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Abstract: We present a masked vision-language transformer (MVLT) for fashion-specific multi-modal representation. Technically, we
simply utilize the vision transformer architecture for replacing the bidirectional encoder representations from Transformers (BERT) in
the pre-training model, making MVLT the first end-to-end framework for the fashion domain. Besides, we designed masked image recon-
struction (MIR) for a fine-grained understanding of fashion. MVLT is an extensible and convenient architecture that admits raw multi-
modal inputs without extra pre-processing models (e.g., ResNet), implicitly modeling the vision-language alignments. More importantly,
MVLT can easily generalize to various matching and generative tasks. Experimental results show obvious improvements in retrieval
(rank@5: 17%) and recognition (accuracy: 3%) tasks over the Fashion-Gen 2018 winner, Kaleido-BERT. The code is available at

https://github.com/GewelsJI/MVLT.
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1 Introduction

The emergence of transformer is drawing enormous at-
tention from the academic community, facilitating the ad-
vancement of computer vision (CV)[ 2 and natural lan-
guage processing (NLP)B: 4. Benefiting from the robust-
ness of transformers, researchers also contribute to the
vision-language (VL) field59 with zeal. To better utilize
the pre-trained models in CV and NLP, existing general
VL models are mainly based on the BERT modell! or
adopt the well-pretrained vision extractorsll: 12 or both.
However, general VL methods[!3719 still struggle when ap-
plied to the fashion domain in e-commerce because they
suffer from two main issues: 1) Insufficient Granular-
ity. Unlike the general objects with complex back-
grounds, only focusing on coarse-grained semantics is in-
sufficient for a fashion product(16-18] as it would lead the
network to generate sub-optimal results. Contrarily, the
fashion-oriented framework requires more fine-grained
representations, such as a suit with different materials
(e.g., wool, linen, and cotton) or collars (e.g., band, camp,
and Windsor). 2) Bad Transferability. The pre-extrac-
ted visual features are not discriminative for fashion-ori-
ented tasks, restricting the cross-modal representations.

To address the above issues, we present a novel VL
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framework termed masked vision-language transformer
(MVLT). Specifically, we introduce a generative task,
masked image reconstruction (MIR), for the fashion-
based VL framework. Compared to previous pre-training
tasks, such as masked image modeling (regression task) or
masked image classification (classification task), MIR en-
ables the network to learn more fine-grained representa-
tions via pixel-level visual knowledge (see Fig.1). Further,
inspired by pyramid vision transformer (PVT)2l we util-
ize a pyramid architecture for our VL transformer. Then,
we introduce the MIR task. These two improvements sig-
nificantly enhance the ability to adapt to fashion-specific
understanding and generative tasks and can conduct in
an end-to-end manner. To this end, MVLT can directly
process the raw multi-modal inputs in dense formats (i.e.,
linguistic tokens and visual patches) without extra (e.g.,
ResNet) pre-processing models?2 231, Our main contribu-
tions are summarized as follows:

1) We introduce a novel MIR task, which is the first
real pixel-level generative strategy utilized in VL pre-
training.

2) Based on the MIR task, we present an end-to-end
VL framework, called MVLT, for the fashion domain,
greatly promoting the transferability to the downstream
tasks and large-scale web applications.

3) Extensive experiments show that MVLT signific-
antly outperforms the state-of-the-art models in match-
ing and generative tasks.

2 Background

In recent years, BERT-based pre-training models have
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Fig.1 Different visual reconstruction tasks for VL
pretraining[1% 201 utilize masked image modeling (top) with the
random masking strategy (i.e., to use M padding to replace raw
vectors), which reconstructs pre-extracted visual semantics (i.e.,
probabilities) at the feature-level. We introduce a generative
task named masked image reconstruction (bottom), which
directly reconstructs image patches at the pixel level.

been widely investigated in VL tasks. Many previous at-
tempts, such as LXMERT?4, VL-BERT[?%, and Fashion-
BERTIY, were successful in a wide range of downstream
applications. Experiments and discussions show that
BERT is a powerful method for learning multi-modal rep-
resentations, outperforming several previous CNN-
based26] or LSTM-based2” 28] approaches. Compared to
previous studies, this paper aims to develop a more effi-
cient self-supervised objective that can be easily imple-
mented in pre-training and provides better representa-
tions for real-world applications. Thus, we review re-
search on masked learning strategies and end-to-end
multi-modal schemes that inspired us the most.

