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Supplementary Material

A Annotation Time

The total annotation time over the 2500 images of the MUSES dataset was
11 827 hours, which translates to more than 15 months of 24-hour/day labeling
for one person. During annotation, we observed a large diversity in annotation
difficulty, leading to varying annotation times from 3 hours to 8 hours and 40
minutes per image. We provide a detailed breakdown of the annotation times in
Tab. 7, where we list the average annotation times for each of our two stages.
We thereby separate the initial drawing of the annotation and the subsequent
quality control step, where a different annotator refines the annotations by trying
to find mistakes in the initially drawn annotations. Quality control contributes
significantly to the overall annotation time, emphasizing the significant effort
needed to ensure high-quality annotations.

Table 7: Annotation time breakdown by annotation difficulty in HH:MM
format. “Draw”: Annotation drawing. “QC”: Quality control.

Difficulty Easy Medium Hard Very hard

# Scenes 728 1345 265 9

Draw stage 1 00:45 01:45 02:30 03:00
QC stage 1 00:30 01:00 01:20 01:40
Draw stage 2 00:45 01:15 01:30 01:50
QC stage 2 01:00 01:40 02:00 02:10

Total average time 03:00 05:40 07:20 08:40

B Recording Platform

Fig. 9 shows a picture of the recording car with the mounted waterproof sensor
rig.

C Calibration

To fuse multi-sensor information accurately, we need to calibrate the sensors
both geometrically and temporally.



MUSES Supplementary Material 19

Fig. 9: Recording car with waterproof sensor rig.

Geometric calibration. The intrinsic parameters for the lidar and radar are
vendor-calibrated. For the event camera, we reconstruct frames following [12]
and use the same intrinsic calibration procedure as for the frame camera, using
a metrology-grade checkerboard and OpenCV [2]. For the extrinsic calibration,
we create a consistent transform graph between frame camera, event camera,
and lidar: First, we perform pairwise calibrations: Stereo-calibration between
the frame and event camera according to [12], mutual information maximization
between lidar and frame camera according to [13], and mutual information maxi-
mization between lidar and event camera according to [15]. Next, we formulate a
triangular pose graph and optimize it for loop closure (Powell’s dog leg method)
to get a consistent set of extrinsics. For radar-lidar calibration we follow [4]: the
rotation is estimated via correlative scan matching using a Fourier Mellin trans-
form [5] and the translation is simply measured. The IMU/GNSS is calibrated
with u-center [1] and subsequent point cloud consistency optimization.
Synchronization. As all sensors record at different frequencies (see Tab. 2), we
synchronize their internal clocks and record asynchronously. In post-processing,
we match the camera frame with the lidar and radar using their mid-exposure
timestamps and choose samples that minimize this delta. For the event camera,
we consider the 3 seconds up until the frame camera’s exposure end time, and
the GNSS is interpolated to match the frame camera’s time. For all sensors,
timestamps in µs are provided.

Our data-recording computer is synced to a web-based GPS-time server via
the network time protocol (NTP) and functions as a master clock. The radar is
synced via the NTP. The lidar and frame camera are synced via the precision
time protocol (PTP) with software timestamping. The event camera receives
synthetic events from the frame camera at exposure start, used for temporal
alignment in post-processing. The GNSS clock naturally syncs with GPS satel-
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lite atomic clocks. We will release an SDK for lidar and radar ego-motion com-
pensation and projection of all modalities to the frame camera.

D Anonymization

To protect the privacy of all individuals in our dataset, we use a semi-automatic
anonymization pipeline to blur faces and license plates. Specifically, we manually
draw bounding boxes over all recognizable faces and license plates in the images
and use an off-the-shelf object tracker and segmenter [16] to refine the blur
mask. Finally, we applied Gaussian blurring to all masks and checked the images
individually.

E Uncertainty Type

Assuming human annotation as the gold standard—given our intensive quality
control—any human uncertainty is attributed to aleatoric uncertainty (data-
inherent and irreducible). “Difficult” pixels are those explained only by addi-
tional data available at annotation stage 2 (e.g., videos, lidar). Hence, a model
that only has access to stage-1 (camera) data should not be confident in pre-
dicting the labels of “difficult” pixels, as their semantics cannot be explained by
this data alone. UPQ allows the model to acknowledge uncertainty alongside
making a correct prediction, thus encouraging an uncertainty-aware prediction.
This rationale only holds for UPQ evaluation of camera-based models, and not
multimodal ones.

