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Abstract: Lidar is a vital sensor for estimating the depth of a scene. Typical
spinning lidars emit pulses arranged in several horizontal lines and the monetary
cost of the sensor increases with the number of these lines. In this work, we
present the new problem of optimizing positioning of lidar lines to find the most
effective configuration for the depth completion task. We propose a solution
to reduce the number of lines while retaining up-to-the-mark quality of depth
completion. Our method consists of two components, (1) line selection based
on the marginal contribution of a line computed via the Shapley value and (2)
incorporating line position spread to take into account its need to arrive at image-
wide depth completion. Spatially-aware Shapley values (SaS) succeed in selecting
line subsets that yield a depth accuracy comparable to the full lidar input while
using just half of the lines.
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1 Introduction

Lidars have become indispensable for outdoor applications such as autonomous cars. They provide
highly accurate range information at a fairly dense resolution compared to other active sensors such
as radars. Moreover, their results are quite independent of the degree to which the surrounding scene
is illuminated. The range information from a lidar provides a valuable signal for depth completion,
i.e., for the estimation of a high-resolution depth map from an input camera image along with the
lidar measurements. In such a setting, the accuracy of the completed depth map depends highly on
the density of the lidar measurements. For the commonly used spinning type of lidar, this density is
determined by the number of pulses emitted by the sensor at each azimuth, which corresponds to the
number of horizontal scanning lines that the measurements form.

The cost of lidar sensors goes up with the number of scanning lines. Hence, increasing the measure-
ment density tends to increase the overall cost. Consequently, performing depth completion based on
fewer lidar lines is desirable. A naive approach to select a subset of lidar lines is keeping lines at
regular, spatial intervals, which is the standard in the industry. But is this an optimal set-up, or does it
make sense to try to build hardware with a custom line set-up? And if so, how can one achieve the
latter? These are the main questions that this work attempts to answer.

We argue in this work that equally spaced line selection ignores the non-uniformity of the depth profile
in real-world scenes. In particular, certain parts of the scene contain higher-frequency structures than
others, which implies that using more lidar lines for measuring these parts can support more accurate
depth map completion. Then, the line selection could greatly affect the depth completion performance
because different lines contribute a different amount of importance. This work elaborates on the
algorithmic approach how the custom lines can be selected and placed, thus providing the case that
lidars with custom lines can be a viable option for further academic and industry research.
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In this paper, we propose an adaptive non-uniform selection of lidar lines for depth completion. To
accomplish this, we utilize the so-called Shapley value [1] from the area of feature selection. The
computed Shapley value for each lidar line indicates its marginal contribution to the overall depth
completion output. This allows our method to directly evaluate the importance of each line for this
task and keep the lines which are deemed most important. A limitation of these basic variants is that
they treat lines as an unordered set, even though adjacent lines exhibit higher correlation than lines
that are far apart. To account for this, we propose a spatially-aware Shapley value (SaS) scheme, in
which the line selection further takes into account the spatial configuration of the lines by enforcing
their selection to exhibit a minimum degree of regularity.

Furthermore, we introduce two basic variants of the approach, which select lines either at a global
dataset level or at a local image level. In the former case, the scanning lines are fixed for the sensor.
The entire line selection process is carried out once and then the identified distribution can be used to
build a custom non-uniform sensor. In the latter case, the selected lines may differ between any two
given images.

We experimentally validate the proposed lidar line selection approach on the KITTI dataset [2] for
depth completion. The results demonstrate that SaS substantially outperforms both straightforward
baselines and the basic Shapley value variants described above. SaS can maintain a depth error
comparable to the error when using the full set of 64 lines, with as few as 32 lines. Our findings
suggest that accurate depth sensing is attainable even with a reduced number of lines, which can
make the usage of lidars in mass-production sensor suites for autonomous cars more feasible.