2.1 Masked learning strategies

Masked modeling is a vital self-supervised task in
BERT!0 and initially demonstrates outstanding abilities
in natural language processing. Researchers have replic-
ated its strength in language models because of its utility
in multi-modal and vision tasks. Most VL works[l4 25, 29]
transfer masked modeling into visual tokens and use a re-
gression task to construct the token feature from non-
sense-replace or a classification task to predict the token's
attribute. To reduce the difficulty in learning, Kaleido-
BERTH optimizes masked modeling by employing a Kal-
eido strategy that facilitates coherent learning for multi-
grained semantics. Although this work improves the per-
formance of VL-related tasks in fashion indeed, we argue
that the token-patch pre-alignment scheme by using an
auxiliary tooll30 31] is still complex and impedes the ap-
plication to practical settings. Another work[32 intro-
duces the masked language and image modeling (MLIM)
approach that strengthens masked image modeling with
an image reconstruction task, which shares a similar idea
to ours. However, our experiments showed that requiring
a model to reconstruct the entire image without any re-
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minder is too difficult. Recently, BEiTB3 and MAEB4
utilized a BERT-style pre-training as part of the visual
learner, and they discovered that models are effective at
learning semantics with such a scheme. These two works
strengthen our conviction that converting the original
masked image modeling (i.e., a regression task) to a
masked image reconstruction task is possible. However,
our primary goal is to design a generative pretext task
that makes the multi-modal modeling in VL pre-training
easier while eliminating the need for using prior know-
ledge. It will be extremely helpful in our practical applic-
ation setting with billion-level data.

2.2 End-to-end multi-modal schemes

Pixel-BERTI3 is the first method to consider end-to-
end pre-training. It employs 2x2 max-pooling layers to
reduce the spatial dimension of image features, with each
image being downsampled 64 times. Although this work
sets a precedent for end-to-end training, such a coarse
and rigid method cannot work well in practical settings
because it is simply combined with a ResNet[!!] as part of
joint pre-training without considering the loss in speed
and performance. Recently, VX2TEXTEB6 proposed to
convert all modalities into a language space and perform
end-to-end pre-training using a relaxation scheme.
Though it is exciting to translate all the modalities into a
unified latent space, it ignores that the usage of data ex-
tracted by pre-trained methods as input to the model
cannot be regarded as an end-to-end framework. Accord-
ing to the timeline, ViLTB7 is the first method that in-
deed investigates an end-to-end framework via replacing
region-based or grid-based features with patch-based pro-
jections. However, without other designs, it cannot ob-
tain competitive performance since it is just a vanilla ex-
tension of ViTl. Grid-VLPBEl is similar to ViLT, but it
takes a further step by demonstrating that using a pre-
trained CNN network as the visual backbone can im-
prove performance on downstream tasks. SOHOBY takes
the entire image as input and creates a visual dictionary
to affine the local region. However, this method does not
fit fashion-specific applications due to the lack of reliable
alignment information. As a result, the vision dictionary
may merely learn the location of the background or fore-
ground rather than complex semantics. FashionVLPH4]
uses a feedback strategy to achieve better retrieval per-
formance. In practice, they use the well-pretrained know-
ledge extracted from ResNet and then model the whole,
cropped, and landmark representations. Besides, they ad-
opt Faster-RCNN as an object detector for popping out
Rol candidates. Besides, some works are designed for end-
to-end pre-trainingl'™43], but they are used for specific
tasks and are not directly applicable to our research.

Despite existing methods employing different ap-
proaches to construct an end-to-end scheme, solutions
that forgo pre-trained methods (e.g., ResNet, BERT) and
use raw data (i.e., text, image) as inputs remain under-
explored and are needed urgently in multi-modal applica-
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tions.

Remark. As shown in Fig.2, similar to the existing
two fashion-based approaches, i.e., FashionBERT (a) and
Kaleido-BERT (b), the proposed MVLT (c) is also a
patch-based VL learner, which extends the pyramid vis-
ion transformer(?!l to an architecture that adaptively ex-
tracts hierarchical representations for fashion cross-mod-
al tasks. It is the first model that solves the end-to-end
problem of VL pre-training in fashion, which allows us to
simplify the implementation of our MVLT in the fashion
industry using a twin-tower architecturel44].

3 Masked vision-language transformer

Our goal is to build an end-to-end VL framework for

3

the fashion domain. The overall pipeline of our MVLT is
depicted in Fig.3. Like PVT, our architecture inherits
four stages' properties and generates different-sized fea-
tures. Two keys of the proposed architecture are the
multi-modal encoder (Section. 3.1) and the pre-training
objectives (Section. 3.2).

3.1 Multi-modal encoder

As shown in Fig.3, MVLT accepts visual and verbal
inputs. On the language side, we first tokenize the cap-
tion of a fashion product and use the specific token [MASK]
to randomly mask out the caption tokens with the mask-
ing ratio! 7. Following the masking procedure, we obtain
a sequence of word tokens. Then, we insert a specific [CLS]
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Comparison of MVLT to cutting-edge fashion-oriented VL frameworks. FashionBERT (a) utilizes a language-based encoder