F Training Details

F.1 Experiment Implementation Details

For our panoptic segmentation experiments, we train on 2 NVIDIA A100 GPUs
with a batch size of 8 with all input channels normalized over the entire dataset.
We train a Mask2Former [7] with an ImageNet-1K pre-trained Swin-T [11] back-
bone and following the mmdetection [6] configuration for the frame camera net-
works.

For the multimodal networks, we use a learning rate of 0.0002 and follow [3]
in projecting all secondary modalities onto the 1920×1080 image plane of the
frame camera. The lidar points are ego-motion-compensated and projected onto
the image plane with 3 channels: range, intensity, and height. As the radar pro-
vides the full azimuth-range spectrum, we project every ego-motion-compensated
intensity reading up to 150m range as its own individual point, assuming the
ground level as height, into the camera plane with 2 channels: range and in-
tensity. For the event camera, we accumulate positive and negative events in
individual channels over 30ms, resulting in a 2-channel image. To avoid overly
sparse input images, we dilate the projected points. Exemplary inputs for the
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quadrimodal Mask2Former are visualized in Fig. 10. To have a fair comparison
with the frame-camera-only network, we likewise use ImageNet-1K pre-training
for the Swin-T backbones. As the pre-trained Swin backbones expect a 3-channel
input, we add empty channels where necessary. To preserve the pixel values, we
apply nearest neighbor interpolation in the random resizing operation during
training. All inputs of one modality are randomly set to zero during training
with a chance of 20%, to discourage an overreliance on individual modalities [3].

Frame Camera Lidar Event Camera Radar

Fig. 10: Example inputs to the quadrimodal Mask2Former. From left to right:
Frame camera, projected and ego-motion corrected lidar points, projected event cam-
era, projected and ego-motion corrected radar points. The projections are highlighted
for better visualization. Best viewed on a screen at full zoom.

For the semantic segmentation experiments, we use the mmsegmentation [9]
framework and train Mask2Former [7] on 8 A100 GPUs with a batch size of
16. We use ImageNet-22K pre-trained weights for the Swin-L [11] backbone and
train the network for 70000 iterations, following the hyperparameters used in
mmsegmentation.

F.2 Multimodal Architecture Details

For our multimodal experiments, we use a Mask2Former model with different
input combinations, utilizing separate pre-trained Swin-T backbones for each
modality. For the bimodal networks, we therefore have 2 parallel running back-
bones and for the quadrimodal network, we have 4 parallel backbones. Each
backbone gets a 3-channel input image from a single modality. We fuse each of
the 4 outputs (feature pyramid) of the backbones individually with a parallel
cross-attention block [3] before passing the fused features to the pixel decoder
of Mask2Former. This fusion block allows for parallel fusion of an arbitrary
amount of different input modalities. Whereby one backbone has to be picked as
the primary modality where all other features are fused in parallel by perform-
ing standard cross attention between the primary modality and each secondary
modality individually, including a skip connection. The frame camera features
thereby serve as the primary modality and all other modalities are treated as
secondary modalities.
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F.3 Mask-Classification Baseline for Uncertainty-Aware Panoptic
Segmentation

We construct a simple baseline for predicting pixel-level class and instance uncer-
tainty scores with trained mask classification networks, such as Mask2Former [7].
During inference, mask-classification approaches predict pairs {(pi,mi)}Ni=1 for
each of the N masks (see [8]). pi ∈ ∆K+1 denotes the class probability distribu-
tion over K +1 classes for mask i (the K object classes plus one no-object class
∅), mi ∈ [0, 1]H×W the soft mask prediction over the image with dimensions
H ×W . Each pixel is assigned to a probability-mask pair i∗ according to

i∗ = argmaxi:ci ̸=∅pi(ci) ·mi[h,w] (2)

where ci is the most likely class for each probability-mask pair. To obtain a class
confidence score, we first normalize the mask predictions mi to sum up to one,
overall N masks. We then marginalize overall probability-mask pairs to find a
class score

sclass[h,w] =

N∑
i=1

pi(ci∗) · m̄i[h,w] (3)

where m̄i denotes the normalized mask predictions and ci∗ is the predicted class
at that pixel. For the instance confidence, we tease out the class influence as
follows:

sinst[h,w] =
pi∗(ci∗) · m̄i∗ [h,w]∑N
i=1 pi(ci∗) · m̄i[h,w]

