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Abstract

This chapter formulates and compares two approaches that have been developed to discretize over arbitrary graphs the partial
differential equations (PDEs) of classical active contour models with level sets, which have been widely used in image analysis
and computer vision. The first approach takes a finite difference path and proposes geometric approximations of the fundamental
continuous differential operators that are involved in active contour PDEs, namely gradient and curvature, on graphs with arbitrary
vertex and edge configuration. The second approach leverages finite elements to approximate the solution of these PDEs on graphs
with arbitrary vertex configuration that constitute a triangulation. We present numerical algorithms and compare both approaches
while using them to successfully apply the popular models of geodesic active contours (GACs) and active contours without edges
(ACWE) to arbitrary 2D graphs for graph cluster detection and image segmentation.

Index Terms

Active contours on graphs, graph segmentation, discretized partial differential equations.

I. INTRODUCTION

EVOLUTION of curves via active contour models has been applied extensively in computer vision for image segmentation.
In the standard image setting which involves a regular grid of pixels, the discretization of partial differential equations

(PDEs) governing the motion of active contours is well-established [1] and ensures proper convergence of the contour to
object boundaries. Recently, active contour models based on level set PDE formulations have been extended [2]–[4] to handle
more general inputs in the form of graphs whose vertices are arbitrarily distributed in a two-dimensional Euclidean space. In
particular, the input in this case consists of:

1) an undirected graph G = (V, E), where V =
{
vi ∈ R2 : i = 1, . . . , n

}
and E ⊆ V × V , and

2) a real-valued function I : V → R defined on the vertices of the graph, which resembles the image function in the standard
grid setting. For the rest of the paper, we will use the term image function to refer to I .

Applications of segmentation of such graphs span not only image processing, but also geographical information systems
and generally any field where data can assume the form of a set of pointwise samples of a real-valued function. The arbitrary
spatial structure of these graphs poses a significant challenge to the discretization of active contour PDEs.

This chapter presents two fundamentally distinct approaches that have been developed to accomplish the aforementioned
discretization. The first approach, which is introduced in [2] and [3], takes a finite difference path and proposes geometric
approximations of the continuous differential operators that are involved in active contour PDEs, namely gradient and curvature,
on graphs with arbitrary vertex and edge configuration. The second approach, which is proposed in [4], leverages finite elements
to approximate the solution of these PDEs on graphs with arbitrary vertex configuration that constitute a triangulation. Both
approaches have been used in [3] and [4] to successfully apply the widely used models of geodesic active contours (GACs) [5]
and active contours without edges (ACWE) [6] to arbitrary 2D graphs for graph and image segmentation.

The chapter is structured as follows. Section II reviews related work on active contours, graph-based morphology and
segmentation, and PDE-based methods on graphs, and provides the necessary background on the employed active contour
models. Section III outlines the finite difference approach of [3] for active contours on graphs. It is composed of Section III-A
on the geometric gradient approximation on arbitrary graphs and its asymptotic consistency and accuracy in the limit of
infinite vertices for the class of random geometric graphs [7], Section III-B on the geometric curvature approximation and its
convergence in probability, and Section III-C on improved Gaussian smoothing on graphs for initialization of the GAC model
through normalization. Section IV outlines the finite element approach of [4]. More specifically, Section IV-A discusses the
problem formulation and analyzes the key aspects of the finite element approximation for active contour models. Section IV-B
presents an extension of the previous framework for locally constrained active contour models that can additionally be used
for speeding up contour evolution. Last, Section V presents experimental results of the two approaches on segmentation from
the translation of GACs [5] and ACWE [6] to arbitrary graphs created from regular images or containing geographical data
and Section VI recapitulates the main components of the chapter and provides a discussion on future research directions.
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Computer and Information Science, University of Pennsylvania, USA. K. Drakopoulos is with Marshall School of Business, University of Southern California,
USA. P. Maragos is with the School of Electrical and Computer Engineering, National Technical University of Athens, Greece.
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II. BACKGROUND AND RELATED WORK

Active contour models for curve evolution towards image edges originate from “snakes” [8]. These early approaches could not
in general handle topological changes of the contour, for instance splitting into two disjoint parts to detect the boundaries of two
distinct objects. The level set method [1] and its related discretized PDEs solved this problem and enabled improved alternative
approaches such as the geometric active contour model [9] which was initially introduced and subsequently complemented to
establish the GAC model [5]. The former model involves two forces that govern curve motion: a balloon force that expands
or shrinks it, and a curvature-dependent force that maintains its smoothness. The latter model adds an extra spring force that
attracts the contour towards salient image edges. Both methods embed the active contour as a level set of a function u(x, y, t),
which is termed the embedding function and is the unknown in the PDE that models curve evolution, allowing the use of
numerical schemes of the type proposed in [1]. The formulation of the PDE of the GAC model is the following:

∂u

∂t
= κ ‖∇u‖ g(I)︸ ︷︷ ︸

curvature

− c ‖∇u‖ g(I)︸ ︷︷ ︸
balloon

+∇u · ∇g(I)︸ ︷︷ ︸
spring

, (1)

where κ is the curvature of the level sets of u at time t, g(I) is an image-dependent function that stops the contour at edges,
commonly referred to as the edge stopping function, and c is a constant.

The curvature-dependent force is also used for regularization in ACWE [6], which abandon the aforementioned edge-driven
paradigm and leverage the Mumford-Shah functional [10] to formulate a piecewise constant segmentation model, with automatic
detection of interior contours and reduced sensitivity to initialization. The formulation of the ACWE model is the following:

∂u

∂t
= δε(u)

(
µκ− ν − λ1(I − c1(u))

2
+ λ2(I − c2(u))

2
)
,

c1(u) = average(I) in {u ≥ 0}, c2(u) = average(I) in {u < 0}, (2)

where κ is the curvature of the level sets of u at time t, δε is a regularized version of the Dirac δ function, and µ, ν, λ1

and λ2 are positive constants. This model is further studied in [11], where the authors prove that the global minimizers of the
original nonconvex problem for given values of c1 and c2 can be recovered via solving a convex reformulation of it.

Graphs have long been connected to image processing, in part through their study in terms of mathematical morphology.
The application of morphological transforms on neighborhood graphs was established in [12], while a wide variety of graph
structures, algorithms for their construction and early applications in computer vision were surveyed in [13]. The notion of
structuring element in classical morphology was extended to graphs in [14], where the proposed structuring graph enables a
generalization of neighborhood functions on a graph beyond the one induced by its set of edges. Morphological operators on
graphs have been studied further in [15], where the lattice of the subgraphs of a graph is considered in order to define filters
that treat the graph as a whole.

Recently, several works, including [2], [3], [16]–[27], have focused on the construction of PDE-based rather than algebraically
defined morphological operators on graphs, which are then used as one of the basic ingredients to define active contour models
as well as other PDE-based optimization schemes on graphs. All these works are based on the definition of a gradient operator
on graphs. However, [16]–[27] work on weighted graphs and they all start from defining a discrete gradient at a vertex as a
vector whose dimensionality is the same as the cardinality of the vertex’s neighborhood. This type of gradient is a difference
operator, which replaces the original continuous gradient operator and enables the adaptation of continuous PDE schemes on
graphs by defining analogous partial difference equations. Earlier works that used partial difference equations on graphs that
mimic the variational formulation of boundary value problems include [28], [29]. This class of approaches invariably sacrifices
consistency of the resulting scheme with the original, continuous PDE formulation, as it removes the link between the discrete
graph domain and the underlying continuum; even the initial continuous definitions of the operators in [17] are eventually
substituted by discrete counterparts in order to apply the proposed optimization framework to graphs. The foundation of these
approaches can be based on the theory of discrete calculus [30], [31], which provides a framework for reformulating continuous
energies on graphs such that the corresponding solutions share similar properties [32]–[37]. On the other hand, [2], [3] consider
unweighted graphs and approximate the original, continuous gradient at each vertex. Their approach effectively constitutes a
generalized numerical scheme for solving the original, continuous active contour PDE on graphs that have arbitrary spatial
vertex configuration and hence greater complexity than the standard 2D image grid, as was described in Section I. Thus, their
approach contributes towards a discretized calculus on arbitrary graphs, in the spirit of [38] who discretized classical PDEs of
mathematical physics on regular grid graphs. They establish approximations of the gradient and curvature operators on graphs
which are asymptotically consistent in the limit of large graphs, in order to ensure a stable discretization of level set-based
active contour models on arbitrary 2D graphs, as has been previously achieved for the 2D image grid. The asymptotic upper
bound that is established in [3] for the error of their geometric gradient approximation on random geometric graphs is the first
of its kind.