(i.e., BERT) to extract VL representations with single-scale visual input (i.e., image patches). Kaleido-BERT (b) extends it with two
upgrades: adds five fixed-scale inputs (i.e., Kaleido patches) to acquire hierarchical visual features and designs Kaleido vision tasks to
fully learn VL representations. However, the visual embedding of these models is frozen (i.e., without parameter updating); thus, a lack
of domain-specific visual knowledge severely hinders their transferability. Differently, our MVLT (c) adaptively learns hierarchical
features by introducing masked vision tasks in an end-to-end framework, significantly boosting the VL-related understanding and
generation.
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Fig. 3 Pipeline of our MVLT framework. Our overall architecture consists of four stages containing language and visual embeddings
and multiple transformer encoders (X My). Introducing the masking strategy for three sub-tasks, i.e., masked image reconstruction
(MIR), image-text matching (ITM), and masked language modeling (MLM), our MVLT can be trained in an end-to-end manner. More
details can be found in Section 3.
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token at the head of this sequence. Besides, we pad the
sequence to a unified length L using the [PAD] token if the
length is shorter than 128. This procedure generates the
language input ids T € R* = (t1;--- ;). On the vision
side, we treat I € RTXW*3 a5 visual input, where H and
W denote the height and width of the given input. This
input is sliced into multiple grid-like patches V €
RNVXPXPX3 — (1. ;opy), where N = oY is the total
number of patches, and P denotes the patch size. Simil-

arly, the split patches are masked out with mask ratio r,,.
We provide more details about the above masking
strategy for the language and vision parts in Section 3.2.
The above multi-modal inputs are embedded and fed
into the consequent four VL interaction stages (i.e.,
k €{1,2,3,4}). In the first stage, we generate the vision
and language embeddings, T' and V!, respectively, via
the given inputs (T" and V). Regarding the subsequent
stages, we consider only the k-th stage to have concise il-
lustrations. As shown in the bottom part of Fig.3, we
first embed the language embedding T* € RE*P* into
the language hidden feature m” € R**Pr+1  which is for-

mulated as

mF = TF « WF + P} (1)

where W} € RP+*Pr+1 and PF e REXPr+1 are  the
learnable linear embedding and position embedding
matrices, Dy is the size of the hidden feature embedding,

* denotes the matrix multiplication.

H W
The visual embeddings are V* € RFx Ry, XD’“, where

Ry denotes the spatial reduction factor of visual embed-
ding. To acquire pyramid visual features, V¥ is then em-
bedded and flattened into the visual hidden feature
n* € REW/EL 0D+t yia a two-dimensional projection
(i.e., Conv2D block). In particular, this projection en-
forces the network to reduce the equivalent spatial di-
mension from RAW/EE to RHW/Rin by utilizing the
convolutional kernel WF ¢ RP+>*KexErxDit1 with ker-
nel size K and stride length Si. This could be formu-
lated as follows:

n* = Flatten(V* « WF) + PF (2)

where PF e RV*Pk+1 denotes the position embedding
matrix, * denotes the matrix multiplication. We then
concatenate these two VI hidden features z* = (m”;n*)
and feed them into multiple (M) VL transformer
encoders. Each encoder contains the multi-head self-
attention layer with spatial reduction (i.e., reduce block),
multi-layer perceptron, and layer normalization. Finally,
multi-modal  feature

we obtain the encoded

SRl <mk+1;nk+1>
Th+1

and divide it into a language part

k+1 k+1)
’

=m and a visual part V! =Reshape(n

1 We follow the default setting in BERTI10.
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where the Reshape(-) operation consists in recovering
the spatial dimension of the given feature.

After four VL interaction stages, we generate the four
text embeddings {T*}%1_, and four pyramid vision em-
beddings {V*}{_,, respectively. Table 1 presents more
detailed hyperparameter settings of our method.

Table 1 Hyperparameter of our multi-modal encoders

Hyperparameter k=1 k=2 k=3 k=4
Layer number My 2 2 2 2
Hidden size Dy, 64 128 320 512
Reduction size Ry, 4 8 16 32
Kernel size Ky 4 2 2 2
Stride length Sy, 4 2 2 2

3.2 Pre-training objectives

To acquire discriminative multi-modal representations,
we adopt three pre-training tasks to establish the inter-
and intra-relationships between the most primitive VL
modalities, including vision (masked image reconstruc-
tion, MIR), language (i.e., masked language modeling,
MLM), and VL (image-text matching, ITM) modalities.

Objective 1:
(MIR). As for the general domain, models are enough to

Masked image reconstruction

learn the coarse-grained semantics from the patch-based
or region-based objectives and achieve satisfactory res-
ults. However, the fashion-specific models require more
fine-grained representations, such as a suit with different
materials (e.g., wool) or collars (e.g., Windsor), which
needs a pixel-to-pixel vision pre-training objective. In-
spired by masked language modelingll%, we attempt to
build pixel-to-pixel relationships from the perspective of
generative tasks, which promote the scalability of visual
representations. We designed the masked image recon-
struction to accomplish this idea. To help our model learn
better by MIR, we utilize the pyramid characteristic of
the PVT architecturel?!l to design a flexible masking
strategy. Unlike the ViT-based method (a) in Fig.4,
PVT-based architecture (b) masks out the input image
according to the masking unit matrix that contains small-
grained patches. Given the patch sequence V =
{vn}tn=y € RV*FP*PX3 the masked-out sequence W is

defined as

Vie = Fur({M(q; 05 @)}, {on}nsn) =

{[ZERU}, if M(go;®)=1 3)
Un, if M(g;a;®)=0

where Fs(-;-) represents a function (or procedure) of our

masking strategy, ¢ is the randomly selected area of the

masking unit, and [ZERO] means that we use a pixel value
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Split patch 3 ;‘

