a second depth

prediction. The depth predictions from the two heads are

then fused adaptively using the confidence map as fusion

weights, in order to down-weigh the offset-based prediction

and rely primarily on the basic depth prediction in regions

where the piecewise planarity prior is not valid, e.g. on parts

of the scene with high-frequency structures. Supervision on

the offsets and confidence map is applied implicitly, by su-

pervising the fused depth prediction. Thanks to using seed

pixels for prediction, our model implicitly learns to group

pixels based on their membership in smooth regions of the

depth map. This helps preserve sharp depth discontinuities,

as shown in Fig. 1. Last but not least, we propose a mean

plane loss which enforces first-order consistency of our pre-

dicted 3D surfaces with the ground truth and further im-

proves performance.

We evaluate our method extensively on 6 datasets for

supervised monocular depth estimation: NYU Depth-v2,

KITTI, ScanNet, SUN-RGBD, DIODE Indoor, and ETH-

3D. Comparisons to competing approaches demonstrate

that we set a new state of the art on NYU Depth-v2 and

KITTI, surpassing the former best-performing method in all

commonly used evaluation metrics on NYU and on the Garg

split [16] of KITTI. Moreover, in a challenging zero-shot

transfer setup, we outperform the prior state of the art on

ScanNet, SUN-RGBD, DIODE Indoor, and ETH-3D. We

conduct a thorough ablation study and show quantitatively

the merit of our novel formulation for depth prediction. We

also provide qualitative comparisons with the prior state of

the art, which evidence the high quality of our predictions,

in particular when the latter are used for 3D reconstruction.

2. Related Work

Supervised monocular depth estimation assumes that

ground-truth depth maps are available for training images

and requires inference on single images. A notable early ap-

proach is Make3D [59], which explicitly handcrafts a piece-

wise planar structure on the scene and learns the associated

parameters locally using a Markov random field. The multi-

scale network of [9] pioneered the usage of deep CNNs in

depth estimation by learning an end-to-end mapping from

images to depth maps. Several works have afterwards fo-

cused on this setting, proposing i.a. (i) more advanced archi-

tectures such as residual networks [32], convolutional neu-

ral fields [43,73], fusion of multiple scales in the frequency

domain [34], transformer-based blocks that attend to global

depth statistics [1] and depth merging networks for handling

multiple resolutions [50], (ii) losses that are better suited for

depth prediction such as reverse Huber loss [32], classifica-

tion loss [3], ordinal regression loss [12], pairwise ranking

loss [71] and adaptive combinations of several depth-related

losses [35], and (iii) joint learning of depth with normals or

semantic labels [8,53,72]. The ambiguity in depth shift and

focal length scale in mixed-data setups is addressed in [78]

by applying 3D point cloud encoders to the lifted depth

map. Our method belongs to this category and casts the

depth prediction to a more appropriate space for exploiting

regularities of input scenes.

Other depth estimation setups include unsupervised and

semi-supervised monocular depth estimation as well as

stereo-based depth estimation. Unsupervised learning of

depth with stereo pairs based on novel view synthesis [10]

that uses an image reconstruction loss in which the pre-

dicted depth is used for warping one image of the pair to

the frame of the other was introduced in [16] and was cast

in a fully differentiable formulation in [18]. Further works

in this direction leverage temporal information [47, 52, 82].

The need for stereo pairs in this framework was lifted

in [85], which operates on monocular videos. Consis-

tency of the estimated 3D structures and of ego-motion

across video frames is enforced in [27, 40, 48]. Depth and

ego-motion are combined with optical flow and semantics

in [26,79] and with edges in [76]. Robustness to occlusions

across video frames is achieved in [19] with a minimum re-

projection loss. The optimization is facilitated with special-

ized losses in [20, 61]. Recent methods exploit video input

at test time [69], consistency to segmentation outputs [86]

and scale consistency across adjacent frames [67]. Unsu-

pervised approaches generally assume more complex train-

ing data than supervised ones and suffer from scale ambi-

guity and violations of the Lambertian assumption. Semi-

supervised depth estimation is introduced in [29], which

combines sparse depth measurements with an image recon-

struction loss. Dataset-specific assumptions on the pres-
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ence and the format of depth supervision are also relaxed

in [39], which utilizes multi-view image collections for gen-

erating reliable large-scale depth supervision, and in [56],

where diverse datasets providing different forms of super-

vision for monocular depth estimation are leveraged to gen-

eralize better on unseen data. Early stereo methods rely

on hand-crafted matching costs [22] for estimating dispar-

ity. Initial approaches that learned the matching function

include [30, 65], while subsequent works rely on fully con-

volutional architectures [5,49]. Stereo methods also assume

more complex data in the form of stereo pairs both at train-

ing and testing, which prevents their application to more

general and uncontrolled monocular settings.