A different class of approaches to graph segmentation which has gained a lot of interest in the image processing community
is based on graph cuts. These approaches, in contrast to [3], [4], usually operate on a regular image grid and define weighted
edges between image pixels based on certain cues like spatial or appearance proximity, in order to find a cut of minimal cost
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for the resulting weighted graph. The cost of a cut is normalized in [39] so that balanced partitions are preferred. Approximate
solutions to multi-label problems are proposed in [40], guaranteeing constant-factor optimality. A link between geodesic active
contours and graph cuts is established in [41], where the graph is constructed so that the cost of the cut corresponds to the
contour’s length under the induced anisotropic metric, and this link is extended to the arbitrary graph setting in [2]. The
random walk algorithm of [42] assigns unlabeled pixels to user-defined seeds interactively. Efficient algorithms for watershed-
like segmentation that are formulated as graph cuts are introduced in [43], [44]. The power watershed framework of [45] unites
and generalizes several graph-based optimization methods for image segmentation by expressing their energies in a common,
parametric form.

The analysis of consistency of algorithms operating on point clouds or graphs which are constructed from point clouds has
received a lot of interest, especially for machine learning tasks such as clustering. The focus of this line of research is on
proving that optimizers of functionals which are defined on the discrete input converge to optimizers of the limiting functional
which is defined on the underlying continuum as the number of points or graph vertices goes to infinity. The consistency of
k-means is studied in [46]. More recently, [47]–[49] examine spectral clustering and graph Laplacians in terms of consistency
by analyzing the convergence of the respective eigenvalues and eigenvectors. The works of [50]–[52] on the consistency of
various graph-cut methods are more closely related to the analysis in [3]: they define a spatial scale parameter, which controls
the connectivity of the graph through the edge weights and depends on the number of vertices, and derive certain conditions
on this parameter in order for the respective graph-cut algorithm to be consistent. This analysis is performed in the setting of
pointwise convergence in [50], [51], whereas [52] obtain results on Γ-convergence. In comparison, the analysis of consistency
of the approximations in [3] also involves a spatial scale parameter, the radius of the graph, which is presented in Definition 1,
with similar function as in the above works. In a slightly different setting, the work in [53] proves Γ-convergence of the graph-
based Ginzburg-Landau functional that was developed for binary clustering in [18] to the discrete anisotropic total variation
that models the min-cut cost; in this case, the spatial scale parameter pertains to the scale of the diffuse interface that is
induced by the Ginzburg-Landau functional and it also depends on the number of vertices. An important distinction between
these works and [3] is that the latter proves consistency at the level of operators that are used in active contour models on
graphs, not at the level of active contour algorithms themselves. Given that the aforementioned approaches do not cover the
case of input which is presented in Section I and includes an image function I defined on the vertices of the graph, the study
of the consistency of level set-based active contour algorithms on graphs constitutes an interesting topic for future research;
theoretical results in [3] are a promising first step in this direction.

Finally, the approach in [3] bears some resemblance to unsupervised clustering of data that are represented as graphs
embedded in Euclidean domains, where techniques based on non-negative matrix factorization [54]–[56] have been applied
successfully. Nonetheless, the framework of [3] is not directly applicable to this setting, since the input is limited to the set
of vertex locations V and it does not include an image function I defined on the vertices (cf. Section I), which is essential
for formulating active contour models. In the same sense, [3] cannot be extended to stochastic block models [57] for graph
segmentation, given that these models do not associate each vertex with a scalar value (which would model the image function)
either.

III. ACTIVE CONTOURS ON GRAPHS VIA GEOMETRIC APPROXIMATIONS OF GRADIENT AND CURVATURE

A. Geometric Gradient Approximation on Graphs
The first term of level set-based active contour evolution models to be approximated is the gradient of the bivariate embedding

function. A general method is thus developed in Sakaridis et al. [3] for calculating the gradient of a real-valued, bivariate
function that is implicitly defined on a continuous domain, although its values are known only at a finite set of 2D points,
which constitute the vertices of the graph. The context is the same as in the preceding work of Drakopoulos and Maragos [2].

1) Formulation: Compared to the gradient approximations proposed in [2], the geometric gradient approximation of [3]
leverages the local spatial configuration of vertices in the formulation of the approximation. More specifically, it introduces
the concept of the neighbor angle, i.e. the angle around a vertex which is “occupied” by each of its neighbors. The motivation
for this approach comes from the following lemma in bivariate calculus.

Lemma 1. The gradient of a differentiable function u : R2 → R at point x is

∇u(x) =

∫ 2π

0

Dφu(x) eφ dφ

π
, (3)

where eφ is the unit vector in direction φ and Dφu(x) is the directional derivative of u at x in this direction, defined by

Dφu(x) = lim
h→0

u(x + heφ)− u(x)

h
.

Based on Lemma 1, the goal is to approximate the gradient at a vertex of the graph by substituting the integral

I =

∫ 2π

0

Dφu(x) eφ dφ (4)
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Fig. 1. Angles φ(wi), ∆φ(wi) and ω(wi). Figure source: [3].

with a sum over all the neighbors of the vertex. To this end, let us first introduce several key concepts.
The Euclidean distance between vertices v and w of a graph G is denoted by d(v, w) and the unit vector in the direction of

the edge vw starting at v is denoted by evw. We define φ(w) ∈ [0, 2π) as the angle between the vector evw and the horizontal
axis, as in Fig. 1. A vertex v will be alternatively denoted by v to declare its position vector. Moreover, we denote by N (v)
the set of neighbors of v in G, with cardinality N(v). For the sake of brevity in notation, this cardinality will be written simply
as N . We write N (v) = {w1, w2, ..., wN} so that the angles φ(wi) are in ascending order. Based on this ordering, we define
the angle around v “occupied” by wi, which is called neighbor angle, as

∆φ(wi) =



φ (wi+1)− (φ (wN )− 2π)

2
if i = 1,

φ (w1) + 2π − φ (wi−1)

2
if i = N,

φ (wi+1)− φ (wi−1)

2
otherwise.

(5)

In a similar fashion, we define the angle corresponding to the bisector between two consecutive neighbors as

ω(wi) =


φ (wi) + φ (wN )− 2π

2
if i = 1,

φ (wi) + φ (wi−1)

2
otherwise.

(6)

A visual representation of the neighbor angle is provided in Fig. 1. Using the above notation, the geometric gradient
approximation at v is given by the following formula:

∇u(v) ≈

N∑
i=1

u(wi)− u(v)

d(v, wi)
evwi ∆φ(wi)

π
. (7)

The directional derivative term in (3) is approximated by the difference quotient of the function along each edge. On the other
hand, the angle differential is handled through the neighbor angles, which effectively constitute a Voronoi tessellation of the
circle around v, created from its neighbors. The reasoning behind this approach is to use information about the change of u
along each particular direction that comes from the neighbor which is closest to this direction.