2 Related Work

Depth completion from sparse lidar measurements and a single RGB image was addressed in [3],
which used a single deep regression network to predict depth. This work showed the benefit of using
even few lidar samples for the increase of prediction accuracy. An encoder-decoder architecture is
proposed in [4] for handling both sparse lidar and dense image data without the need for validity masks
for the former. The requirement for semi-dense depth annotations is alleviated in the self-supervised
approach of [5]. Surface normals are leveraged as intermediate or additional representations for
densifying depth in [6, 7]. A fusion strategy is used in [8] to incorporate the information from the
RGB image and correct potential errors in the lidar inputs. A Bayesian approach is followed in [9]
to assign a posterior distribution to the depth of each pixel, modeling the sparse lidar points via
likelihood terms. Non-local neighborhoods are proposed in [10] to iteratively propagate depth values
across the image, while graph-based neighborhoods for propagation are utilized in [11, 12] via graph
convolutions. Spatially-variant convolutional kernels inspired from guided image filtering are used
in [13] to adaptively fuse features from the lidar and the camera branch. A cascaded scheme for depth
prediction is presented in [14], using two complementary branches to compute the final depth map. A
transformer-based network is introduced in [15], dynamically exploiting context across camera and
lidar. An unsupervised framework for depth completion is proposed in [16], which learns to complete
depth from sequences of measurements by backprojecting pixels to 3D space and minimizing the
photometric reprojection error induced by the predicted depth. Crucially, all aforementioned methods
either assume the existence of a full lidar scan, typically with 64 scanning lines, which comes from
a very expensive sensor, or use a random subset of the lidar points. However, efficiently sampling
random points from a spinning lidar is not feasible, as the mechanics of the sensor restrict potential
subsampling to the level of entire scanning lines. Our method takes this constraint into account and
automatically selects a subset of lidar lines by computing the importance of each line for the accuracy
of the predicted depth.

Feature selection and importance estimation focuses on the effects that representations involved in
learned models (such as neural networks) have on the final output of the models. This analysis aims
at explaining the inner workings of the models. For a comprehensive overview of recent works on
interpretable machine learning, we refer the reader to [17] and focus here on instance-wise feature
explanation, which is related to our work. One line of work in this area consists of feature-additive
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methods, such as LIME [18], SHAP [19], and attribution-based methods [20]. These methods
estimate the importance of deep features along the channel dimension. LIME makes an assumption
of local linearity of the examined model and permutes the features of new samples to weigh them
according to their proximity to the model. SHAP is more closely related to our work, as it also
uses the Shapley value [1] to explain the model by computing the deviation a given data sample
exhibits from the global average of each feature. Both these methods output a feature importance
weight, similarly to our work. Another line of work includes feature selection methods, such as
L2X [21] and INVASE [22]. These methods aim at identifying a subset of the original features of the
network that yields a similar output to that corresponding to the full set of features. This selection
is hard, in the sense that the decision whether to keep or neglect each feature is not associated with
a continuous importance score but rather with a binary variable. This stands in contrast with our
Shapley value-based approach, which assigns a continuous score to each feature.

3 Problem Formulation

3.1 Definition of a Line

In this work, we refer interchangeably to a line, a channel, a lidar line or a lidar scan line as defined
below. Lidar lines are separate lidar channels (or scan lines) from the lidar point cloud, as provided
by the KITTI dataset [2]. The point clouds were generated with a Velodyne HDL-64E lidar sensor.
Given a point cloud, we denote a point of it by Pi = (xi, yi, zi) ∈ R3. We denote the position of the
sensor by Pn. We adopt the same coordinate system convention as in [2]: x-axis (front), y-axis (left)
and z-axis (up). If we consider a horizontal plane including the sensor, then the elevation angle θi
with respect to this plane for point Pi is given by:

θi = arcsin

(
(Pi − Pn)z
|Pi − Pn|

)
. (1)

We group the resulting angles based on details provided in the Velodyne HDL-64E manual. The lidar
has a vertical field of view of 26.9◦ and its vertical angular resolution is 0.4◦ on average. Although
there are 64 channels, only 42 lidar channels overlap with the camera frustum.

