
Supplementary Material for
Four Ways to Improve Verbo-visual Fusion for

Dense 3D Visual Grounding

Ozan Unal1,2 , Christos Sakaridis1, Suman Saha1,3, and Luc Van Gool1,4,5

1ETH Zurich, 2Huawei Technologies, 3PSI, 4KU Leuven, 5INSAIT
{ozan.unal, csakarid, suman.saha, vangool}@vision.ee.ethz.ch

1 Implementation Details

The visual inputs are formed via the concatenation of 3D coordinates and RGB
color channels. For the 3D Unet backbone we use a voxel size of 2cm following
set convention [7,11,13]. For the natural language encoding, we use the MPNet
tokenizer and pre-trained model [9,12]. Following Zhao et al . [15], we randomly
mask the referred object nouns with a probability of 0.5 before the extraction of
word embeddings in order to reduce overfitting and entice learning context to aid
localization. We remap the output of MPNet onto a d = 128 dimensional vector
using a single linear layer. BAF is built using a vanilla transformer encoder
(2-layer) for the language encoding and a decoder (6-layer) for the attentive
fusion [10]. After every other decoder layer, we increase the radius of the masking
sphere rl from [1.0m, 2.5m, ∞], with 2.5m giving the approximate average inter-
instance distance and ∞ providing global attention in the final two layers. We
set γ = 25 following DKNet [13], and τ = 0.3. We empirically choose K = 5
and τ = 0.9 for MVE. We use a batch size of 4, with each sample consisting of a
single scene and up to 32 utterances. We train for 400 epochs using the AdamW
optimizer [8] with a learning rate of 3 · 10−4 using a single Nvidia RTX 3090.

2 Segmentation vs. Detection for Grounding

In Tab. S1 we provide an extended analysis of the visual backbone change for
3D grounding (main paper Tab. 3).

3 NR3D

While ScanRefer tackles referral-based object localization, Nr3D [1] is built on
referral-based identification. This means that in Nr3D, the ground-truth bound-
ing boxes/instance masks are assumed to be given as input. We instead tackle
the more challenging task of end-to-end referral-based object localization. Even
though our method is not directly applicable to the Nr3D benchmark, the dataset
can still be used to evaluate our method for our task of interest.
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Table S1: Extension of Tab. 3: We replace the 3D object detector (outputs bounding
box) of established 3D visual grounding models with our 3D instance segmentation
backbone (outputs mask) to showcase the performance implications.

Unique Multiple Overall
Method Output Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50

ScanRefer Box 67.64 46.19 32.06 21.26 38.97 26.10
Mask 70.49 63.26 24.64 20.77 33.18 28.69

3DVG-T Box 77.16 58.47 38.38 28.70 45.90 34.37
Mask 82.34 75.73 33.12 27.64 42.29 36.60

Table S2: Comparison of SOTA on Nr3D evaluated on referral-based 3D object local-
ization a la ScanRefer.

Method SRefer [2] 3DVG-T [15] D3Net [3] HAM [4] Ours
Acc@50 12.17 14.22 25.23 27.11 33.66

Table S3: Evaluating 3D dense visual grounding on the ScanRefer val-set, where the
IoU is determined based on not the bounding boxes but the instance masks. Shown
are the overall Acc@25/50.

Baseline +BAF +Lcon +GCT +MVE
44.2 / 39.1 46.9 / 43.3 49.2 / 44.9 50.7 / 46.8 51.4 / 48.6

As seen in Tab. S2, ConcreteNet significantly outperforms existing methods
on Nr3D by +6.55% overall accuracy at 50% threshold, despite not being able
to utilize the global camera token due to a lack of available camera information.

4 Evaluating 3D Dense Visual Grounding

In Tab. S3 we repeat the component-wise ablation study (see Tab. 2 of the
main paper), but with the IoU computed on the instance masks rather than
the axis-aligned bounding boxes. Here we again observe that each component
significantly improves the dense 3D grounding performance as well.

Specifically, we see an improvement of +4.2%, +1.6%, +1.9% and +1.8%
in accuracy at the 50% threshold when one-by-one introducing the bottom-up
attentive fusion module (BAF), the contrastive loss (Lcon), the global camera
token (GCT) and the multi-view ensembling (MVE) respectively.