(a) ViT-based

(b) PVT-based (ours)

Fig.4 PVT-based architectures offer more options for
designing the masking strategy. The vanilla ViT-based method
(a) only selects a fixed-scale patch to mask, i.e., p2. However,
the PVT-based method (b) is more versatile because it combines
more fine-grained patches as a basic masking unit, i.e., (o x P)?,
where « € {1,2,---,8}. These masked patches are not
overlapped with each other. This characteristic provides a
flexible way to learn the suitable semantics by using different
values for a. Notably, we adopt a fixed scale factor of masking
units in an individual experiment.

of zero? to fill the selected areas. The masking units
{M(q; ; (P)}qul are derived from the indicator function:

1, if ge®
0, if g¢@

M (q; ;@) = 1(q) = { (4)

where each value in a set of integers ¢ is randomly
selected from range [1, Q] with ratio r,. Q = % is the
total number of masking units. For instance, in Fig.4(b),
we can define a from 1 to 8. In our default settings, we
set a = 4 to capture more fine-grained semantics?.

Since the smooth-/1 loss is less sensitive to the out-
liers, we use it as the pre-training objective to recon-
struct the whole image via the masked-out sequence W\ 4.

It is defined as

[’MIR = 05 X (I(/x7y) - I(m’y))Qf lf Iéx,y) — I(z,y) < 1
| I(/z,y) — Iz | —0.5, otherwise

()

where Ifz,y) and I, denote the pixel at coordinate
(z,y) in the reconstructed image I' and the input image
I, respectively. I' = Fanr(Vie; Wmir) is parameterized
by learnable weights Wjr. Function ]:MIR(-; WMIR)
denotes a standard four-level U-Netl45] decoder, which

admits four pyramidal vision embeddings {V*}%i_, as

2 In fact, we set [ZERO] = 10~% to bring better optimization
stability and less pattern degradation.

3 The vanilla masking strategy in Fig. 4(a) with P = 32 becomes
a special case of our masking strategy in Fig. 4(b) when
a=8,P=4.

inputs.

Objective 2: Image-text matching (ITM). The
appended classification embedding in the last language
embedding, T, is used to couple the representations from
VL modalities. We utilize the function Firym(-; WiTm) to
denote a fully connected (FC) and softmax layers, para-
meterized by the weights Wiy, Frrm outputs a two-
class probability vector prrv = Frrm((T, V); Witm),
representing whether the input fashion image and cap-
tion match (i.e., positive pair) or not (i.e., negative pair).
The positive pairs are selected from the same fashion
product category, whereas the negative pairs are chosen
randomly from different entries. The binary cross-en-
tropy loss function finally constrains this task:

Litm = — E vy [yrru log(prrv) +
(1 — yrr™) log(1 — prru)] (6)

where yrry denotes the ground-truth label, ie., 1 for
matched pairs and 0 for unmatched pairs.
Objective 3: Masked language
(MLM). Following [46], we randomly use the specific
token [MASK] to replace the original text tokens. The tar-
get of the MLM is to predict the text content for the
masked tokens using the unmasked tokens and patches.

modeling

Given a tokenized sequence T' = {t1,--- ,t1}, the masked-
out sequence is denoted by T\; = {t1,---,[MASK],,---,
tr}. We use the cross-entropy loss to model this object-
ive:

Lyitm = —Er[log(pymim)] (7)

where pyLv = -FMLM(T\7;§WMLIVI) denotes the predicted
probability for each masked-out token [MASK], using T\,.
The function Fym(-; WaLMm) represents the parameters
Whuwm of a classifier. The final pre-training objective of
the proposed MVLT is a combination of the three
objectives:

Liotal = w1 X Lyir + w2 X Lrrm +ws X Ly (8)

3.3 Downstream tasks

For a fair comparison, we follow the same training/in-
ference protocols as in [19, 20] and adopt the Fashion-
Gen 2018147 benchmark as the base of our experiments.
This dataset contains 67666 fashion products (i.e., 60147
entries for training and 7519 entries for testing) and their
associated product descriptions. Each product corres-
ponds to an image set (including 1 — 6 samples) at vari-
ous viewing angles. As a result, we utilize 260480 and
35528 image-text pairs as training and testing partitions,
respectively. For a fair comparison, we tested MVLT and
compared models on Fashion-Gen using the following four
fashion-related VL downstream tasks.
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Task 1: Text-image retrieval (TIR). The TIR
task requires the model to find a text with the highest
similarity value with different query images. In particu-
lar, we take a product title and its corresponding image
as a positive image-text pair, while the negative pairs are
randomly selected from a pool of mismatched images. To
increase our experiment's difficulty, we constrain a set of
image-text candidates (i.e., a positive pair and 100 negat-
ive pairs) in the same sub-category, making them as sim-
ilar as possible.