3.2 Line Selection

In our line selection strategy, two modes are distinguished, static (global) and dynamic (local). In
the static setting, the set of selected lines is fixed across the entire dataset. In the dynamic setting,
a different set of lines can be selected for every frame. The global setting relates to a sensor with
fixed position where the pulses are always emitted towards the same direction. On the other hand, the
dynamic setting allows for a changing position / orientation of the transmitters. The limited set of
lines is made to change depending on the input scene, i.e. on an image to image basis.

The problem of finding the optimal subset of k lines out of n possible positions is exponential in
nature and would require the search among

(
n
k

)
subsets. Due to this computational complexity, we

reformulate the problem and, instead of computing the optimal subset directly, we look for the most
advantageous individual lines. Thus, we aim to create a ranking of the individual lidar lines. Then for
a given ranking and for arbitrary k, the top k from the ranking form could be selected as the desired
outcome.

A crucial question then is how we create the ranking of the lines. Our approach is to find the lidar
line which, when added to an existing set of selected lines, would cause the biggest increase in
performance. That is, for an arbitrary subset of already selected lines, we search for the line the
marginal contribution of which is the largest. We address this point in Sec. 4 by employing the
concept of the Shapley value.
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Table 1: Comparison of terminologies in game theory (left) and our formulation of lidar lines rankings (right).

Game theory Ranking in CNNs Notation

player line n
characteristic function RMSE ν
coalition subset of lidar lines K
grand coalition set of all the lidar lines N
coalition cost increase in RMSE after removing some of the lines ν(K)

4 Method

We divide this section in three parts. First, we present the overview of how the Shapley values
(SVs) are computed for the lidar lines. Shapley values are real numbers that quantify the average
contribution of a line in completing the respective depth map. Secondly, we present the approximation
of the Shapley values based on linear regression, which allows to compute the SVs by incorporating
sampling. Thirdly, due to the nature of the depth completion problem, we incorporate the concept of
space or line spread.

4.1 Game Theoretical Lidar Line Ranking

This section tackles the problem of quantifying the role of a single lidar line in creating a depth map.
The importance of a lidar line is described as the improvement in the quality of the depth map when
we include a given lidar line. In other words, given a set of lines, the contribution of a line is the
difference between the performance of the existing set of lines and the performance of the set of lines
plus the line in question. To this end, we employ a concept from coalitional game theory, the Shapley
value, which precisely quantifies the line’s importance as its average marginal contribution.

4.1.1 Coalitional Game Theory

Let a lidar line be called a player, the set of all players N := {0, . . . , N} the grand coalition and
a subset of players K ⊆ N a coalition of players. Subsequently, we assess the utility of a given
coalition, i.e., of a given subset of lines. To assess quantitatively the performance of a group of
players, each coalition is assigned a real number, which is interpreted as a payoff or a cost that a
coalition receives or incurs collectively. The value of a coalition is given by a characteristic function
(a set function) ν, which assigns a real number to a set of players. A characteristic function ν as
defined before maps each coalition (subset) K ⊆ N to a real number ν(K). Therefore, a coalition
game is defined by a tuple (N , ν).

In our case, a coalition is a subset of lines and the characteristic function evaluates the performance,
which in our case is simply the root mean square error (RMSE) for the depth map produced based on
the given subset of lines with respect to the ground-truth depth map. While in our case we define
this characteristic function as the RMSE, it could be simply replaced by another metric such as mean
absolute error (MAE), photometric error, etc.

Up until this point, we have defined the payoff given to a group of lines. There remains the question
of how to assess the importance of a single line given the information about the payoffs for each
subset of lines. To this end, we employ the concept of the Shapley value about the normative payoff
of the total reward or cost.