5 Camera Rotation in GCT

We have only include camera position in GCT as it is sufficient for disambiguat-
ing view-dependent prompts (e.g. left, right relations). Tab. S4 shows a further
comparison that extends GCT to include yaw and pitch. We supervise the unit
look-at direction vector via a cosine similarity loss to the ground truth. This ad-
dition of rotational information slightly hurts the overall performance, especially
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Table S4: Ablation study on GCT reporting Acc@50.

Method Unique Multiple Overall
GCT (proposed) 75.62 36.56 43.84
GCT (with pose) 76.35 35.21 42.88
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Fig. 1: Additional qualitative result from the ScanRefer val-set showing the benefits
of a learned global camera token.

for multiple cases. We hypothesize that adding these uninformative (as justified
above) rotational dimensions to the GCT target merely increases problem com-
plexity and does not help disambiguation.

6 Additional Qualitative Results

In Fig. 1 further qualitative results from the ScanRefer val -set can be seen that
demonstrate the benefits of the global camera token (GCT).

Additionally, in Fig. 2 we show a common failure case where, while the model
predictions do not match the ground-truth object, the natural language descrip-
tion still fits the output.

7 Analysing the Semantic Class Accuracy of the Model
Predictions

An analysis of the predicted instance semantics can be found in Tab. S5. Specifi-
cally, we extract the semantic label of the predicted referral-based instance mask
from the ground-truth semantic labels. We then report the accuracy when com-
paring the predicted semantic class to the ground-truth counterpart. It can be
seen that with ∼ 86% accuracy, ConcreteNet is able to correctly identify the
semantic class of the referred object instance in most cases. Furthermore, from
the marginal gap between the unique semantic class accuracy and the unique ac-
curacy at 25% IoU (Learned GCT on Tab. 5 of the main paper), the effectiveness
and robustness of the 3D visual backbone can be inferred.
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Fig. 2: Failure case from the ScanRefer val-set. While the predictions from both Con-
creteNet and 3DVG-Transformer do not match the ground truth, given the symmetric
nature of the scene along with the vagueness of the description, it can be seen that the
cue does match both predictions and the ground truth.

Table S5: Further analysis on the semantic class of the predicted instance without the
inclusion of MVE. We extract the semantic class of the predicted mask and measure
the accuracy compared to the semantic class of the target object instance.

Unique Multiple Overall
85.33 86.22 86.05

8 Limitations and Discussion

In this section, we dive into the limitations of our work and discuss possible
remedies and counterpoints.
Global Camera Token: To employ a learned global camera token (GCT),
ConcreteNet requires ground-truth camera information to be provided. As this
can be trivially collected during a standard data annotation pipeline, we hope
that the presented benefits of GCT aid in conveying the necessity of such addi-
tions in future 3D visual grounding datasets. Nevertheless, as seen in Tab. S2,
our method continues to show state-of-the-art performance when trained and
evaluated without the inclusion of GCT on datasets that lack such information.
Multi-view Ensembling: Exploiting multi-view representation for 3D visual
grounding has been studied before. As mentioned in the main manuscript,
MVT [6], ViewRefer [5] and Multi3DRefer [14] aggregate 3D, textual or 2D fea-
tures from multiple views to reduce dependence on a specific viewpoint. Thus,
each of the aforementioned works requires multiple forward passes of their re-
spective encoder to extract multi-view features, resulting in a trade-off of per-
formance versus run-time efficiency. Compared to the aforementioned works,
our multi-view ensembling (MVE) directly operates on selected referred objects
rather than each individual predicted object. This means that not only does
MVE require multiple forward passes of the 3D encoder but also the decoder to
extract mask information. While this is a notable limitation of the module, we
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would like to provide further advantages and counterpoints that emerge from
such a limitation:

1. The parallelization of multi-forward pass methods for real-world applications
is accomplished by constructing multiple copies of a single model. Essen-
tially this maps the trade-off of performance versus run-time efficiency to
that of memory efficiency. Given that the majority of the model’s complex-
ity stems from the encoder, the additional decoder forward passes required
by MVE compared to existing approaches only incur minimal additional
memory costs.

2. Previous methods propose decoders specifically designed to handle multi-
view features to tackle 3D visual grounding, while MVE only operates on
the outputs of a single model. Thus MVE is a more flexible contribution
as it can be utilized with any dense 3D visual grounding model, under the
assumption that the model employs a grounding-by-selection approach.
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