Geometric priors for depth have been extensively studied

in the literature. In particular, the piecewise planarity prior

has been traditionally used in multi-view stereo [14] and

3D reconstruction [2, 6] in order to make these problems

amenable to faster optimization. These approaches involve

explicit depth planes and fit these planes on image super-

pixels or point sets from input point clouds. Superpixel-

level depth planes are also leveraged in depth denoising

and completion [58, 66]. In more recent, deep learning-

based approaches, the incorporation of geometric priors is

performed either explicitly by segmenting planes [36, 41,

42, 81] or implicitly by properly designing the loss [80].

Non-local 3D context is leveraged in the virtual normal

framework of [77] by using supervision from virtual planes

which correspond to triplets of non-collinear points of the

depth map. A non-local coplanarity constraint is embedded

to the network in [23] via a depth-attention volume. Sur-

face normals are used in [46] to increase geometric consis-

tency on regular structures. A representation directly as-

sociated with coefficients of 3D planes in the image space

without dependence on intrinsic camera parameters is used

in [74, 83] for estimating the dominant depth planes in the

scenes. The same representation with plane coefficients is

employed in [33] to guide the upsampling modules of the

decoder part of depth networks, achieving state-of-the-art

performance. We also use this representation with plane

coefficients, but contrary to [74, 83], we learn it without re-

quiring annotations for planes. Instead, we optimize plane

coefficients together with spatial offset vectors to learn to

identify coplanar pixels and use this coplanarity for predict-

ing depth. While offset vectors are also used in [54] for

post-processing depth by merely resampling the prediction,

we incorporate offset vectors in a single end-to-end archi-

tecture and generate the prediction via interpolation with the

plane associated with the seed pixel pointed by the offset.

Our approach is loosely inspired by [51], which trains off-

set vectors to identify instance segmentation centers from

annotated images, while we focus on depth prediction and

operate without supervision for plane instances.

3. Method

As pointed out in Sec. 1, our network estimates depth by

selectively combining depth from each pixel and its corre-

sponding seed pixel. For this formulation to work, it is vital

to use a common representation which can capture pixel-

wise depth as well as planarity information. We achieve this

by using a plane coefficient representation similar to [83].

We explain this representation and derive an analytical rela-

tion between plane coefficients and depth in Sec. 3.2, which

allows us to supervise the network only with depth. The

main advantage of the plane coefficient representation is

that the depth of a pixel in the image can be directly com-

puted by the plane coefficients of a different pixel, under

the assumption that the two pixels are on the same plane.

This advantage forms the basis of our planarity prior and

the selective planar depth bootstrapping using seed pixels,

which we explain in Sec. 3.3. Finally, in Sec. 3.4 we present

an additional patch-level mean plane loss, which is comple-

mentary to the previous components and contributes inde-

pendently to learning regular depth maps.

3.1. Preliminaries

Monocular depth estimation requires learning a dense

mapping fθ : I(u, v) → D(u, v), where I is the input im-

age with spatial dimensions H×W , D is the corresponding

depth map of the same resolution, (u, v) are pixel coordi-

nates in the image space and θ are the parameters of the

mapping f . In the supervised setup, a ground-truth depth

map D∗ is available for each image I at training time. Dur-

ing training, the parameters θ are optimized such that the

function fθ minimizes the difference between the predicted

depth and the ground-truth depth over the training set T .