=
pi∗(ci∗) · m̄i∗ [h,w]

sclass[h,w]

(4)

The denominator corresponds exactly to the class confidence score, whereas the
nominator corresponds to the assigned probability-mask pair score during panop-
tic inference in Eq. (2). This reveals an interesting interpretation: the probability-
mask pair score used for panoptic inference can be decomposed into a product
of class and instance confidence scores.

G Stage 1 vs. Stage 2: Detailed Results

As mentioned in Sec. 5.1 of the main paper, we try to quantify the added dif-
ficulty—and implied subsequent quality—of our second labeling stage onto an-
notations. We train frame-camera-only Mask2Former with a Swin-T backbone
on our final panoptic ground truth (equivalent to H2 labels) and evaluate it
on stage 1 (H1) and stage 2 (H2) labels. The results by condition presented in
Tab. 8 show a 11.1% drop from H2 to H1, indicating substantially more difficult
ground truth after the second stage of the annotation.

To further investigate the quality of the additional annotations, we train a
semantic segmentation Mask2Former (Swin-L) exclusively on H1 annotations.
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The performance of this model is shown in Tab. 9. The model trained on H1 an-
notations shows a significant performance drop on ACDC and MUSES datasets.
Specifically, there is a drop of 3.3 mIoU on MUSES and 2.0 mIoU on ACDC com-
pared to the model trained on H2 annotations. On the other hand, the scores
on Cityscapes are similar for both H1 and H2-trained models. This result is
expected because the additional H2 labels primarily address indistinct areas in
adverse scenes, which are not present in Cityscapes. Cityscapes labels do not in-
clude adverse conditions or auxiliary data, making them more aligned with the
H1 labels. As a result, the performance of the H1 and H2 models on Cityscapes
is similar. In contrast, the ACDC dataset, which includes some auxiliary data,
benefits significantly from the higher-quality H2 labels.

These findings collectively underscore the high quality of the additional H2
labels, as they enhance model performance in challenging conditions where aux-
iliary data is crucial. Together with the good generalization results in Sec. 5.3,
these results indicate that the additional labeled portion of the images (see Fig.
7a) is accurately labeled. As these are also more difficult-to-predict areas, these
labels guide models effectively during training, leading to improved generaliza-
tion (see Sec. 5.3).

Table 8: Annotation stage wise PQ of Mask2Former [7] (Swin-T [11] backbone,
frame camera input only) evaluated on stage 1 labels (H1) and stage 2 labels (H2).

Clear Fog Rain Snow Day Night All

H1 57.9 57.2 57.0 52.4 58.3 51.7 58.0
H2 48.8 46.5 45.4 42.2 49.4 39.4 46.9

Table 9: Mask2Former [7] (Swin-L [11]) performance trained on H2 versus
H1 annotations.

mIoU ↑ Cityscapes ACDC MUSES

Train on MUSES–H2 73.1 72.0 77.1
Train on MUSES–H1 73.3 70.0 73.8

H Detailed Class-Level Results

For the models presented in Sec. 5.2, we present detailed class-level PQ results
in Tabs. 10 and 17 to 22. Adding an event camera to the frame-based camera
performs well across the board, with the event camera showing large improve-
ment on small dynamic classes like “motorcycle”, “bicycle” and “person”. Radar
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Table 10: Test set class-wise PQ of Mask2Former [7] for different variations
of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 95.1 72.1 76.6 38.3 29.0 39.9 37.5 48.7 69.7 49.6 84.0 34.0 19.3 55.7 28.6 42.6 38.2 14.9 17.1
✓ ✓ × × 95.3 73.8 79.4 39.6 31.6 41.9 39.9 52.8 71.2 51.5 82.3 39.2 24.4 59.2 33.4 42.2 35.9 23.3 24.3
✓ × ✓ × 95.7 75.0 79.4 41.4 32.8 45.0 39.2 52.6 71.8 52.4 83.9 40.2 25.9 61.2 35.7 52.2 43.2 24.4 22.3
✓ × × ✓ 95.3 76.0 80.6 47.1 34.8 45.9 43.4 60.1 75.5 53.1 83.6 42.1 29.7 63.5 40.9 45.5 44.4 26.7 24.8
✓ ✓ ✓ ✓ 95.9 76.4 80.4 47.4 37.6 45.6 42.8 60.2 75.0 53.8 83.7 42.2 33.5 63.7 40.0 45.1 42.6 28.5 23.9