Task 2: Image-text retrieval (ITR). As the re-
verse process of the TIR task, the ITR task aims to re-
trieve a matching image given a sequence of text entries
of fashion description, where these bidirectional retrieval
tasks (i.e., TIR and ITR) become prominent members of
cross-modal research. Similar to the above selection
strategy in the TIR, we prepare a set of candidate image-
text pairs, including a positive pair and 100 negative
pairs from the same sub-category. We evaluate the zero-
shot learning ability of our MVLT without further fine-
tuning for these two retrieval tasks. We utilize three ac-
curacy metrics (i.e., R@Q1, RQ@5, and R@10) for the eval-
uation by ranking a series of predicted probabilities.

Task 3: Category recognition (M-CR and S-
CR). This task has two parts: main-category recognition
(M-CR) and sub-category recognition (S-CR). These
tasks are the fundamental role of practical e-commerce
applications that offer the specific category of the quer-
ied product. We expect that the model should possess the
ability to recognize differences under different granular-
ity levels: 48 main-categories and 122 sub-categories, such
as {M — CR = SWEATERS,S — CR = CREWNECKS}. After the
class embedding in the last language embedding T, we
add two independent FC layers to generate the final
probabilities for two different recognition tasks. This pro-
cedure requires additional fine-tuning with recognition la-
bels. We utilize two recognition-related metrics to evalu-
ate performance: accuracy (A) and macro F-measure
(macro-F).

Task 4: Masked image generation (MIG). The
MIG task can be viewed as a pixel-wise reconstruction
task. Each patch in the image is randomly masked with
the probability r, (refer to the pre-training task MIR in
Section 3.2). Then, we ask the model to recreate the
whole image using the uncovered areas as visual clues.

4 Experiments

This section will detail our experiment to determine
the factors leading to the success of the proposed MVLT.

4.1 Settings

This part provides the hyperparameter settings for our
training procedure: 1) Pre-training. We utilize PyT-
orch to implement our method, which is accelerated by 8
Tesla V100 GPUs. We adopt an AdamW optimizer with
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a momentum value of 0.9, a mini-batch size of 1200 (i.e.,
150 per GPU), and a weight decay of 10™*. To avoid
over-fitting, we initialize MVLT on ImageNet pre-trained
weights(2l., The learning rate is initially set to 2.5 x 1073
and is changed using a cosine learning schedule. For the
visual side, the input image is resized to H = W = 256
and split into multiple sub-patches with a size of P = 4.
For the language side, all the product captions are token-
ized and padded to tokens with a unified length of
L =128, including classification, caption, and padding
tokens. The mask probabilities for vision and language
are set to r, = 0.5 and r; = 0.15, respectively. We empir-
ically set weighting factors {wi = 10,ws = 1,w3 = 1} to
balance the orders of magnitude of different loss values.
2) Fine-tuning. We transfer the pre-trained VL repres-
entation to each downstream application via fine-tuning
in an end-to-end manner, whose settings are consistent
with the pre-training process.

4.2 Results

As described in Section 3.3, we provide the details of
four downstream fashion-related tasks. Experimental res-
ults show that our MVLT outperforms all competitors,
including VSEM8, VSE++19 SCAN[R6, PFANBO, ViL-
BERTIM  ImageBERT[3,  FashionBERT[IY — VL-
BERT[R%, OSCARPY, and Kaleido-BERTI[20, which
demonstrate the superiority for handling the VL under-
standing and generation tasks.

TIR and ITR. As shown in Table 2, our MVLT sur-
passes the best method (i.e., Kaleido-BERT-CVPR31) on
the TIR task by margins of +17.40% and +20.91% across
the R@Q5 and R@10. As for ITR, our method delivers
more competitive results, with improvements of +17.11%
and +22.73% on the R@Q5 and R@Q10 metrics, respect-
ively. In any case, these results strongly support that our
model is powerful enough to match vision and language.
They also show how 1) MIR and 2) end-to-end pre-train-
ing are useful in fashion. We believe that MVLT would
set a precedent in many industrial applications because it
is a simple, cost-effective, and powerful architecture. Be-
sides, we present the visualization results of these two re-
trieval tasks in Fig. 5.

M-CR and S-CR. Compared with BERT-based ar-
chitectures(!3: 19, 20, 29] we also achieve top-1 performances
in these two tasks, demonstrating our method has an ex-
cellent VL understanding capability. Moreover, com-
pared with the best method Kaleido-BERT, our architec-
ture improves by 0.193 in the macro-F metric for the S-
CR task. In addition, the mean improvements in terms of
the SumC metric (i.e., M-CR: +21.39 and S-CR: +24.80)
are very significant. Since this metric is very sensitive to
data distribution, it demonstrates that MVLT has super-
strong robustness. We also present the recognition res-
ults of M-CR and S-CR in Fig.6.