This can be formalized as

min
θ

∑

(I,D∗)∈T

L(fθ(I), D
∗), (1)

where L is a loss function that penalizes deviations between

the prediction and the ground truth. Furthermore, given

a depth map D along with the camera intrinsics, we can

backproject each pixel to the 3D space. Using the pinhole

camera model and given the focal lengths (fx, fy) and the

principal point (u0, v0), every pixel p = (u, v)T is mapped

to a 3D point P = (X,Y, Z)T according to

Z = D(u, v), X =
Z(u− u0)

fx
, Y =

Z(v − v0)

fy
. (2)

3.2. Plane Coefficient Representation for Depth

Suppose that the backprojected 3D point P corresponds

to a planar part of the 3D scene. The equation of the as-

sociated plane in the point–normal form can be written as

n ·P+ d = 0, where n = (a, b, c)T is the normal vector to
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Figure 2. Overview of our end-to-end P3Depth method. P3Depth includes two output heads. The first head outputs pixel-level plane

coefficients (C), while the second head outputs a dense offset vector field (o) identifying positions of seed pixels along with a confidence

map (F ). Then, the plane coefficients of seed pixels are used to predict depth at each position. The resulting prediction (Ds) is adaptively

fused with the initial prediction (Di) using the confidence map to account for potential deviations from precise local planarity.

the plane and −d is the distance of the plane from the ori-

gin. Substituting P from (2) into the point-normal equation

yields

1

Z
=

−a

fxd
︸︷︷︸

α̂

u+
−b

fyd
︸︷︷︸

β̂

v +
1

d
(
a

fx
u0 +

b

fy
v0 − c)

︸ ︷︷ ︸

γ̂

. (3)

Thus, for image regions that depict planar 3D surfaces,

the inverse depth is an affine function of pixel position,

where the coefficients encode both the camera intrinsics

and the 3D plane. We reformulate (3) by introducing

ρ =

√

α̂2 + β̂2 + γ̂2 and normalizing α = α̂
ρ

, β = β̂
ρ

and

γ = γ̂
ρ

into

Z = [(αu+ βv + γ)ρ]−1. (4)

We term C = (α, β, γ, ρ)T as the plane coefficients. Using

this notation, (4) can be written as Z = h(C, u, v). Instead

of directly predicting depth, we design our model to have a

plane coefficient head, which first predicts a dense plane co-

efficient representation C(u, v) and then applies (4) to com-

pute an initial depth prediction which we denote with Di.

More formally, the mapping fθ from Sec. 3.1 is now a com-

position fθ = h ◦ (gθ,p), where gθ : I(u, v) → C(u, v)
maps the input image to the plane coefficient representa-

tion and h : (C(u, v), u, v) → Di(u, v) applies (4) at each

pixel. Supervision is applied to the output depth Di via (1).

Predicting the plane coefficients as an intermediate out-

put does not give a immediate advantage compared to di-

rectly predicting the depth. However, two pixels that depict

the same 3D plane have the same parameters C, but gener-

ally a different depth. This fact is the core to the next part

of the network, which allows to predict depth by selectively

bootstrapping the plane coefficients from a seed pixel.

3.3. Learning to Identify Seed Pixels

Let us assume we have one pixel p which belongs to

a planar surface in 3D. By definition, every other pixel on

this planar surface has the same C values. Thus, in an ideal

world the network only has to predict C at one of these pix-

els, q, to get all their depth values correct. This pixel can be

interpreted as the seed pixel that describes the plane. How-

ever, defining this seed pixel and the region in which the

depth should be bootstrapped from it is non-trivial. Thus,

in this work we let the network discover this seed pixel and

the respective region.

Formally, let us start by defining our piecewise planarity

prior which is a relaxed version of the previous idea.

Definition 1. (Piecewise planarity prior) For every pixel

p with an associated 3D plane, there exists a seed pixel q

in the neighborhood of p which is also associated with the

same plane as p.

Note that in general, there may exist multiple seed pixels

or no seed pixel for p.

Given that the prior holds, the task of depth prediction

for p can also be solved by identifying q, i.e., by predicting

the offset o(p) = q − p. Thus, we design our model so

that it features a second, offset head and let this offset head

predict a dense offset vector field o(u, v). The two heads

of the network share a common encoder and have separate

decoders, as shown in Fig. 2. We use the predicted offset

vector field to resample the plane coefficients via

Cs(p) = C(p+ o(p)), (5)

using bilinear interpolation to handle fractional offsets. The

resampled plane coefficients are then used to compute a sec-

ond depth prediction

Ds(u, v) = h(Cs(u, v), u, v), (6)

based on the seed locations. This allows the network to

bootstrap the depth from the seed pixel.