Table 11: Uncertainty-aware panoptic segmentation baselines and oracles
by class in UPQ. Mask2Former [7] with Swin-T [11] is used.
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× Constant 100% 95.1 72.1 76.6 38.3 29.0 39.9 37.5 48.7 69.7 49.6 84.0 34.0 19.3 55.7 28.6 42.6 38.2 14.9 17.1
× Marginalization 89.3 68.6 72.0 36.7 28.9 35.2 27.1 40.6 67.5 50.0 81.4 29.7 21.8 52.7 30.1 37.1 37.2 16.0 20.7
× Oracle 96.6 84.0 85.9 67.7 59.5 58.5 73.0 69.2 88.4 78.2 97.1 71.8 71.5 76.7 66.1 68.7 80.0 68.9 66.3

Table 12: Class-level results for semantic segmentation with
Mask2Former [7] (Swin-L [11], RGB input only). All models are evaluated
on the test set of MUSES.
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Cityscapes [10] 84.1 55.8 81.2 40.7 40.7 53.5 56.1 55.0 77.2 43.7 84.0 47.3 55.9 67.3 53.7 66.6 69.8 32.4 55.0
ACDC [14] 91.7 73.7 85.8 53.6 42.6 61.4 69.1 68.6 79.0 53.3 88.6 59.4 46.8 87.6 66.4 78.5 85.0 27.2 52.6
MUSES 96.5 84.9 91.8 73.3 59.5 68.1 76.7 74.2 87.5 74.5 96.3 72.8 56.5 93.2 67.6 90.2 86.8 48.7 66.2

seems to be specifically good for larger metallic objects like “bus”, “train” and
“car”. Their metal parts make them easier to detect with radar, due to their
large radar cross-section. The lidar is generally very helpful in identifying large
continuous objects like “building” and “truck”. These larger objects usually have
good lidar returns, even in more challenging weather conditions. Further, we can
also observe an especially large gap of 7.3% PQ from lidar to the other modal-
ities for “sign”. This is because traffic signs, which have reflective coatings, give
off high-intensity readings for lidar.

For the models presented in Sec. 5.4, we present detailed class-level UPQ
results in Tab. 11. The largest performance gaps between the baselines and the
oracle exist for small things classes, such as “person”, “rider”, and “motorcycle”.

Class-level results for the semantic segmentation experiments are shown in
Tab. 12. The models are trained on Cityscapes [10], ACDC [14], or MUSES, and
evaluated on the MUSES test set. The class-level results suggest that the “rider”
and “motorcycle” classes are the most difficult, potentially due to their rarity.
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I Further Dataset Statistics

I.1 Things-Classes Statistics

By projecting the lidar points onto the ground truth, we calculate distance statis-
tics on the things classes. For each instance, we filter the points for outliers with
a z-score of 1 and average the lidar distance. The resulting average distance per
condition is presented in Tab. 13. As expected by its degrading nature onto the
lidar, the fog has the lowest average things instance distance. We also observe
a shift along the day-night axis, attributed to worse visual conditions at night
making distant objects harder to identify and label. The average number of in-
stances per image also varies largely between the different conditions. Fog does
only have 2.06 instances per image, caused by two reasons. Firstly, it is harder
to identify and annotate individual instances doubt-free in this condition, and
secondly, heavy fog is mostly present in rural areas with less densely populated
scenes.

Table 13: Average things class statistics by condition.

Clear Fog Rain Snow Day Night All

Distance [m] 46.64 38.23 39.25 40.40 44.22 38.44 42.05
# Instances in image 9.56 2.06 12.13 7.92 8.49 7.34 8.03

I.2 Lidar Point Cloud Statistics

We present statistics on the lidar point clouds in Tab. 14 and Fig. 11. Notably,
fog significantly impacts the point cloud, reducing the average points in a single
lidar scan by one-third. In foggy conditions, only 3.28% of points are farther
away than 40m, in contrast to 12.66% in clear weather. This is expected due
to the squared attenuation effect of fog particles in the air. It underscores the
limitations of lidar in highly adverse conditions, where fewer points are returned,
and distant objects become imperceptible in the lidar point cloud.