4.2 Shapley Value

The concept introduced by Shapley [1] is a division payoff scheme which splits the total payoff into
individual payoffs given to each separate player. These individual payoffs are then called the Shapley
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values. The Shapley value of a player i ∈ N is given by

φi(ν) :=
∑

K⊆N\{i}

1

N
(
N−1
|K|

) (ν(K ∪ {i})− ν(K)). (2)

The value φi(ν) then quantifies the contribution of the i-th player to a target quantity defined by
ν(N )− ν(∅), that is the output of the characteristic function applied to the grand coalition minus the
output when applied to the empty set. The sum over the Shapley values of all actors is equal to this
target quantity, ν(N )− ν(∅) =

∑N
i=0 φi(ν). In our case, the grand coalition is the set of all the lines

and the empty coalition corresponds to the case where no lidar measurements are used. Using the
Shapley symmetrization ensures that the contributions are estimated in a “fair” way, i.e., according to
a mathematically rigorous division scheme that has been proposed as the only measure that satisfies
four normative criteria regarding fair payoff distribution. We describe these criteria in the Appendix.

4.3 Approximation via Weighted Least-Squares Regression

The Shapley value approximation describes the sets as binary vectors, where the vector dimensionality
is equal to the total number of players. Each binary vector indicates whether a line is present in
the respective subset or not. This allows to formulate Eq. 2 as a weighted least-squares regression
problem. Nevertheless, since the exact Shapley value could only be obtained using exponentially
many binary vectors, we resort to sampling. Given the subset K, we create a binary vector v s.t.
|v| = N , ν(v) = ν(K) and

vi =

{
1 if i ∈ K,

0 otherwise.

Alternatively, we can also sample the binary vectors directly by assigning 1/2 probability to be either
0 or 1 to each vector entry or sample the vector based on the probability 1/

(
N
K

)
for a subset of length

K. Consider then the Shapley values φ0(ν), . . . , φN (ν) to be the weights of the binary vector v. As
stated in [23], a formulation in this form allows to obtain the Shapley values as the solution of

min
φ0(ν),...,φN (ν)

∑
K⊆N

ν(K)−
∑
j∈K

φj(ν)

2

k(N ,K), (3)

where k(N ,K) are called the Shapley kernel weights which are defined as k(N ,K) :=
(|N |−1)

(|N|
|K|)|K|(|N |−|K|)

, where k(N ,N ) is set to a large number due to the division by 0. In practice,

the minimization problem in Eq. 3 can then be solved by solving a weighted least-squares regression
problem, the solution of which is

ϕ = (VTKV)−1Vν,

where V is a matrix consisting of the above defined binary vectors, K the Shapley kernel weight
matrix, and ν is a vector with the outcomes of the characteristic function applied to the corresponding
subset in V.

4.4 Space Constraint for Improved Depth Completion

The depth profile of a real-world scene is characterized by strong correlations at a local spatial level.
Thus, these spatial correlations play an important role in predicting depth values in the setting of
depth completion from sparse lidar measurements.

The role of the Shapley values is to create a ranking of lines without any additional constraints. As
we will present in the experiments in Sec. 5, the lines identified as most important via the Shapley
values may be in close spatial proximity, which leaves other regions of the scene without any depth
information, even though such information would greatly facilitate depth completion in those regions.
Therefore, the spatial structure of the set of lidar lines plays a key role in selecting lines, which
motivates us to adapt our approach as follows in order to take it into account.
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Figure 1: Visualization of regions
described in Sec. 4.4. We denote D
as the entire depth map and R as
the minimal contiguous region that
contains all the N lidar lines and S
spread lines.

Let the spatial extent of the depth map D be divided into D ∈ N sub-regions which describe the lidar
lines such that |D| = D. Let N ∈ N be a fixed budget of lines. Then the lines which are neglected
are K = D −N . Importantly, we note that the N lines can be “spread out” or huddled together. For
example, when the N lines are all consecutive, they take up the space of one joined region of size N
(with the remaining space also being joined in one or two regions). However, this is exactly the case
which we wish to avoid, as the depth measurements are not spread out over the entire scene.