However, the prior is not always valid, so the initial

depth prediction Di may actually be preferable compared

to the seed-based prediction Ds. To account for such

cases, the second head additionally predicts a confidence
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Figure 3. Ground truth planes vs. predicted offset vector field.

The predicted offset vector at a pixel tends to point towards a seed

pixel with which it shares the same plane coefficients. The left

image shows the overlayed labels of the segmented planes on an

example from NYU Depth-v2 and the right image shows the re-

spective predicted offset vector field. The bottom left legend in

the right image shows the color coding for the vector field.

map F (u, v) ∈ [0, 1], which indicates the confidence of

the model in using the predicted seed pixels for estimating

depth via Ds. The confidence map is leveraged to compute

the final depth prediction by adaptively fusing Di and Ds:

Df (u, v) = F (u, v)Ds(u, v)+(1−F (u, v))Di(u, v). (7)

We apply supervision on each of Df , Di and Ds in our

model, by optimizing the following loss:

Ldepth = L(Df , D
∗) + λL(Ds, D

∗) + µL(Di, D
∗), (8)

with λ and µ being hyperparameters. In this way, we en-

courage (i) the plane coefficient head to output a represen-

tation that is accurate across all pixels even when they have

a high confidence value and (ii) the offset head to learn high

confidence values for pixels for which the planarity prior

holds and low confidence values for the converse.

However, there is a caveat in this formulation. In par-

ticular, the model is not supervised directly on the offsets.

In fact, it could simply predict zero offsets everywhere and

still produce valid predictions Ds and Df , which would be

identical to Di. This unwanted behavior is avoided in prac-

tice thanks to the fact that the initial predictions Di are er-

roneously smoothed near depth boundaries, due to the regu-

larity of the mapping fθ for the case of neural networks. As

a result, for pixels on either side of a boundary, predicting

a non-zero offset that points away from the boundary yields

a lower value for Ldepth, because such an offset uses a seed

pixel for Ds which is further from the boundary and suffers

from smaller error owing to smoothing. Also due to regu-

larity of the mapping that generates the offset vector field,

these non-zero offsets are propagated from the boundaries

to the inner parts of regions with smooth depth, helping the

network to predict non-trivial offsets.

In the fully-fledged version of our method, we cas-

cade the offset vectors multiple times before resampling the

plane coefficient maps. For example, a single cascading

step samples the position p + o(p) + o(p + o(p)). Our

motivation for this cascaded refinement is that seed pixels

within the same planar region should converge to the cen-

ter of the region, which helps accumulate information from

more pixels in predicting the plane coefficients of the re-

gion. At the same time, pixels without a reliable seed pixel

are anyway assigned a low confidence value, so cascading

the offsets does not hurt the respective depth prediction.

3.4. Mean Plane Loss

The assumption we use for formulating our mean plane

loss is that given a pixel coordinate, its neighboring pix-

els should lie on the same plane in the 3D space. The nor-

mal n of this plane should satisfy an overdetermined system

of linear equations. However, ground-truth depth maps are

usually captured by consumer-level sensors with noisy mea-

surements and limited precision, which renders the above

regime for local fitting of normals inapplicable, as finding

the true optimal solution is not guaranteed.

Even though this is a valid observation, depth measure-

ments still contain comprehensive details about the scene

structure. This information can be aggregated locally to

enforce first-order consistency between the predicted and

the ground-truth 3D surface. Normals are one way how

this aggregation across patches can be performed. For an

input patch, the corresponding normal n needs to satisfy

An = b, s.t. ∥n∥2 = 1, where A is a data matrix build

by stacking the 3D points in the patch and b is a vector of

ones. Following [11, 53], the closed-form solution of this

least-squares problem is:

n =
(ATA)

−1
ATb

∥
∥
∥(ATA)

−1
ATb

∥
∥
∥
2

. (9)