If the neighbor angles were not taken into account, we would place equal importance on all neighbors of v and return to
an approximation similar to the weighted sum that was introduced in [2]:

∇u(v) ≈

N∑
i=1

u(wi)− u(v)

d(v, wi)
evwi

N
. (8)

2) Convergence for Random Geometric Graphs: In the remaining theoretical analysis of this section, we mainly focus on
a certain type of graphs, namely random geometric graphs [7].

Definition 1. A random geometric graph (RGG) G(n, ρ(n)) is comprised of a set V of vertices and a set E of edges. The set
V consists of n points distributed uniformly at random and independently in a bounded region D ⊂ R2. The set E of edges is
defined through the radius ρ(n) of the graph: an edge connects two vertices v and w if and only if their distance is at most
ρ(n), i.e. d(v, w) ≤ ρ(n).
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Fig. 2. A random geometric graph embedded in D = [0, 1]2, with n = 80 vertices and radius ρ = 0.25. Figure source: [3].

An instance of an RGG is given in Fig. 2. For RGGs, the approximation of (7) converges in probability to the true value
of the gradient as the number of vertices increases, under some conditions on the radius which constrain the density of the
graph. Before stating the related theorem, we remind the reader of some definitions for the asymptotic notations which are
used in the analysis.

Definition 2. Let f and g be two non-negative functions. Then,

f(n) ∈ O(g(n))⇔ ∃k > 0 ∃n0 ∀n ≥ n0 : f(n) ≤ kg(n),

f(n) ∈ Θ(g(n))⇔ f(n) ∈ O(g(n)) ∧ g(n) ∈ O(f(n)),

f(n) ∈ o(g(n))⇔ ∀k > 0 ∃n0 ∀n ≥ n0 : f(n) < kg(n),

f(n) ∈ ω(g(n))⇔ ∀k > 0 ∃n0 ∀n ≥ n0 : f(n) > kg(n).

Theorem 1. Let u : R2 → R be a differentiable function and G(n, ρ(n)) an RGG embedded in D = [0, 1]2, with ρ(n) ∈
ω
(
n−1/2

)
∩ o (1). For every vertex v of G, the gradient approximation of (7) converges in probability to ∇u(v).

The proof of Theorem 1 is provided in [3].
3) Asymptotic Analysis of Approximation Error: Note that [2] also proved that two of their gradient approximations converge

in probability to the true value of the gradient. Going one step further, [3] obtain an asymptotic bound on the rate of convergence
to the true gradient as the size of the RGG grows large. Since the framework in RGGs is stochastic, their result involves the
expectation of the approximation error.

Let us denote the error in approximating I with

S =

N∑
i=1

u(wi)− u(v)

d(v, wi)
evwi ∆φ(wi) (9)

by E = S − I. Comparing the two expressions, we deduce that the approximation with S is threefold:
1) Directional derivatives along edges are approximated with difference quotients.
2) The approximate value for the directional derivative along each edge is used as a constant estimate for all the directions

“falling into” the respective neighbor angle.
3) The unit vector in the direction of each edge is also used for all the directions corresponding to the respective neighbor

angle.
The calculation of the error that is performed in the proof of the following theorem involves construction of intermediate

expressions between S and I, bounding the magnitudes of the resulting differences and combining these individual bounds
using the triangle inequality.
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Theorem 2. Let u : R2 → R be a differentiable function and G(n, ρ(n)) an RGG embedded in D = [0, 1]2, with ρ(n) ∈
ω
(
n−1/2

)
∩ o (1). For the gradient approximation error at every vertex v of G, it holds that

E[‖E‖] ∈ O
(
ρ(n) +

1

nρ2(n)

)
. (10)

The full proof of Theorem 2 is given in [3]. The radius of the graph is effectively the factor that determines the strictness
of the asymptotic bound. To provide better intuition, we study the case when ρ(n) ∈ Θ (n−a) , a ∈ (0, 1/2). Substituting in
(10), we obtain

E[‖E‖] ∈ O
(
nb
)
, b =

{
−a if a ∈

(
0, 1

3

]
,

−1 + 2a if a ∈
(

1
3 ,

1
2

)
.

(11)

The strictest upper bound is O
(
n−1/3

)
, it is achieved for a = 1/3 and it constitutes a trade-off between minimizing the first

error term, which calls for small radii, and the other two terms, which require more neighbors and consequently larger radii. On
the other hand, when a /∈ (0, 1/2), the conditions of Theorems 1 and 2 for ρ(n) are not met and convergence to the true value
of the gradient is not guaranteed in general. For instance, for a = 0, we get ρ(n) ∈ Θ(1), which means that the radius does
not approach 0 in the limit. In turn, this implies that the difference quotients are not guaranteed to converge to the respective
directional derivatives, since the distance d(v, w) ≤ ρ(n) does not go to 0 in the limit. In addition, for a = 1/2, it holds that
ρ(n) ∈ Θ(n−1/2) and hence ρ2(n) ∈ Θ(1/n). As a result, the expected number of neighbors is E[N ] = (n−1)πρ2(n) ∈ Θ(1).
In other words, the sum S is finite in the limit, which forbids convergence to the integral I.

In Theorems 1 and 2, the domain D of the RGG is assumed to be the unit square. It is, however, straightforward to generalize
the results of both theorems to arbitrary rectangular regions, since their proofs in [3] only use this assumption for calculating
the area of D. This generalization involves applying a uniform scaling to both coordinates by 1/

√
|D|, so that the transformed

region has unitary area. The values of u are also scaled by the same factor. These steps ensure that all terms in (7) remain
unaffected by the transformation. The two theorems are then applicable to the transformed input. In order to transfer the results
back to the original input, one just needs to scale the radius ρ by the constant factor

√
|D|, which leaves the asymptotic bounds

in both theorems unaffected.
4) Practical Application: Despite convergence of the geometric gradient approximation to the true value of the gradient in

the case of RGGs, in practice there is a non-negligible error for graphs with finite number of vertices. This error is propagated
to the embedding function of the active contour after each update and may be accumulated after several iterations. To mitigate
this, Sakaridis et al. [3] apply smoothing filtering on the approximate gradient values at a local, neighborhood level as an
empirical means to eliminate potential outliers by taking into account the values at neighboring vertices. This smoothing
is also applicable to curvature, as we discuss in Section III-B. The smoothing filter can be either an average or a median
filter, receiving as input the set of function values at the vertex itself and all its neighbors. In the case of curvature this is
straightforward, while for gradient, each of the two vector components are filtered separately. Application of smoothing filtering
is statistically motivated for the case of smooth (differentiable) functions by showing that using the neighbors of a vertex to
form an ensemble of estimators of the approximated quantity at that vertex reduces the variance of the estimation compared
to the basic approximation while not changing the bias.