Table 14: MUSES lidar point cloud statistics by weather condition.

Condition 0-20m 20-40m >40m Average point Average # of Average # of
distance [m] points points in image

Clear 64.31% 23.02% 12.66% 21.95 62 862 42 331
Fog 80.69% 16.03% 3.28% 14.60 41 377 27 346
Rain 61.45% 24.30% 14.25% 22.91 53 563 35 055
Snow 70.97% 20.44% 8.59% 18.63 63 713 42 679
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Fig. 11: MUSES share of lidar points in specific distance bins by weather condi-
tion.

I.3 Difficulty Map Distribution

We present the distribution by condition of the difficulty map in Tab. 15. 23.49%
of off all pixels have a difficult_class label and 6.57% of all things pixels have
an implicit difficult_instance label.

We present the distribution by condition of the difficulty map in Tab. 16.
Terrain and fences have the largest share of difficult_class labels. From the things
classes, bicycle was specifically difficult to label with 21.6% of the class having a
difficult_class and an additional 30.6% having an explicit difficult_class label.

Table 15: Difficulty map distribution by condition in %. Things difficult_class
regions are implicitly also difficult_instance. “difficult_class”: share of pixels with diffi-
cult_class entries in difficulty map. “difficult_class excl. unlabeled”: share of pixels with
difficult_class entries in difficulty map, excluding unlabeled pixels. “difficult_instance”:
share of all pixels with explicit difficult_instance entries in the difficulty map. “things
w/ exp. difficult_instance”: share of all things pixels with explicit difficult_instance
entries in the difficulty map. “things w/ imp. difficult_instance”: share of all things
pixels with difficult_instance label, including difficult_class labels that are implicitly
also difficult_instance.

Condition difficult_class difficult_class difficult_instance things w/ exp. things w/ imp.
excl. unlabeled difficult_instance difficult_instance

Clear 13.97 5.04 0.03 1.08 4.71
Rain 22.71 9.65 0.12 2.64 9.58
Snow 19.35 9.69 0.03 0.80 3.51
Fog 40.68 18.59 0.01 0.62 11.46
Day 10.12 5.86 0.04 1.23 4.57
Night 43.56 17.11 0.06 1.95 9.63
Total 23.49 10.36 0.05 1.51 6.57
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Table 16: Difficulty map distribution by class in %. Share of explicit difficulty
labels compared to the total labeled pixels of a given class.
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difficult_class 3.4 13.0 9.1 17.4 23.8 12.9 15.8 10.3 20.7 37.2 21.3 16.6 15.9 3.4 5.0 4.6 3.7 15.3 21.6
difficult_instance n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 2.0 0.1 0.6 0.0 0.0 1.5 4.9 30.6

Table 17: Clear-test split class-wise PQ of Mask2Former [7] for different
variations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 97.2 82.6 82.5 40.6 28.0 40.4 38.1 46.1 70.0 51.4 92.5 36.2 23.2 55.3 27.6 35.8 37.7 20.0 22.8
✓ ✓ × × 97.6 83.7 83.8 43.9 28.7 43.2 38.4 49.5 70.7 53.8 92.2 41.6 27.1 59.6 38.2 44.7 34.3 31.4 27.1
✓ × ✓ × 97.8 85.0 84.6 44.9 30.0 46.2 36.7 48.7 71.8 54.6 93.1 43.3 28.7 61.0 35.6 49.1 39.4 30.4 24.5
✓ × × ✓ 97.7 85.2 84.8 52.7 32.7 45.9 41.2 57.3 75.7 51.9 92.6 44.7 31.3 63.2 44.5 36.2 34.0 31.6 28.5
✓ ✓ ✓ ✓ 97.6 85.2 86.0 52.9 32.3 47.2 40.8 58.5 75.8 53.8 92.9 45.7 34.0 62.4 42.3 47.8 38.2 32.4 24.4

J European Domain Bias

The MUSES dataset consists exclusively of driving scenes from Switzerland,
which may introduce a geographical bias towards Western European environ-
ments. This limitation is inherent in the dataset’s design and location. While
this regional focus ensures consistency and depth within a specific context, it
may affect the generalizability of the results to other regions with different driv-
ing conditions, infrastructure, and weather patterns.