To compute the mean plane loss, we first estimate surface

normals for all K non-overlapping patches in D and D∗

and then penalize their difference via

LMPL =

K∑

k=1

∥nk − n∗
k∥1 . (10)

For patches with depth discontinuities, even when the n∗
k

for patch k does not correspond to a ground-truth 3D plane,

the mean plane loss still provides a useful supervision sig-

nal, as it penalizes local depth profiles that are inconsistent

with n∗
k. Also, we do not require ground-truth normals, as

opposed to [53]. Given (9), we can see that the loss (10)

directly affects the depth of all points inside the patch via

A. Finally, the complete loss is Ltotal = Ldepth + LMPL.

4. Experiments

We structure this section as follows. We first discuss

our experimental setup, i.e., datasets, evaluation metrics and

implementation details for our method. We then compare

our method to state-of-the-art approaches, followed by a

thorough ablation study of our method.
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Figure 4. Qualitative results on NYU Depth-v2. We compare our

method against SOTA methods using the same examples as [77].
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Figure 5. Reconstruction example from NYU Depth-v2. We

compare the 3D reconstruction induced by our predicted depth to

results using two SOTA depth estimation methods [33, 77].

4.1. Experimental Setup

In this section, we present the datasets used to evaluate

our approach. The NYU Depth-v2 and KITTI datasets are

used as the main sets for training and testing. Addition-

ally, we use four more datasets for testing our method in a

zero-shot transfer setup in order to evaluate its generaliza-

tion potential. Evaluation on all six datasets is performed

using standard depth evaluation metrics explained below.

NYU Depth-v2 [62]. The NYU Depth-v2 dataset consists

of 464 indoor scenes of size 640×480. These scenes are

Table 1. Datasets used in our experiments. (*) uses mix of

RGBD sensors. Sup.: supervision.

Dataset # Training # Testing Sup. Type Scene Type

NYU Depth-v2 [62] 24,231 654 Kinect Indoor

KITTI [17] 23,488 697 LiDAR Outdoor

ScanNet [7] - 2167 Kinect Indoor

SUN-RGBD [63] - 5050 Mixed* Indoor

DIODE Indoor [64] - 325 LiDAR Indoor

ETH-3D [60] - 454 LiDAR Mixed

split into 249 scenes for training and 215 for testing. We

use the official split provided by previous methods [33] for

training and the test set is based on [9].

KITTI [17]. KITTI is an autonomous driving dataset con-

sisting of 61 outdoor scenes of different types. We employ

the standard depth estimation split proposed by Eigen et

al. [9] and Garg et al. [16], for training and testing. We

use 32 scenes for training and 29 scenes for testing.

Datasets used for zero-shot testing. To test the gener-

alization of our P3Depth, we evaluate it on four datasets

which are not seen during training: ScanNet, SUN-RGBD,

DIODE Indoor and ETH-3D. The resolution of all images

is reduced to 640×480. Details are provided in Table 1.

Evaluation metrics. We use the standard depth estima-

tion metrics for evaluation. In particular, we use root mean

square error (RMSE) and its log variant (RMSElog), Log10

error, absolute (A.Rel) and squared (S.rel) mean relative er-

ror and the percentage of inlier pixels with δ. The maximum

depth for KITTI is set to 50m and 80m for the Garg and

Eigen splits respectively. For NYU Depth-v2, the maximum

depth is set to 10m as per the Eigen split. Zero-shot trans-

fer is performed by using a model trained on NYU Depth-v2

without additional fine-tuning. The maximum depth for this

task is set to 10m across all four test datasets. In all eval-

uations, the predicted depth is rescaled so that its median

matches that of the ground truth, as per standard practice.

Implementation details. Our network includes two heads.

The first head outputs four channels, one for each plane

coefficient. The second head outputs three channels: one

for each coordinate of the offsets and one for confidence.