Consider the minimal contiguous region of the image which contains all selected lidar lines and
denote it by R. This area R may contain regions corresponding to lidar lines that are not selected,
which we describe as spread, S. That is, S ⊂ R. The entire depth map D = R ∪ R′. When all
the lines are huddled together, |R| = N , |R′| = K and |S| = 0. When there is one line that is not
selected between the selected lines, then |R| = N + 1 with |S| = 1, and |R′| = K − 1.

In the experiments of Sec. 5, we show empirically how increasing the spread S improves the quality
of the depth map, even when the number of lines remains constant.

5 Experiments

For the experimental validation of our method, we use the KITTI benchmark. KITTI consists of
driving scenes recorded from the car. The data consist of RGB images, sparse range measurements
produced by a lidar, and dense depth maps which are annotated as ground truth-depth images. To
measure the performance of the depth completion task, we use the RMSE between the ground-truth
depth and the predicted depth. Given a sparse set of depth points, we perform depth completion using
the network proposed in [5].

We first train the network from scratch for 10 epochs. Subsequently, we select a subset of the lines
according to a given method. We distinguish several ways to select lines. “Shapley global” is a static
scheme, where the input in every frame consists of the same set of lines selected by the Shapley value.
Shapley global is computed based on samples from the entire dataset. On the other hand, “Shapley
local” performs the selection for every image separately (as given in Sec. 3). Here, to compute the
SVs, multiple samples (350 in this case) are drawn for every image.

The second component of our method is the spatially-aware sampling strategy. The basic selection
baseline selects equally spaced lines, starting from the top line (which is most significant according
to our tests), e.g., line 64, 48, 32 and 16 for the case of l = 4, where l is the number of selected
lines. Subsequently, we combine the two components in two distinct variants. The first one, “SaS
constant-k” fixes the least amount of space between the lines, that is any two selected lines need to be
separated by at least k intermediate lines. In our experiments, we set k = 1. Then SaS constant-1
describes a set of lines selected with the Shapley ranking with the spatial constraint that two lines
cannot be adjacent to each other. The second variant, which we name “SaS flexible-s” proves to be
the most effective. Here, spread budget of size s is flexibly assigned between the signal lines. The
details are given in the following.

Fig. 2 summarizes the performance of the variants described above for a range of line budgets. The
number of the lines at our disposal influences the trade-off between the Shapley value of the selected
lines and the degree of spatial coverage associated with them and determines in large part the method
and the potential performance. As Fig. 2 shows, when the number of selected lines is larger than
50% of the total number of lines, the preserved lidar signal is dense and spatial constraints are not
very important, since the sheer number of lines suffices to obtain an accurate result. This is also
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Method / # of lines 32 16 8 4

Shapley (local) 946 3215 5656 6620
Shapley (global) 1078 3872 5471 6848
Spaced 1149 1951 4289 7671
Random 1799 2416 5043 10490
SaS constant-1 (local) 1361 1419 3183 5838
SaS flexible (global) 888 1178 2147 3436

Figure 2: Performance comparison of lidar line selection methods for depth completion on KITTI. The table on
the left shows the RMSE (in mm) for the compared methods with varying number of selected lines. The plot on
the right delves deeper into the comparison of two of the methods, Shapley (local) and SaS constant-1 (local),
comparing them for all possible numbers of lines. The RMSE with 64 lines is 853 mm.

(a) 8 lidar lines (b) 16 lidar lines (c) 32 lidar lines

Figure 3: The effect of including space between the selected lines on the quality of depth completion in terms
of RMSE between the ground-truth and the predicted depth. For a fixed number of lines N ∈ [8, 16, 32], the
total spatial spread of them is varied (horizontal axis). Spread is described via S, the number of lines which are
located between the two extreme selected lines and are not selected. For varying S ∈ [0, 64−N ], S random
lines are selected and removed from the range of lines [64−N − S, 64] (the average over 15 samples). Note
that the topmost line is numbered as 64.

confirmed by Fig. 3, which studies SaS flexible and the role of space in depth. In the case of 32 lines,
on average, the RMSE rises as the spread increases. In the table in Fig. 2 we include the best sample
which includes the amount of spread equal to 4 (the details of the exact spread configurations are
given in the Appendix). In general, though, when the number of available lines is > 32, the best
option is to select the lines directly produced by the Shapley value. Let us note that with 32 lines
both SaS and the local Shapley value reach similar performance to the original RMSE with 64 lines
which is 853 mm.