MIG. As shown in Fig.7, we showcase reconstructed
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Table 2 Retrieval (i.e., TIR and ITR) and recognition (i.e., M-CR and S-CR) performances on the Fashion-Gen dataset. 1 means the
larger, the better. Here, SumR =(R @14+R @5+R @10) x100 and SumC=(A + macro-F) x 100. “N/A” means the score is not available.
“Diff” means the numerical difference between the performance of the second-ranked competitor and our MVLT.

VSE VSE++ SCAN PFAN ViLBERT ImageBERT FashionBERT VL-BERT OSCAR Kaleido-BERT MVLT
Task Metric arXiv14 BMVClg ECCVlg arXivlg NeurIPSlg arXisz SIGIR20 ICLR,20 ECCV20 CVPR21 OUR22 Diff
R@1 T 4.350% 4.600% 4.300% 6.200% 21.12% 24.78% 26.75% 22.63% 25.10% 33.88% 34.60% +0.72%
RQ@5 T 12.76% 16.89% 13.00% 20.79% 37.23% 45.20% 46.48% 36.48%  49.14% 60.60% 78.00% +17.40%
TIR
R@10 T 20.91% 28.99% 22.30% 31.52% 50.11% 55.90% 55.74% 48.52%  56.68% 68.59% 89.50% +20.91%
SumR 1T 38.02 50.48 39.6 58.51 108.46 125.88 128.97 107.63 130.92 163.07 202.1 <-39.03
RQ@1 T 4.010% 4.590% 4.590% 4.290% 20.97% 22.76% 23.96% 19.26% 23.39% 27.99 33.10% +5.11%
RQ5 T 11.03% 14.99% 16.50% 14.90% 40.49% 41.89% 46.31% 39.90% 44.67% 60.09% 77.20%+17.11%
ITR
R@10 T 22.14% 24.10% 26.60% 24.20% 48.21% 50.77% 52.12% 46.05%  52.55% 68.37% 91.10% +22.73%
SumR T 37.18 43.68 47.69  43.39 109.67 115.42 122.39 105.21 120.61 156.45 201.4 +444.95
A T N/A N/A N/A N/A N/A 90.77% 91.25% N/A 91.79% 95.07% 98.26% +3.19%
M-CRmacro-¥ T N/A N/A N/A N/A  N/A 0.699 0.705 N/A  0.727 0.714 0.896 +0.169
SumC T N/A N/A N/A N/A N/A 160.67 161.75 N/A 164.49 166.47 187.86 +421.89
A T N/A N/A N/A N/A N/A 80.11% 85.27% N/A 84.23% 88.07% 93.57% +5.50%
S-CR macro-F T N/A N/A N/A N/A N/A 0.575 0.620 N/A 0.591 0.636 0.829 +0.193
SumC T N/A N/A N/A N/A N/A 137.61 147.27 N/A 143.33 151.67 176.47 +424.80
- A ]
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« Long sleeve 'fully fashioned French terry' knit cashmere pullover in light grey. Rib knit crewneck collar, cuffs, and hem. Raglan sleeves. Rib knit
panel at armscyes and side-seams. Signature 'four bar' striping knit in white at upper sleeve. Signature tricolor grosgrain pull-tab at back yoke. Tonal
stitching. (99.96%. Matched)

¢ Long sleeve rib knit silk and cotton-blend sweater in navy. Crewneck collar. Red trim at hem. Dropped shoulders. Tonal stitching. (99.91%)

) « Cotton knit pullover in black. Ribbed crewneck collar, cuffs, and hem. Intarsia skull pattern knit at front in black and grey. Tonal stitching. (85.90%)

« Long sleeve cotton sweater in navy. Rib knit crewneck collar, cuffs, and hem. Raglan sleeves. Tonal stitching. (0.12%)

« Long sleeve rib knit alpaca and wool-blend sweater in off-white. Distressing throughout. Crewneck collar. Tonal stitching. (0.01%)

« Long sleeve 'chunky' knit wool sweater in off-white. Rib knit V-neck collar, cuffs, and hem. Patch pocket at body. Tonal stitching. (99.95%,
Matched)

« Long sleeve rib knit cotton off-the-shoulder sweater in black. V-neck collar. Tonal stitching. (99.94%)
Long sleeve rib knit merino wool off-the-shoulder pullover in black. Off-white rib knit cotton tank top-style underlay at V-neck collar. Tonal
stitching. (64.74%)

) . Long sleeve knit crepe sweater in black. V-neck collar. Drop-tail hem. Tonal stitching. (0.50%)
« Long sleeve boxy ribbed knit sweater in black. V-neck collar. Trim in white at collar and cuffs. Raglan sleeves. Tonal stitching. (0.03%)

Fig. 5 Visualization results on the TIR and ITR tasks in terms of top-five ranked probabilities predicted by our MVLT. “Matched”

indicates the ground-truth image-text pair.

images on the validation part of Fashion-Gen 2018 (a)
and our e-commerce website (b). As seen, the reconstruc-
tion performance is truly remarkable. Since it requires our
method to learn the fashion semantics truly, such results

demonstrate the generative ability of our approach.
4.3 Ablation studies

Mask Ratio. Table 3 (a) presents four variants for
different mask probability r, (i.e., 0.10 (A1), 0.30 (A2),
0.70 (A3) and 0.90 (A4)) and our choice: 0.50 (Final).