These heads are fed by a ResNet101 encoder [21] initial-

ized with pre-trained ImageNet [28] weights. This ini-

tialization is important to achieve competitive results as

in [13, 23, 33, 77]. The decoders, inspired from [70], are

initialized with weights drawn from a normal distribution

with σ= 0.01. The plane coefficient decoder is additionally

equipped with a guidance module. See supplemental for

details. The offset vectors are restricted via a tanh layer to

have a maximum length of τ in normalized image coordi-

nates. We set τ to 0.1 by default and apply two steps of

cascaded refinement to the offsets. The confidence map is

predicted through a sigmoid layer. For all experiments, we

use a batch size of 8 and employ the Adam optimizer [25]

with a learning rate of 10−4 and a weight decay of 10−4. We
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Table 2. Comparison of depth estimation methods on NYU

Depth-v2 [62] test set. Comparison is performed on the Eigen

split [9]. (nF) is number of frames, (*) indicates self-supervised

methods and (†) denotes retrained results with train set from [33].

Method
A.Rel Log10 RMSE δ1 δ2 δ3

Lower is better Higher is better

Plane detection based methods

PlaneNet [42] 0.142 0.060 0.514 0.812 0.957 0.989

PlaneRCNN [41] 0.124 0.077 0.644 – – –

Yu et al. [81] 0.134 0.057 0.503 0.827 0.963 0.990

P2 Net (5F)* [80] 0.147 0.062 0.553 0.801 0.951 0.987

StruMonoNet [75] 0.107 0.046 0.392 0.887 0.980 0.995

Other monocular depth estimation methods

Saxena et al. [59] 0.349 - 1.214 0.447 0.745 0.897

Karsch et al. [24] 0.349 0.131 1.21 - - -

Liu et al. [45] 0.335 0.127 1.06 - - -

Ladicky et al. [31] - - - 0.542 0.829 0.941

Li et al. [37] 0.232 0.094 0.821 0.621 0.886 0.968

Wang et al. [68] 0.220 0.094 0.745 0.605 0.890 0.970

Liu et al. [44] 0.213 0.087 0.759 0.650 0.906 0.974

Roy et al. [57] 0.187 0.078 0.744 - - -

AdaBins† [1] 0.178 0.078 0.595 0.698 0.937 0.988

Eigen et al. [9] 0.158 - 0.641 0.769 0.950 0.988

Chakrabarti [4] 0.149 - 0.620 0.806 0.958 0.987

Li et al. [38] 0.143 0.063 0.635 0.788 0.958 0.991

Laina et al. [32] 0.127 0.055 0.573 0.811 0.953 0.988

Fu et al. [13] 0.115 0.051 0.509 0.828 0.965 0.992

Yin et al. [77] 0.108 0.048 0.416 0.875 0.976 0.994

Huynh et al. [23] 0.108 - 0.412 0.882 0.980 0.996

Lee et al. [33] 0.110 0.047 0.392 0.885 0.978 0.994

Long et al. [46] 0.101 0.044 0.377 0.890 0.982 0.996

Ranftl et al. [55] 0.110 0.045 0.357 0.904 0.988 0.998

Ours 0.104 0.043 0.356 0.898 0.981 0.996

train our network for 25 epochs, although the model starts

producing decent predictions from epoch 5. The learning

rate is reduced every 5 epochs by a factor of 10 using a

step scheduler. The training images are resized similarly

to [33]. For all direct depth losses, we use the loss formu-

lation from [9]. The loss weights λ and µ are set to 0.5. In

addition, the mean plane loss is applied using the final depth

prediction Df . The offset head performs better with dense

supervision. Hence, Ds is supervised using completed D∗.

To complete D∗, the depth inpainting method from [62] is

used. The inpainted ground truth is also used for computing

the mean plane loss to provide stability to the SVD algo-

rithm for least squares. We set the patch size to 32 and K

in (10) is set indirectly by the patch size and the image size.

The data augmentation techniques from [33] are used.

4.2. Comparison with State of the Art

NYU Depth-v2: The results on NYU Depth-v2, which

is the major indoor depth benchmark, are presented in Ta-

ble 2. We set the new state of the art on NYU Depth-v2, out-

performing prior state-of-the-art (SOTA) methods across all

six standard metrics. We achieve a superior relative perfor-

mance gain of 9.18% in RMSE and 3.7% in A.Rel, while

also improving δ1 by 1.1%. This improvement in perfor-

mance indicates that without using ground-truth planes as

supervision, P3Depth learns an implicit representation of

Table 3. Comparison of depth estimation methods on

KITTI [17]. Comparison is performed on the Eigen test split.