As the number of selected lines decreases, the relative importance of incorporating spatial awareness
in our method increases. This importance is evident from the fact that simply selecting equally spaced
lines yields better results than the Shapley value. The Shapley value itself selects lines which do not
have adequate spatial coverage of the image and therefore do not produce a completed depth map of
good quality. On the contrary, for small numbers of lines, incorporating a spatial spread constraint into
the Shapley value scheme produces the best results. For 16 and 8 lines, SaS substantially improves
the performance of both of the plain Shapley value variants and the equally spaced baseline, however
one should note that when the number of available lines drops toward a one-digit number, it is hard to
expect to match the result of the 64 lines. On the other hand, as the results show, even just a quarter
of the lines produces a result which is acceptable. The visual results are presented in Fig. 4.

5.1 The Effect of the Spatial Constraint

As argued in Sec. 4.4, the space or spread S between the input features plays a role in depth
completion. In this experiment we verify the role of space for the varying amount of spatial spread
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Figure 4: Examples of depth maps generated with the proposed methods with a subset of lidar lines. Shapley
local (Sh-32 and Sh-16) uses 32 and 16 lines, respectively without the space constraint. SaS-16 uses both the
Shapley value and the space constraint. Notice the role of space when using 16 lines, that is smoother prediction
over the entire depth map when utilising the space constraint. Also notice more accurate prediction of the nearby
car/bus in the bottom-left corner. When using 32 lines, denser input yields more accurate predictions both for
closer and further regions without the need to incorporate spatial constraints. With fewer lines, Shapley focuses
more on the far-away regions.

which is a simplified version of the “SaS flexible” method. Given a budget of N lines, we verify
the impact of the spatial extent of the region R as described in Sec. 4.4 by varying the size of R. In
the experiment, we fix N to 4, 8, 16 or 32, and we vary |R| ∈ [N, 42] (42 is the number of visible
lines). Since there are

(
R
N

)
possible configurations, we randomly select indices for the lidar lines and

verify the accuracy of the depth map inferred with the respective configuration of selected lines. The
random sampling is repeated 15 times. The results are shown in Fig. 3.

Fig. 3 presents consistent results. As the number of available lidar lines increases, the role of spatial
spread decreases. In the case of 32 lines, on average, including space actually deteriorates the result.
Also in the case of 8 and 16 lines, empirically, the improvement from spreading the lines is noticeable
up to a certain tipping point. Afterwards, as the number of empty lines increases, the quality of depth
map decreases, as the signal becomes too sparse compared to the space between the lines.

SaS flexible differs from SaS constant in that we sample the top lines as given by the Shapley value
ranking with higher probability assigned to lines which are ranked higher. As a result, for different
samples, the amount of spread varies. Thanks to the empirical observations from this section, given a
fixed number of lines, we allow for a “spread budget” and test only the samples which do not exceed
the budget. This allows to sieve through the line configurations, making less samples necessary to
obtain the same level of performance, as presented in Fig. 2.

6 Conclusion

Motivated by lowering the costs of access to lidar for widespread applications, we introduce the
problem of lidar line selection for depth completion. Thanks to the algorithmic blend of the game-
theoretical concept of the Shapley value and the spatial constraint necessitated by spatial scene
correlations, our depth completion method predicts depth maps of comparable quality with only a
fraction of the lines. These global line configurations can be used to build a custom non-uniform
sensor. In the future, we aim to further improve the results for instantaneous local selection to reduce
the computational overhead required at every frame. Morever, as we present the benefit of optimizing
the selected lines, we expect the design of future lidar sensors will start being influenced accordingly.
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