Experimental validation of the gradient and curvature approximations as well as the aforementioned smoothing filtering is
performed by using closed-form functions defined on RGGs. In the experiments that follow in the rest of Sections III and V,
the radius of an RGG is chosen as ρ(n) = 0.6n−1/3 unless otherwise mentioned, so as to achieve the strictest asymptotic
bound for gradient approximation error according to the results of Section III-A3. Besides, in Sections III-A4 and III-B2, all
RGGs are embedded in [0, 1]2. For each graph, the function’s gradient and the curvature of its level sets are approximated at
each vertex and afterwards the results are filtered with an average or median filter. The analytical expressions of the function’s
gradient and curvature are then compared to the estimates. Performance is measured using a global, graph-level error metric
which is called relative error and denoted by er. The error at each individual vertex of the graph is defined as the difference
between the approximate value and the true analytical value, and the relative error is simply the ratio of the energy of the error
signal to the energy of the true signal on the entire graph:

er =
Eerror

Eanalytical
. (12)

The relative error of the geometric gradient approximation is evaluated for an isotropic Gaussian on RGGs whose size ranges
from 1000 to 10000 vertices. The analytical form of the Gaussian is

exp
{
−
[
(x− x0)2 + (y − y0)2

]
/ 2σ2

}
, (13)

with σ = 0.25 and x0 = y0 = 0.5. Figure 3(a) shows average values of er over 10 different graphs for each size to
reduce variance in the reported performance. Using either an average or a median filter reduces the relative error substantially
irrespective of size. Based on this result, smoothing filtering is generally applied for gradient in practice when performing
active contour evolution.
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Fig. 3. (a) Relative error of gradient approximations for a Gaussian function defined on RGGs of increasing size. The geometric approximation with no
filtering is compared to its filtered versions with an average or median filter. (b) Relative error of curvature approximations for a conic function defined on
RGGs of increasing size. All four combinations of type of approximation (geometric or gradient-based) and smoothing filter (average or median) are compared.
Figure source: [3].

Another practical consideration about the geometric gradient approximation (7) is that its absolute error increases as the
magnitude of the true gradient grows large, i.e. when the function exhibits abrupt variations. This does not pose a problem
for the calculation of gradient direction (which is relevant as input for approximating the curvature), since the latter does not
depend on the range of the function’s variation around the examined vertex. Utilizing all incident edges in the weighted sum
of (7) ensures that all available information in the neighborhood of the vertex is used to estimate which direction the gradient
points to, as emphasized in [2]. However, the estimated gradient magnitude with the geometric gradient approximation (7) is
prone to greater error, as it depends on the range of the function’s variation. The use of difference quotients in (7) accentuates
this effect for dense graphs, where distances between neighboring vertices that appear in the denominator of the quotients
approach zero. Thus, the preferable approximation for gradient magnitude in practice is the maximum absolute difference of
values of the function along edges that are incident on v, introduced in [2]:

‖∇u(v)‖ ≈ max
w∈N (v)

{|u(w)− u(v)|}. (14)

B. Geometric Curvature Approximation on Graphs

After having devised an approximation scheme for the gradient of an embedding function, the next step is to build upon this
scheme in order to estimate the curvature of the level sets of this function. The difference from the gradient case is that the input
gradient values for curvature approximation are already approximate themselves, i.e. a cascaded approximation is attempted.
Therefore, the error in curvature approximation on a graph is expected to accumulate compared to gradient approximation error
on the same graph, since the estimated curvature at a vertex inherits the error of the estimated gradients at its neighboring
vertices.

1) Formulation: The geometric curvature approximation that is proposed in [3] is based on the expression of curvature as
the divergence of the unit gradient field F = ∇u/‖∇u‖ of the embedding function u:

κ(v) = divF(v), ∇u(v) 6= 0. (15)

The integral definition of divergence as

divF(v) = lim
S→{v}

∮
Γ(S)

F · n d`

|S|
(16)

can then be used as a basis for approximating curvature, where S is a region with area |S| and boundary Γ(S) and n is the
outward unit normal to this boundary. In [2], the integral in (16) is approximated using a polygonal region to form a finite
sum over the neighbors of the vertex (as shown in [2, p. 8]). However, certain arrangements of the neighbors of the examined
vertex can lead to regions with ill-defined area, boundary and normals when using the approach of [2], which prevents the
presentation of theoretical guarantees for the convergence of this approach.
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Fig. 4. (a) Definition of region S(v) through the neighbor angles. (b) The profile of values of Fg at a part of the boundary of S(v) which corresponds to
neighbor wi of v. Figure source: [3].

To tackle these problems, the geometric curvature approximation of [3] employs the neighbor angles that were introduced in
Section III-A, in order to define the region S in (16) in a more compact and principled fashion. Let S(v, ρ, θ0, θ) be a circular
sector centered at v, with radius ρ, occupying an angle θ > 0 and whose rightmost radius is in the direction θ0. For vertex v,
S(v) is formed as a union of circular sectors, each of them corresponding to a neighbor of v, as we show in Fig. 4(a). More
formally, for each neigbor w of v, the respective circular sector is S(v, d(v, w), ω(w),∆φ(w)). The area of S(v) can then be
expressed as

|S(v)| =
N∑
i=1

∆φ(wi)

2
d2(v, wi). (17)

The challenge imposed by this construction of S(v) is the choice of suitable values for F along the boundary of this region,
given only its values at the locations of neighbors of v. The resulting boundary consists of arcs, each of which contains a
neighbor of v, and line segments which connect these arcs. The proposed approximation fixes the value of F along each arc at
the geometric gradient approximation computed for the corresponding neighbor w using (7), Fg(w). Moreover, for every line
segment, the normalized mean of the approximate values of F along the two neighboring arcs is used. The idea is again to
use information from the closest vertex, which should be more reliable. We visualize the described configuration in Fig. 4(b).

Using the above approximations, the line integral in (16) is substituted with a sum of simple line integrals over single arcs
and line segments, which have closed analytical forms. If we denote the integral over the arc Ca(wi) containing neighbor wi
by Ia(wi) and the integral over the line segment Cl(wi) that connects the arcs Ca(wi) and Ca(wi+1) by Il(wi), we obtain

Ia(wi) = d(v, wi)Fg(wi) · (sin(ω(wi+1))− sin(ω(wi)), cos(ω(wi))− cos(ω(wi+1))) (18)

and
Il(wi) = (d(v, wi+1)− d(v, wi))

Fg(wi) + Fg(wi+1)

‖Fg(wi) + Fg(wi+1)‖
· (sin(ω(wi+1)), − cos(ω(wi+1))). (19)

The geometric approximation of curvature proposed in [3] is given by

κ(v) ≈

N∑
i=1

Ia(wi) + Il(wi)

|S(v)|
. (20)

While there was no proof of convergence for the curvature approximation of [2], the geometric curvature approximation of [3]
is proved to converge in probability for RGGs, as in the geometric gradient approximation case, although the conditions are
stronger for curvature. The full proof of the following Theorem 3 is given in the supplementary material of [3].

Theorem 3. Let G(n, ρ(n)) be an RGG embedded in D = [0, 1]2, with ρ(n) ∈ ω
(
n−1/2

)
∩ o (1) and v a vertex of G. If

u : R2 → R is continuously differentiable and ∇u(v) 6= 0, then the curvature approximation of (20) converges in probability
to κ(v).

https://epubs.siam.org/doi/suppl/10.1137/16M1100101/suppl_file/M110010_01.pdf
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An alternative, gradient-based curvature approximation is additionally presented in [3] by leveraging the differential definition
of divergence instead of the integral definition of (16). This gradient-based curvature approximation is also proved to converge
in probability for RGGs, under slightly stricter conditions than the geometric curvature approximation.