Method
A.Rel S.Rel RMSE RMSElog δ1 δ2 δ3

Lower is better Higher is better

Garg split [16] cap: 50m

Garg et al. [16] 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [18] 0.108 0.657 3.729 0.194 0.873 0.954 0.979

Kuznietsov [29] 0.108 0.595 3.518 0.179 0.875 0.964 0.988

Gan et al. [15] 0.094 0.552 3.133 0.165 0.898 0.967 0.986

Fu et al. [13] 0.071 0.268 2.271 0.116 0.936 0.985 0.995

AdaBins [1] 0.058 0.19 2.36 0.088 0.964 0.995 0.999

Lee et al. [33] 0.056 0.169 1.925 0.087 0.964 0.994 0.999

Ours 0.055 0.130 1.651 0.081 0.974 0.997 0.999

Eigen split [9] cap: 80m

Saxena et al. [59] 0.280 3.012 8.734 0.361 0.601 0.820 0.926

Eigen et al. [9] 0.203 1.548 6.307 0.282 0.702 0.898 0.967

Liu et al. [43] 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Godard et al. [18] 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Kuznietsov [29] 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Gan et al. [15] 0.098 0.666 3.933 0.173 0.890 0.964 0.985

Fu et al. [13] 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Yin et al. [77] 0.072 - 3.258 0.117 0.938 0.990 0.998

Lee et al. [33] 0.059 0.245 2.756 0.096 0.956 0.993 0.998

AdaBins [1] 0.067 0.278 2.96 0.103 0.949 0.992 0.998

Ranftl et al. [55] 0.062 - 2.573 0.092 0.959 0.995 0.999

Ours 0.071 0.270 2.842 0.103 0.953 0.993 0.998

the planes which can benefit the overall depth estimation

capability of the network.

Qualitative results on NYU Depth-v2 support the above

findings. In Fig. 4, we show the high-quality predictions

generated by our method in comparison with SOTA meth-

ods using the same examples as in [77]. It can be clearly

observed that the surfaces which fit our piece-wise planar

assumption, such as table, cupboard, and even smaller ob-

jects, e.g. computer screens, photo frames etc. have consis-

tent predictions with sharp details in comparison with the

SOTA methods. Overall, our method generates superior vi-

sual results. In some cases, especially w.r.t. the metric scale

of the scene, results from [33] are comparable to ours. Our

method excels especially on man-made regular structures

of the indoor scenes. What is more, the predicted depth

maps produce 3D reconstructions which are consistent with

ground-truth point clouds and preserve the structure of the

scene better than competing methods, as shown in Fig. 5.

KITTI: The results on KITTI in Table 3 suggest that our

method is fully applicable to outdoor datasets. In particu-

lar, we surpass prior state of the art on the Garg split (with

maximum range of 50m) in all metrics by a significant mar-

gin. More specifically, we improve RMSE by 14.2% and δ1
by 1.0%. This proves that our method takes advantage of

regular structures in outdoor scenes to improve depth pre-

dictions. Moreover, our method is comparable to state of the

art on the Eigen split [9], where the maximum range is 80m.

The reason why our ranking is slightly lower on the Eigen

split is that distant parts of the scene get projected to smaller

regions and thus the extent of the respective smooth pieces

of the depth map is also smaller, making it more difficult

to predict a correct offset. Additionally, for the results on

the KITTI benchmark suite, please refer to the supplement.

Overall, the method is able to handle planar objects quite
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Figure 6. Qualitative results on KITTI. We present the predicted

offset vector fields (middle) and the depth estimates (right).

well even in variable lighting conditions as shown in Fig. 6.

Although the sign board in the bottom image is brightly lit

and the car in the middle image is badly lit, the method is

able to detect the regularity of the object surface and pre-

dict consistent depth. The top image of Fig. 6 demonstrates

a limitation of our method. In particular, the road segments

on either side of the pole of the traffic sign on the right get

mapped to significantly different depth values because they

are disconnected and thus do not interact in terms of plane

coefficients, even though they belong to the same 3D plane.