K Visualization of MUSES Samples

We show further visualizations of MUSES samples in Figs. 12 and 13. The lidar
and event camera are thereby projected onto the frame camera for easier inspec-
tion. In many of the scenes, the lidar and event camera help identify and clarify
unclear areas. This is especially noticeable in rainy conditions, where the frame
camera is often blurred by droplets.

L Qualitative Results

We visualize some exemplary panoptic segmentation predictions results of the
uni- and quadrimodal Mask2Former with their respective class and instance
uncertainty maps in Figs. 14 and 15. The class and instance uncertainty scores
are calculated according to Appendix F.3.
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RGB Image Lidar Events Radar Corr. Image Panoptic GT Difficulty Map

Fig. 12: Visualization of MUSES samples. From left to right: RGB image; motion-
compensated lidar points projected and overlaid with the image; events projected onto
the image (assuming infinite distance); azimuth-range radar scan (with ranges above a
threshold cropped out); corresponding normal-condition image; panoptic ground truth;
difficulty map. Best viewed zoomed in.
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RGB Image Lidar Events Radar Corr. Image Panoptic GT Difficulty Map

Fig. 13: Visualization of MUSES samples (continued). From left to right: RGB
image; motion-compensated lidar points projected and overlaid with the image; events
projected onto the image (assuming infinite distance); azimuth-range radar scan (with
ranges above a threshold cropped out); corresponding normal-condition image; panop-
tic ground truth; difficulty map. Best viewed zoomed in.
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Ground Truth Unimodal Mask2Former [7] Quadrimodal Mask2Former [7]

Fig. 14: Qualitative panoptic results. First column from top to bottom: panoptic
segmentation ground-truth annotation, difficulty map, input frame camera image. Sec-
ond and third columns from top to bottom: the panoptic predictions, class uncertainty
scores, and instance uncertainty scores. Best viewed on a screen at full zoom.
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Ground Truth Unimodal Mask2Former [7] Quadrimodal Mask2Former [7]

Fig. 15: Qualitative panoptic results (continued). First column from top to bot-
tom: panoptic segmentation ground-truth annotation, difficulty map, input frame cam-
era image. Second and third columns from top to bottom: the panoptic predictions,
class uncertainty scores, and instance uncertainty scores. Best viewed on a screen at
full zoom.
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Table 18: Fog-test split class-wise PQ of Mask2Former [7] for different vari-
ations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 94.8 57.8 69.9 25.1 32.2 45.7 71.9 39.1 67.7 63.8 79.5 44.6 0.0 61.1 43.6 35.5 n/a 0.0 4.4
✓ ✓ × × 94.2 58.1 76.7 12.8 31.2 50.9 72.2 42.9 70.7 65.5 74.2 48.3 0.0 61.6 39.5 32.5 n/a 46.5 10.8
✓ × ✓ × 95.5 62.2 74.8 23.0 30.4 51.6 65.5 41.0 73.5 68.2 77.8 48.8 0.0 66.5 45.2 46.6 n/a 0.0 20.7
✓ × × ✓ 94.0 57.3 76.0 29.1 38.0 50.5 71.0 53.6 77.4 67.4 76.9 43.4 0.0 64.8 48.3 41.2 n/a 0.0 15.3
✓ ✓ ✓ ✓ 95.4 60.0 71.1 26.3 43.6 50.9 71.3 51.6 74.7 68.2 76.6 47.3 0.0 68.0 49.3 40.2 n/a 0.0 11.7