2) Practical Application: The neighborhood-based smoothing filtering that has been introduced in Section III-A4 is also
applicable to the output of curvature approximations. In this case, the same type of filter is applied both to the gradient
estimates before using them for computing curvature and to the final curvature estimates. In Fig. 3(b), we present the results of
an experiment similar to that in Fig. 3(a), this time focusing on the curvature of a function that corresponds to an elliptical cone
and comparing average versus median filtering as well as the geometric versus the gradient-based curvature approximation.
The form of this function is √

(x− x0)2

α2
+

(y − y0)2

β2
, (21)

where α = 0.4, β = 0.3, x0 = −0.25 and y0 = 0.5. Median filtering is superior: the median-filtered approximations exhibit
lower error than the corresponding average-filtered ones over almost the entire range of graph sizes (except for the smallest
sizes). More importantly, the relative error of median-filtered curvature is strictly decreasing for increasing graph size both with
the geometric and the gradient-based approximation, in contrast to the average-filtered cases, where the error stops decreasing
around 4000 vertices. Due to these facts, median filtering is preferred for smoothing gradient and curvature. In addition, the
geometric approximation induces a consistently smaller error than the gradient-based approximation.

C. Gaussian Smoothing on Graphs

Apart from the approximations of gradient and curvature, an additional ingredient which is required in particular for the
GAC model (1) to operate on graphs is the edge-dependent stopping function g which helps attract the active contour to
salient boundaries. The function g(‖∇Iσ‖) : R+ → [0, 1] is typically a decreasing function of the gradient magnitude of a
smoothed version Iσ of the original image function I , where smoothing acts as a regularization to limit the effect of small
local variations on the evolution of the contour. For this smoothing, [2] propose a simple graph-based isotropic Gaussian filter,
which is improved in [3] with two alternative formulations that both include normalization to account for nonuniform spatial
vertex configurations in the arbitrary graph setting.

The isotropic 2D Gaussian filter with standard deviation σ is defined as

Gσ(x) =
1

2πσ2
exp

(
−‖x‖

2

2σ2

)
. (22)

Smoothing is performed in [2] via a simple graph-based convolution of (22) with the image function:

Iσ(v) =
∑
w∈V

I(w)Gσ(v −w). (23)

The stopping function g is then calculated through the following formula:

g(‖∇Iσ‖) =
1

1 + ‖∇Iσ‖2
λ2

. (24)

However, the arbitrary graph setting introduces nonuniformities: in some parts of the graph, the vertices might be distributed
more densely than in other parts. This implies that (23) will operate counter-intuitively, introducing variations to the smoothed
image in regions of the graph where the original image function is constant. To demonstrate this behavior, we use a simple
binary image of a disk, shown in Fig. 5(a). The result of applying (23) on this image is shown in Fig. 5(b). Not only has the
range of image values changed, but the interior of the original disk also exhibits significant variations in image values. This
shortcoming is propagated to ‖∇Iσ‖ and g, as shown in Fig. 5(e). There is a deviation of g from the ideal value of 1 in the
interior of the disk and a variation in its values as well, which means that the gradient of g is not equal to 0 in the interior
of the disk as it should.

This issue is tackled in [3] by including a normalization term in (23) to address nonuniformities:

Iσ(v) =

∑
w∈V

I(w)Gσ(v −w)∑
w∈V

Gσ(v −w)
. (25)

This method is termed normalized Gaussian filtering and its result for the examined disk image is shown in Fig. 5(c). The
smoothed image is now similar to the respective output of simple Gaussian filtering in the usual image processing setting with
a regular grid. As a result, the profile of the corresponding g function (shown in Fig. 5(f)) meets expectations.

An alternative formulation of Gaussian smoothing proposed in [3] is based on the fact that the input of the stopping function
is the gradient of the smoothed image rather than the smoothed image itself. Since the derivatives of the Gaussian filter have
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Fig. 5. Comparison of methods for Gaussian smoothing and computation of stopping function g. The original image on the graph (a disk) is shown in (a).
The rest of the figure is organized as follows: the two rightmost plots of the top row contain smoothed versions Iσ of the original image and the bottom row
contains results for g using the three compared methods. The results in the left column pertain to Gaussian derivative filtering with separate normalization
of [3] using σ = 0.02 and λ = 0.05, those in the middle column pertain to simple Gaussian filtering of [2] using σ = 0.05 and λ = 1000 and those in the
right column correspond to normalized Gaussian filtering of [3] with σ = 0.02 and λ = 0.05. The approximation of (14) is used to compute the gradient
magnitude for simple Gaussian filtering and normalized Gaussian filtering. For all three methods, ‖∇Iσ‖ is filtered with a median filter before feeding it to
(24) for computing g. Figure source: [3].

closed analytical forms, it is possible to exchange the convolution with the gradient operator and convolve the image directly
with Gaussian derivatives in order to obtain the gradient of Iσ without performing numerical approximations. In this case,
normalization is not straightforward as in normalized Gaussian filtering: Gaussian derivatives assume both positive and negative
values. This difficulty is circumvented by splitting the vertices into two sets, according to the sign of the Gaussian derivative
with respect to the processed vertex, and performing separate normalization for each of these sets. This separation can be easily
expressed in terms of the vertices’ coordinates. If we denote v = (v1, v2), then Gaussian derivative filtering with separate
normalization is defined as

∇Iσ(v)

=



∑
w∈V:
w1≥v1

I(w)
∂Gσ(v −w)

∂x

∑
w∈V:
w1≥v1

∂Gσ(v −w)

∂x

+

∑
w∈V:
w1<v1

I(w)
∂Gσ(v −w)

∂x

−
∑
w∈V:
w1<v1

∂Gσ(v −w)

∂x

,

∑
w∈V:
w2≥v2

I(w)
∂Gσ(v −w)

∂y

∑
w∈V:
w2≥v2

∂Gσ(v −w)

∂y

+

∑
w∈V:
w2<v2

I(w)
∂Gσ(v −w)

∂y

−
∑
w∈V:
w2<v2

∂Gσ(v −w)

∂y

 . (26)

The result of Gaussian derivative filtering with separate normalization on the examined disk image in Fig. 5(d) is at least as
satisfactory as in the normalized Gaussian filtering case of Fig. 5(f) and clearly superior to simple Gaussian filtering of [2].

IV. ACTIVE CONTOURS ON GRAPHS USING A FINITE ELEMENT FRAMEWORK

A. Problem Formulation and Numerical Approximation

In this section we will discuss a method for solving active contour evolution equations on graphs using the Finite Element
method as presented by Kolotouros and Maragos [4]. Finite Element Analysis is a powerful framework that enables us to solve
complex PDEs in a simple and elegant manner. The main difference between finite difference and finite element methods is that
the former try to approximate the differential operators by discretizing them whereas the latter approximate the solution with
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functions belonging to finite dimensional function spaces. This can be useful, especially in the case of small graphs where the
accurate approximation of differential operators is a challenging problem. Additionally, compared to finite differences, the finite
element method is more suitable for functions defined on irregular domains or for modeling discontinuities. There is a number
of works that attempt to apply the finite element method for solving level set equations. The work in [58] presented a finite
element solution to the level set equation by enforcing that the level set function remains a signed distance function throughout
the evolution. A solution to the problem that exploits the partition-of-unity property of the finite element shape functions was
proposed in [59]. A generic finite element algorithm approach for solving the Hamilton-Jacobi and front propagation equation
was developed in [60].

In this section we will consider general active contour models that can be modeled with level set equations of the form

F (u)
∂u

∂t
= div (G(u)∇u) +H(u)

∇u · n = 0 on the boundary ∂Ω

u(x, y, 0) = dist∗(x, y),

(27)

where F , G and H are functionals of u and dist∗(x, y) is the signed distance function from the initial curve. Popular active
contour models that can be expressed in the above form are
• Erosion/Dilation:

F (u) =
1

‖∇u‖
, G(u) = 0, H(u) = c, (28)

• Geometric Active Contours:
F (u) =

1

g‖∇u‖
, G(u) =

1

‖∇u‖
, H(u) = 0, (29)

• Geodesic Active Contours:
F (u) =

1

‖∇u‖
, G(u) =

g

‖∇u‖
, H(u) = β, (30)

where g(x, y) is the edge stopping function defined in (24).
The core of the Finite Element method is that it converts partial differential equations to integral equations that can then be

solved using function approximations. It can be verified that using some simple manipulations, (27) can be converted to an
equivalent integral equation ∫∫

Ω

F (u)
∂u

∂t
φ dxdy = −

∫∫
Ω

G(u)∇u · ∇φdxdy +

∫∫
Ω

H(u)φdxdy (31)

The above form is known as the weak form and it must hold for all functions φ ∈ H1(Ω). H1(Ω) is the Sobolev space
consisting of all functions defined in Ω whose first order derivatives –in the distributional sense– belong to L2(Ω).