The R@5 rises steadily with the masking probability un-
til it reaches the sweet spot (75.70% — 78.00%); then it
reaches performance plummets (73.80%). We argue that
increasing the r, will make MIR more complex, allowing
MVLT to learn better semantics in a more restricted situ-
ation. However, masking out too much region will natur-
ally result in losing valid visual information, leading to
bad results.

Masked unit size. Thanks to PVT's flexibility, we
can easily try different sizes of masked patches. As shown
in Table 3 (b), we derive four variants with masked unit

@ Springer



Ground-truth label
{M-CR = JACKETS & COATS}

1 1
| b
! p {S-CR = BOMBERS} 1y
! 1

1 —_ 0
: Prediction [
1 {M-CR = JACKETS & COATS} | !
! 1

1 | :

{S-CR = BOMBERS}

Ground-truth label
{M-CR = SHIRTS}
p {S-CR = SWEATSHIRTS}

Prediction
{M-CR = SHIRTS}
{S-CR = SWEATSHIRTS}

(a) Fashion-gen (In-domain)

Ground-truth label

Machine Intelligence Research

Ground-truth label

1
! :
(M-CR = TOPS} H ! {M-CR = JEANS} H
{S-CR = T-SHIRTS} H £ {S-CR=JEANS !
1! —_— 1
Prediction : : Prediction :
{M-CR = TOPS} P! (M-CR = JEANS} |
{S-CR = T-SHIRTS} H {S-CR = JEANS} !
_______________ Y |
TTTTTTTTTTTTTTTS :_____________________________-I

round-truth labe \ round-truth labe

Ground-truth label ! Q Ground-truth label !
{M-CR = PANTS} o {M-CR = TOPS} :
{S-CR = TROUSERS} " £ {S-CR=SHIRTS} '
1 | 1
1 —_— 1
Prediction : : Prediction :
{M-CR = PANTS} P! “ {M-CR = TOPS} H
{S-CR = TROUSERS} b {S-CR = SHIRTS} '

I 1

(b) Data from e-commercial website (out-of-domain)

Fig. 7 Visualization of samples generated by our MVLT. The gray blocks represent the masked regions.

size a (i.e., 1 (B1), 2 (B2), 8 (B3), 16 (B4)) to compare
with our setting: 4 (Final). We found that the perform-
ance is sensitive to this factor. It makes sense, revealing
how vital it is to learn a robust fashion-related represent-
ation with moderate granularity.

Masking style. As shown in Fig.8, we designed four
types of masking strategies for the MIR task, whose
quantitative differences are presented in Table 3 (c), i.e.,
grid (C1), stroke (C2), center (C3) and our random grid
(Final) masking strategies. As can be seen, the random
grid masking (Final) yields the best results, while the
other three perform poorly. We believe this is because, in
comparison to the grid (C1l) and center (C3), random
grid masking (Final) can help MVLT construct compre-
hensive representations. As our strategy (Final) does, the
stroke (C2) also randomly masks the image given, yet it
more or less leaves unmasked visual cues in the sub-
patches. Our strategy enables the model to easily predict
the masked region because semantics in the image are
well preserved, enhancing the model's robustness to learn-
ing in-sight knowledge.

Pre-training objectives. As shown in Table 3 (d),
we derive four different variants from investigating the
contribution of each objective, including ITM (D1),
ITM+MIR (D2), ITM+MLM (D3), and our ITM+
MIR+MLM (Final). When comparing D3 to D1 and D2
in the TIR task, we can see that D3 has a better perform-
ance in the R@5 metric: 74.10% (D1) < 76.00% (D2) <
76.20% (D3). We conclude MLM task can help the mod-
el thoroughly learn the language knowledge, so it provides
a more precise query to recall better-matching images. In
the ITR task, we find a similar conclusion when compar-
ing (D2) to (D1) and D3 in R@5 metric: 70.80% (D1) <

@ Springer

75.50% (D2) < 76.30% (D3). It indicates that better visu-
al learning leads to an accurate image query to match the
most appropriate caption.

Loading pre-trained weight. As seen in Table 4,
we add an experiment to demonstrate it is very import-
ant to load the PVT's weight pre-trained on ImageNet[51.
If not, it is obvious that our MVLT will suffer fierce
drops (i.e., ITR: 77.20% — 71.50% in RQ@5, S-CR:
93.57% — 92.90% in A). It is reasonable because a meth-
od pre-trained on large-scale general datasets can be more
applicable in a specific field. It has already learned in-
formation such as color, texture, shape, etc.