Additionally, the planar specular glass surface of the car in

middle image is predicted incorrectly. This is due to the

shortcomings of the sensor used to measure depth. The er-

roneous ground truth does not allow the network to learn

the depth or the offset vector field in these regions.

Zero-shot experiments: In Table 4, we prove the gener-

alization ability of our method in a zero-shot setting where

the test domains have not been seen during training. We

achieve the best performance on the ScanNet [7] and SUN-

RGBD [63] indoor datasets in all metrics. On DIODE In-

door and ETH-3D, [77] performs best in terms of A.Rel, but

we are by far the best in terms of both RMSE and δ1. This

comparison shows that even when our method is trained

only on an indoor dataset as NYU Depth-v2, it works well

on a variety of datasets with different types of scenes.

4.3. Ablation Studies

We study the importance of the components of our

method by ablating them in Table 5. We observe that in

a standalone setting, directly predicting depth is better than

predicting planar coefficients. However, once we insert the

second head which predicts offset vectors, a substantial ben-

efit is obtained by using the plane coefficient representation

compared to directly predicting depth. This demonstrates

that the network learns to make effective use of local pla-

nar information at seed pixels to improve depth, thanks to

the plane coefficient representation. Moreover, adding our

guidance module provides a slight improvement. The abla-

tion also verifies the utility of cascaded refinement of off-

Table 4. Comparison of SOTA methods on generalized learning

of metric depth. All methods are trained on NYU Depth-v2 and

tested on four other datasets without fine-tuning.

Dataset Metric VNL [77] BTS [33] Ours

ScanNet [7]

A.Rel ↓ 0.227 0.255 0.223

RMSE ↓ 0.563 0.615 0.538

δ1 ↑ 0.544 0.472 0.551

SUN-RGBD [63]

A.Rel ↓ 0.317 0.317 0.307

RMSE ↓ 0.449 0.461 0.431

δ1 ↑ 0.793 0.794 0.797

Diode Indoor [64]

A.Rel ↓ 0.291 0.310 0.373

RMSE ↓ 0.890 0.981 0.784

δ1 ↑ 0.635 0.559 0.639

ETH-3D [60]

A.Rel ↓ 0.331 0.366 0.343

RMSE ↓ 1.649 1.840 1.637

δ1 ↑ 0.462 0.398 0.468

Table 5. Ablation study of components of our method. D: di-

rectly predicting depth, C: predicting plane coefficients, “Guid.”:

guidance module for plane coefficient decoder, “OV”: offset vec-

tors, “Ref.”: cascaded refinement of offsets, “MPL”: mean plane

loss, “+”: offset length is restricted to τ=0.3 instead of τ=0.1.

Pred. Guid. OV Ref. MPL A.Rel ↓ RMSE ↓ δ1 ↑

D 0.142 0.458 0.821

C 0.144 0.487 0.811

C ✓ 0.142 0.458 0.824

D ✓ 0.140 0.453 0.824

C ✓ 0.116 0.390 0.877

C ✓ 0.118 0.395 0.872

C ✓ ✓ 0.115 0.384 0.879

C ✓ ✓+ 0.116 0.390 0.879

D ✓ ✓ 0.134 0.440 0.839

C ✓ ✓ 0.113 0.378 0.884

C ✓ ✓ ✓ 0.109 0.370 0.890

C ✓ ✓ ✓ 0.109 0.373 0.889

C ✓ ✓ ✓ ✓ 0.104 0.356 0.898

sets, which yields better results than simply using a higher

maximum offset length. Finally, adding our mean plane loss

on top of plane coefficients, offset vectors and cascaded off-

set refinement yields SOTA results on NYU Depth-v2.

5. Conclusion

We have presented a supervised method for monocular

depth estimation which leverages local planar information

in the 3D scene in order to predict consistent depth values

across smooth parts of the scene. The method uses a plane

coefficient representation for depth, which enables to share

information from seed locations and improve the predicted

depth. We implicitly learn to predict the offsets to these

seed locations and to weigh the depth obtained from them

adaptively according to accuracy. We empirically validated

our method on the major indoor and outdoor benchmarks

for monocular depth estimation and set the new state of the

art among supervised approaches, which shows the poten-

tial of well-selected geometric priors for depth estimation.
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