Table 19: Rain-test split class-wise PQ of Mask2Former [7] for different
variations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 93.4 71.1 73.3 30.2 26.1 43.0 35.8 55.4 69.1 36.5 81.2 32.4 16.9 54.8 30.0 41.7 39.6 15.7 16.2
✓ ✓ × × 93.7 73.6 76.9 33.4 32.6 42.1 39.8 61.3 70.4 43.1 81.2 38.1 23.1 58.9 28.0 40.5 36.3 16.4 26.1
✓ × ✓ × 94.1 76.1 76.8 34.3 32.9 47.8 41.1 61.0 69.7 34.5 81.9 38.5 24.4 60.8 37.4 49.9 41.3 22.9 22.2
✓ × × ✓ 94.6 79.0 78.3 39.6 37.4 50.4 45.6 67.8 73.6 44.4 83.3 42.7 32.2 63.1 38.9 50.7 50.4 28.3 25.1
✓ ✓ ✓ ✓ 94.9 78.8 79.9 42.8 44.5 49.0 44.2 66.9 74.0 40.0 84.0 42.1 35.3 64.4 40.7 40.2 45.8 27.3 26.6

Table 20: Snow-test split class-wise PQ of Mask2Former [7] for different
variations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 94.5 68.4 76.4 43.6 30.8 30.3 35.3 50.9 71.7 34.8 81.1 31.8 18.1 56.7 15.0 64.3 32.4 6.2 14.7
✓ ✓ × × 94.8 70.9 78.1 44.9 33.8 31.1 38.9 54.0 73.0 33.8 80.1 35.8 27.1 58.6 23.8 51.2 37.5 16.4 21.6
✓ × ✓ × 94.9 69.0 78.2 46.7 36.6 34.0 36.6 56.3 72.4 37.7 81.2 37.2 30.0 61.2 24.0 68.0 57.5 16.6 19.5
✓ × × ✓ 94.3 72.4 80.4 50.6 33.0 36.6 38.7 59.3 75.1 39.6 80.5 36.7 19.1 64.2 28.9 60.1 39.9 17.7 22.0
✓ ✓ ✓ ✓ 95.0 72.7 79.3 50.3 33.6 34.8 40.2 60.7 75.2 41.3 79.9 36.2 35.7 63.9 23.4 52.8 38.7 24.5 21.7

Table 21: Day-test split class-wise PQ of Mask2Former [7] for different
variations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 95.7 72.9 79.6 38.8 32.1 39.7 43.9 46.2 84.0 53.4 95.7 34.8 19.2 56.2 30.0 46.0 34.9 17.6 16.9
✓ ✓ × × 96.1 74.7 81.6 40.1 33.9 42.3 43.5 49.4 84.8 55.1 96.1 40.2 23.9 59.6 35.3 45.0 28.8 27.8 24.2
✓ × ✓ × 96.2 74.9 81.4 40.3 35.8 45.4 44.4 49.8 85.2 54.6 96.0 41.0 25.0 61.4 38.5 54.1 30.6 26.6 24.2
✓ × × ✓ 95.8 75.6 81.6 46.0 36.5 45.8 44.6 55.7 84.8 54.8 95.3 41.5 26.2 63.1 42.6 48.6 38.3 27.1 24.7
✓ ✓ ✓ ✓ 96.0 75.4 81.1 44.7 39.5 44.7 44.6 55.6 84.6 55.8 95.8 42.1 28.6 63.0 41.7 45.0 32.4 28.9 27.5
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Table 22: Night-test split class-wise PQ of Mask2Former [7] for different
variations of input sensors. A Swin-T [11] backbone is used in all cases.
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✓ × × × 94.2 70.6 70.9 37.5 22.3 40.1 29.1 52.9 43.4 39.6 49.4 32.6 19.4 55.0 0.0 22.5 40.4 11.0 17.3
✓ ✓ × × 93.9 72.3 75.2 38.8 26.8 41.4 35.0 58.5 46.5 41.8 40.4 37.2 25.0 58.6 0.0 29.7 40.3 16.7 24.5
✓ × ✓ × 95.1 75.2 75.6 43.3 26.5 44.3 32.4 57.3 47.3 46.6 48.6 38.7 26.8 60.9 0.0 41.5 50.3 20.9 19.8
✓ × × ✓ 94.6 76.7 78.7 49.0 31.2 46.1 41.7 67.3 58.7 48.7 49.0 43.2 33.0 64.1 17.5 27.6 48.2 26.2 24.9
✓ ✓ ✓ ✓ 95.6 78.2 79.0 51.8 33.3 46.9 40.5 67.9 57.8 48.6 46.4 42.3 37.9 64.6 12.3 45.7 49.2 28.0 18.9
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