The previous steps did not involve any numerical approximation. The original problem was converted to an integral form
that is expected to be equivalent to the original problem. Next, the solution will be approximated using the Galerkin method.
Another main idea of the Finite Element analysis is that it does not discretize continuous differential operators using finite
differences but instead approximates the solution of the equations with functions belonging to finite dimensional subspaces of
H1(Ω). Let Vn be a n-dimensional subspace of H1(Ω) and {φi}ni=1 a basis of Vn. The approximate solution ū can be written
as a linear combination of the basis functions and since the problem is time-dependent, we allow the coefficients of the linear
combination to be functions of time. Thus we have

ū(x, y, t) =

n∑
i=1

ci(t)φi(x, y). (32)

We demand that (31) holds at least for all the functions that belong to the subspace Vn. Since (31) is a linear functional in φ
and {φi}ni=1 form a basis of Vn, this is equivalent to demanding that it holds for each of the basis functions φi. If we use the
fact that

∂ū

∂t
(x, y, t) =

n∑
i=1

ċi(t)φi(x, y), (33)

and substitute in (31) we get
n∑
i=1

ċi

∫∫
Ω

F (ū)φiφj dxdy = −
n∑
i=1

∫∫
Ω

G(ū)∇φi · ∇φj dxdy +

∫∫
Ω

H(ū)φj , j = 1, . . . n. (34)

This is a non-linear system of ordinary differential equations (ODEs) that can be written in the form

A(c)ċ = b(c), (35)
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where A = {Aij} is a n× n matrix that depends on c and b = {bi}n1 , c = {ci}n1 are n-dimensional vectors with

Aij(c) = Aji(c) =

∫∫
Ω

F

(
n∑
k=1

ckφk

)
φiφj dxdy, (36)

and

bi(c) = −
n∑
j=1

∫∫
Ω

G

(
n∑
k=1

ckφk

)
∇φi · ∇φj dxdy +

∫∫
Ω

H

(
n∑
k=1

ckφk

)
φi dxdy. (37)

The initial condition for the above system of differential equations can be obtained from the projection ū(x, y, 0) of u(x, y, 0)
onto the subspace Vn, i.e.

ū(x, y, 0) =

n∑
i=1

〈u(x, y, 0), φi〉φi, (38)

and thus
ci(0) = 〈u(x, y, 0), φi〉, (39)

where 〈·, ·〉 is the usual inner product defined on H1(Ω) with

〈f, g〉 =

∫∫
Ω

fg dxdy +

∫∫
Ω

∇f · ∇g dxdy. (40)

Consider a graph G(V, E). We assume that the graph has a total of n vertices and each vertex vi is a point in Ω and can be
described by its respective planar coordinates (xi, yi). Note that every finite set of points in the plane can be mapped into the
unit square by applying a translation followed by a scaling. Thus if we apply an appropriate geometrical transformation we
can map the set of vertices to a subset of Ω. For each vertex vi ∈ V we choose a function φi that belongs to H1(Ω) with the
following properties:

1) {φi}ni=1 are linearly independent, and
2) for any non-adjacent vertices vi, vj , supp(φi) ∩ supp(φj) = ∅.

We can see that the functions {φi}ni=1 form a basis of some subspace S of H1(Ω). Also, for reasonably smooth functions φi,
supp(∇φi)\supp(φi) is a null set and thus supp(∇φi) ∩ supp(∇φj) is also a null set. Thus we can conclude that if vi and
vj are two non-adjacent vertices of G, then 〈φi, φv〉 = 0 and thus φi, φj are orthogonal.

Proposition 1. For any graph G(V, E) with vi = (xi, yi) ∈ Ω there is at least one set of functions {φi}ni=1 with the properties
1) and 2).

For a proof of this fact we refer the reader to [4].
Next we will describe how we can obtain the solution of (35) on a graph G(V, E) equipped with the functions {φi}ni=1.

First, from (36) we can see that Aij(c) = 0 if vi is not a neighbor of vj . If the number of edges of each vertex is small
compared to the total number of vertices then A(c) is sparse. Additionally the summation in (37) reduces to a summation in
the neighborhood of vi and thus

bi(c) = −
∑

vj∈Ni∪{vi}

∫∫
Ω

G

(
n∑
k=1

ckφk

)
∇φi · ∇φj dxdy +

∫∫
Ω

H

(
n∑
k=1

ckφk

)
φi dxdy, (41)

where Ni is the neighborhood of vertex vi.
For the rest of the analysis the class of graphs will be restricted to the family of Delaunay Graphs and more specifically

the case of Delaunay graphs that are constructed from the Delaunay triangulation of a finite set of points in the unit square.
Delaunay triangulation is a method of dividing the convex hull of a set points into triangles that tends to avoid creating sharp
triangles, a property that ensures good convergence results for the solution of PDEs. For more details about the Delaunay
triangulation and the algorithms used to produce it, we refer the reader to [61]. Images can be thought of as a special case
of Delaunay graphs with the vertices being the pixels of the image. In the case of graphs, the image function I is defined as
in Section I, i.e. only on the vertices of the graph. For the case of the image gradient ∇I , however, since we will be using
numerical integration, it is more convenient to define it as a 2-D function defined on Ω. This function is piecewise constant
in each triangle of the triangulation and its value is the gradient of the plane that is formed by the values of I in the three
vertices of the triangle. Similarly, g = g(‖∇I‖) will also be constant in each triangle of the triangulation.

Let G(V, E) be a Delaunay graph and {Ti}mi=1 the triangles of the Delaunay triangulation. Kolotouros and Maragos [4]
approximate the solution with a function belonging to the space of continuous functions on Ω which are linear in each triangle
of the triangulation. We will denote this space as Slin. More formally

Slin = {f ∈ C(Ω) : f |Ti= aix+ biy + ci, for i = 1, . . . ,m}. (42)
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This choice of subspace provides good convergence properties and also simplifies calculations as we shall see later on. After
the selection of the subspace we have to choose a basis of Slin. A possible choice satisfying the aforementioned properties
are the pyramid functions. For each vertex vi of the graph we define the function φi as
• φi(vi) = 1.
• φi(vj) = 0, for j 6= i.
• φi is linear in each triangle.

It is easy to verify that supp(φi)∩ supp(φj) = ∅ if vi is not a neighbor of vj and φi ∈ Slin. It can also be proven that {φi}ni=1

are linearly independent and thus form a basis of Slin. In Fig. 6a we can see the form of the φi functions for the case of a
rectangular grid. With this choice we can see that φi overlaps only with the 6 other φj that correspond to the vertices vj that
are adjacent to vi. Thus each row of A contains at most 7 non zero elements and at the same time only 7 different coefficients
ci appear in these expressions. We can think of φi as functions that interpolate discrete data in a rectangular grid. Assume
for example that we have samples of a 2D function f at n points (xi, yi) on the plane. By creating the Delaunay graph that
corresponds to the above set of points we can construct a continuous function f̄ that approximates f as

f̄(x, y) =

N∑
i=1

f(xi, yi)φi(x, y). (43)

From the above construction and the properties of φi, it is easy to verify that f̄(xi, yi) = f(xi, yi) and in each triangle of the
triangulation it essentially performs a form of linear interpolation. In Fig. 6b we can see an example of an interpolation of
discrete data in a rectangular grid.