4.4 More discussions

How does MVLT perform in general domains?
We discuss two extended questions to investigate the po-
tential abilities in general settings further. 1) Can the gen-
eral models be directly transferred to the fashion domain? In-
spired by the huge impact of general vision-language
models, as in Table 5, we further investigate the zero-shot
performance of two typical general models (i.e., ViL-
BERTM and CLIPPF?). This has once again demon-
strated the necessity and superiority of MVLT pre-
trained on specific domains. 2) Can MVLT also work well in
the general domain? We further verify the potential ability
of our MVLT in the general domain. Table 6 reports the
performance on the MS-COCO 2014 datasetl®3], where
MVLT follows the same training standards as in [37]. It
shows that MVLT achieves promising results compared
to the latest models (i.e., Unicoder-VLB4 UNITER/,
and ViLTB7) without extra training data and special re-
trieval losses during the training. It indicates that MVLT
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Fig. 8 We designed four strategies to mask fashion images. The
random grid performs the best.

is also a promising solution when extended to general
scenes.

Why do pyramid architecture and MIR bene-
fit? As mentioned in the introduction, there are two un-
derstudied problems in the fashion domain. To solve the
transferability problem, pyramidal architecturelll takes
raw data as input without complex pre-processing, which
essentially alleviates the applied burden in industry. Be-
sides, MIR does not need human annotations like classi-
fication tags, bounding boxes, or pixel-wise segmentation
labels. For the granularity problem® the pyramidal ar-
chitecturel2l] provides multi-scale features with rich se-
mantics. Combined with the MIR task, our framework
can represent multi-grained fashion knowledge (e.g.,
dress, V-neck). These features are helpful and urgently
required in this field.

A VL model that performs well for semantic under-
standing tasks (e.g., retrievall®®l, classification) can serve

Machine Intelligence Research

as a good foundation and be easily applied to down-
stream tasks (e.g., text-to-image synthesis®7), image cap-
tioning) by utilizing an additional decoder. We did not
conduct image captioning experiments because we fo-
cused on basic representation learning in fashion this
time.

MVLT VS. MAEBR4. MAE learns general represent-
ations by allowing the model to explore pixel-to-pixel as-
sociations. Therefore, MVLT and MAE are similar in this
regard. However, our MVLT is the first that introduces
the vision reconstruction-alike pre-training for multi-mod-
al research (e.g., fashion domain).

5 Conclusions

We present a vision-language framework named
MVLT, which provides two contributions in this field: 1)
a newly-designed masked image reconstruction (MIR) ob-
jective and 2) an end-to-end pre-training scheme. The ex-
perimental and ablative analysis demonstrates the superi-
ority of various matching and generative tasks. MVLT
outperforms the cutting-edge method Kaleido-BERT with
large margins on retrieval and recognition tasks, which
would catalyze the fashion domain. The designed out-of-
box method working end-to-end could simplify the work-
flow (e.g., data pre-processing and model training) for the
actual engineering value, which improves development

Table 4 Ablation study for the contribution of loading PVT's weights pre-trained on ImageNet/51]

TIR ITR M-CR S-CR
RQ5 RQ10 RQ5 RQ10 A macro-F A macro-F
w/o PVT 72.20% 86.60% 71.50% 85.90% 97.92% 0.879 92.90% 0.790
w/ PVT 78.00% 89.50% 77.20% 91.10% 98.26% 0.896 93.57% 0.829
Diff +5.80% +2.90% +5.70% +5.20% +0.34% +1.7% +0.67% +3.9%
Table 5 The comparison of zero-shot retrieval results on the Fashion-Gen dataset
TIR ITR
R@11 R@51 RQ10t R@11T R@51 RQ101
VIiLBERT (Zero-shot) 7.18% 18.73% 29.84% 8.99% 15.34% 26.14%
CLIP (Zero-shot) 16.30% 40.60% 55.60% 13.60% 43.10% 57.60%
MVLT (OUR) 34.60% 78.00% 89.50% 33.10% 77.20% 91.10%

Table 6 Retrieval results on the MS-COCO 2014 dataset.  means using an extra feature extractor (e.g., Faster RCNN).

TIR task (5K Test) ITR task (5K Test)
R@1t R@51 R@101 R@1t R@51 R@101
Unicoder-VLt 48.40% 76.70% 85.90% 62.30% 87.10% 92.80%
UNITER-Baset 50.30% 78.50% 87.20% 64.40% 87.40% 93.10%
ViLT-Base/32 41.30% 72.00% 82.50% 61.80% 86.20% 92.60%
MVLT (OUR) 49.66% 79.88% 87.50% 65.38% 90.04% 93.60%
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and business efficiency on large-scale e-commerce web-
sites by approximately 50%.

In the future, we will continue to investigate an ex-
tremely efficient method in this field using famous tech-
nologies such as hashingl5¥, network pruning, and know-
ledge distillation to alleviate the storage and computing
limitations in real-world e-commerce applications.
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