(a) (b)

Fig. 6. (a) Pyramid function φi centered in node vi for a rectangular grid. (b) Interpolation of discrete data in a 4×4 rectangular grid using the φi functions.
With solid circles we represent the original discrete data

The final remaining step is the discretization in time. For a system of ODEs we have several options for the approximation
of derivatives, each one with its advantages and disadvantages and the choice of a particular method depends on the specific
properties of each problem. We want to calculate the solution in a subset of the time interval [0,+∞) starting from the initial
condition until we reach convergence. Let tk, k ≥ 0 be the sequence of time points at which we calculate the solution with
t0 = 0 and tk = k∆t. Here we assume that we use a fixed time step ∆t. Also with ck we will denote the approximation of
c(tk). Kolotouros and Maragos [4] used the explicit Euler method which approximates the time derivative with the forward
difference

ċ(tk) =
ck+1 − ck

∆t
. (44)

If we substitute this into (35) we obtain

A(ck)ck+1 = A(ck)ck + ∆t · (ck). (45)

This reduces to solving a linear system for each time step. This method is easy to implement but puts limits on the choice of
time step ∆t. It is necessary to choose a very small time step—often in the order of 1/n2—to ensure that the curve evolution
is stable.

Kolotouros and Maragos [4] also provide an analysis of the complexity of the presented algorithm. For the sake of simplicity
let us consider the case of the Delaunay graphs that correspond to images, with the graph structure depicted in Fig. 6a. We
assume that we have a h × w image. The resulting graph will have a total of n = hw vertices. Since each row of A
contains at most 7 nonzero elements, A(ck) can be computed in linear time in each time step. Also due to its sparsity, matrix
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Fig. 7. Illustration of active points for a Delaunay graph with 100 vertices. Blue nodes: Vertices outside the contour. Black nodes: Vertices inside the contour.
Yellow nodes: Vertices on the contour. Nodes with red boundary: Active points

multiplication can be performed in linear time. Observing that b(ck) can also be computed in linear time, the right hand side
needs O(n) time in each step. With an appropriate node labeling, A(ck) takes the form of a band matrix with a band length
of min(h,w) = O(

√
n). For a n×n band matrix with band length d the solution of a linear system needs O(nd2) operations.

So O(n2) operations are required in each time step, which is prohibitive for large images. As far as the time evolution is
concerned, the total number of steps until convergence cannot be specified a priori, since it depends on the shape and position
of the initial curve. If the initial curve is close to the object boundaries, only a few time steps are needed until convergence.

B. Locally Constrained Contour Evolution

In this part we present an extension of the previous framework to solve curve evolution models of the form

F (u)
∂u

∂t
= δε(u) (div (G(u)∇u) +H(u))

∇u · n = 0 on the boundary ∂Ω

u(x, y, 0) = dist∗(x, y).

(46)

where δε(x) is an approximation of the Dirac δ function, with δε → δ, as ε → 0. A typical choice for δε is the piecewise
constant approximation

δε(x) =

{
1/ε, |x|≤ ε,
0, |x|> ε

. (47)

The term δε constrains the curve evolution in a small area near the current position of the curve, i.e. the 0-level set. One
popular active contour model that can be represented using (46) is the ACWE model of [6].

The first part of the discussion will involve showing how (46) can be approximated on graphs. Define the sets

U+
t = {(x, y) ∈ V : u(x, y, t) > 0}, (48)

U−t = {(x, y) ∈ V : u(x, y, t) < 0}, (49)

U0
t = {(x, y) ∈ V : u(x, y, t) = 0}. (50)

U+
t , U−t and U0

t are the set of points that are outside, inside and on the curve at time t. Also we define the set of active points
at time t as

U∗t = ∂U+
t ∪ ∂U−t ∪ U0

t , (51)

where ∂S denotes the boundary of the set S ⊆ V and is defined by

∂S = {v ∈ S : ∃v′ ∈ V\S s.t. v′ ∼ v}. (52)

The set of active points represent the points that are within “unit” distance from the current position of the active contour.
Fig. 7 depicts visually how the active points are computed.
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Then—up to a positive scaling factor—δε(u) can be approximated on G at time t with

δGt (v) ∼

{
1, if v ∈ U∗t
0, elsewhere.

(53)

Using the above definition, the evolution equation for (46) can be approximated as

Ã(c)ċ = b̃(c), (54)

where Ã(c) is a n× n matrix with

Ãij(c) =


Aij(c), if vi ∈ U∗t
1, if vi /∈ U∗t and j = i

0, elsewhere
,

and b̃(c) a n-dimensional vector with

b̃i(c) =

{
bi(c), if vi ∈ U∗t
0, elsewhere

. (55)

It is easy to observe that for all non-active vertices vi, ċi = 0 and thus the curve evolution is indeed constrained at the subset
U∗t .

The above formulation will help us reduce significantly the computational complexity of each time step. Consider the explicit
Euler approximation of (54)

Ã(ck) (ck+1 − ck) = ∆tkb̃(ck). (56)

For all vertices vi that are not in the set of active points (ci)k+1 − (ci)k = 0. So, for all vi ∈ U∗t , (ci)k+1 does not depend
on the values (cj)k, where vj /∈ U∗tk . Thus the corresponding values Aij(ck) have no influence on the solution of the linear
system, so they can be set to 0. Let A∗k be a |U∗tk |×|U

∗
tk
| submatrix of Ã(ck) that is constructed by keeping only the elements

Aij with vi and vj ∈ U∗tk . Similarly b∗k is a |U∗t |-dimensional vector that is derived from b(ck) by discarding all the elements
vi with vi /∈ U∗t . If we set ∆ck = ck+1 − ck and ∆c∗k = I∗k∆ck, where Ik is the |U∗tk |×n projection matrix with Iii = 1 and
Iij = 0 if i 6= j then we get the equivalent linear system

A∗k∆c∗k = ∆tkb
∗
k. (57)

After computing ∆ck from (57) the update rule for the coefficients c in matrix notation becomes

ck+1 = ck + IT
k∆c∗k. (58)

Most level set evolution models require re-initialization of the embedding function to ensure correct results and there have been
several approaches to alleviate this need, as in [62]. In this framework we avoid the need for re-initialization in an indirect
way; to ensure the stability of the numerical method and make it possible to use large time steps, we normalize the embedding
function after each time step. Specifically, ū(x, y, t) and consequently the vector of coefficients ck is saturated outside the
interval [−r, r]. A typical choice of r is r = max|u0(x, y)| or equivalently r = max|c0|. With the use of normalization we
can choose a time step ∆tk ∼ 1/N , which is significantly larger than the time step used for the solution of (27). A similar
approach cannot be adopted for the solution of the full evolution equation because in each time step the evolution domain
covers the whole graph and although the embedding function will be bounded, large time steps will produce noisy artifacts.

As in the previous section, Kolotouros and Maragos [4] provide an estimate for the computational complexity of the proposed
algorithm for the case of Delaunay graphs that correspond to images. For a h × w image with n pixels, each of U+

tk
, U−tk

and U0
tk

is the union of a number of 1D curves. Generally, typical 1D curves in an image grid with n pixels contain O(
√
n)

pixels. Thus, in almost all practical cases U∗tk will contain O(
√
n) pixels. Since the number of edges in the planar Delaunay

graph is bounded by 3n − 6, a naive calculation of U∗tk using the definitions of its components requires O(n) operations.
Additionally, it is easy to verify that given the set of active points, the elements of A∗k and b∗k can be computed in O(n) time.
Since A(ck) is a sparse band matrix, A∗k will also be a band matrix, but its band length can often be O(|U∗tk |). However,
using the Reverse Cuthill-McKee algorithm [63] which can be implemented in O(|U∗tk |) time we can obtain a permuted matrix
with a band length of O(

√
|U∗tk |) on average. Thus the solution of the constrained linear system is expected to require O(n)

operations. Consequently, we have shown that on average, each time step of the algorithm requires O(N) operations. If we
compare this result with the number of operations required for the full curve evolution, we can see that the constrained curve
evolution algorithm is faster by an order of magnitude. Its linear complexity with respect to the number of graph vertices
makes it feasible to be used in practical applications.

These results point towards a fast implementation of general active contour models that can take the form of (27). The level
set-based approach enables us to handle topological changes in the curve in a solid and efficient manner, but introduces an
extra computational burden, because we have to evolve a 2D function instead of a curve. The answer to this problem is to try
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to limit our focus in a small area of interest near the curve—often referred as band—and evolve the embedding function in
this subset of the image. Similar methods, called narrow-band methods, were described for the case of images in [64]–[66].
Instead of evaluating the curve evolution on the whole graph, the curve evolution is constrained in a small band near the curve.
This approximation is based on the assumption that the embedding function evolves in such a way that points outside or inside
the curve will not change status, at least until the moment that the active contour reaches them. The above assumption is valid
for the majority of active contour methods, such as simple Erosion/Dilation as well as the Geometric and Geodesic Active
Contours.

V. EXPERIMENTAL RESULTS

Using the graph-based approximations of the main differential terms of active contour models with level sets, Sakaridis et
al. [3] apply finite difference-based algorithms to solve the respective PDEs that define these models on arbitrary graphs. The
input comprises a graph G = (V, E) and an image function I , as specified in Section I. The two representative active contour
models which are used to develop these algorithms are the GAC model [5] presented in (1) and the ACWE model [6] presented
in (2). We first present the GAC algorithm and corresponding results and then proceed to ACWE.

The finite difference algorithm of [3] for GACs on graphs includes the following steps:
1) Compute g(‖∇Iσ‖), using either (25) and (14) or (26) to compute ‖∇Iσ‖. In both cases, median filtering is applied to
‖∇Iσ‖ before plugging it into (24) for computing g. Then, compute the magnitude of g’s gradient using (14) and its
direction using (7).

2) Choose a subset X of V which contains the objects to be segmented and initialize the embedding function with the
signed distance function from the boundary of X , denoted by u0. By convention, u0 is positive inside X .

3) Iterate for r ∈ N
ur = ur−1 + ∆t((κ− c) ‖∇ur−1‖ g +∇g · ∇ur−1) (59)

until convergence. In the difference equation (59), ∆t and c are positive constants and κ is the estimated curvature of
the level sets of ur−1 using (20). The direction of ∇ur−1 is computed with (7) and its magnitude with (14). Median
filtering is applied both to κ and ∇ur−1 before using them in (59).

In practice, after each iteration of step 3 of the algorithm, ur is smoothed with a median filter before proceeding to the next
iteration. The parameters involved in the algorithm are the time step ∆t of the difference equation, the balloon force constant
c, the scale σ of the Gaussian smoothing filter and parameter λ of the stopping function g (24). Tuning their values depending
on the input at hand is pivotal in obtaining satisfactory segmentation results. In the following experiments of Section III,
∆t = 0.005 and c = 2 unless otherwise specified.

A simple analysis of the computational complexity of each iteration (59) of the algorithm by examining each term on the
right-hand side of (59) and aggregating the individual contributions of all terms shows that the total complexity of each iteration
is Θ(n+m), which is linear in the number of vertices and in the number of edges.

We first discuss and experimentally explore the practical aspect of graph construction when applying such graph-based
algorithms on arbitrarily spaced data as well as regular pixel grids. In the case of arbitrary graphs, the raw input often consists
only of V and I , without any information about the edges. This setting leaves us free to choose the type of edge structure
of the graph. Sakaridis et al. [3] experiment with two types: RGGs and Delaunay triangulations (DTs) [13]. In the case of
regular images on a grid, graph-based active contour methods are still relevant, since the input image can be sampled at a
number of arbitrary locations that will serve as the vertices. This brings us to the previous setting where edges can be defined
freely. A baseline for such sampling is to place vertices uniformly at random on the image domain. A more sophisticated
strategy is to extract vertex locations via watershed transformation. In particular, watershed transformation is applied directly
to the gradient of the image and the vertices are placed at the centroids (ultimate erosions) of the resulting superpixels. For the
grayscale image with four distinct coins in Fig. 8(a), we compare the results of the GAC algorithm of [3] for all four possible
combinations of the aforementioned vertex placement strategies (random, watershed) and choices of edge structure (RGG, DT)
in Fig. 8(c)–(f). To ensure a fair comparison, the number of randomly placed vertices is approximately the same as in the
watershed case. The most accurate segmentation is achieved with DT and watershed-placed vertices (Fig. 8(f)). Moreover, DT
consistently outperforms RGG and watershed-based vertex placement outperforms random placement. Consequently, the DT
edge structure is preferable to the random geometric one and usage of watershed transformation to place vertices when a full
image is available is preferable to random placement, as it captures image particularities into the spatial structure of the graph.
In the rest of the experiments of [3] that are presented in this section, construction of the graphs follows these choices.

Figure 9 presents results of the algorithm of [3] for GACs on graphs on two natural color images coming from the Berkeley
Segmentation Dataset BSDS500 [67]. The images were converted to grayscale for applying the algorithm. In general, the
algorithm segments the dominant objects in the images successfully, even though background clutter and thin protrusions or
concavities of the objects’ boundaries sometimes cause minor inaccuracies.

An interesting application of the examined graph segmentation framework is related to geographical data, where the two
spatial coordinates are longitude and latitude and the image function can encode information about any type of real-valued
signal defined at the vertices of the graph. Such a signal is the signal strength of a cellular network, such as that shown in
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Fig. 8. Segmentation of grayscale objects on graphs with the GAC algorithm of [3]. (a) Full grayscale image with four coins (b) image function on watershed-
based DT (c)–(f) final segmentation results overlaid on original image, with segmented objects shown in red and background in blue. We use (c) randomly
placed vertices with random geometric structure, σ = 0.02 and λ = 0.03, (d) randomly placed vertices with DT structure, σ = 0.02 and λ = 0.03, (e)
watershed-placed vertices with random geometric structure, σ = 0.008 and λ = 0.07, and (f) watershed-placed vertices with DT structure, σ = 0.01 and
λ = 0.07. The total number of iterations to obtain the final segmentation result is (c) 2200, (d) 4000, (e) 3000 and (f) 4000. Figure source: [3].

(a) (b)

Fig. 9. Segmentation of images from BSDS500 dataset with the GAC algorithm of [3]. The detected boundary, marked white, is defined as the boundary of
the union of the watershed superpixels for which the corresponding graph vertex belongs to the final contour’s interior. We use σ = 0.005 and λ = 0.03 in
(a), and σ = 0.01 and λ = 0.02 in (b). The total number of iterations to obtain the final segmentation result is (a) 3400 and (b) 5600. Figure source: [3].
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Fig. 10. Segmentation of signal strength data of a cellular network on a graph with the GAC algorithm of [3]. (a) Normalized data on graph (b) Smoothed
signal strength (c) Initial contour (d) Final segmentation result after 40000 iterations, with vertices in the contour’s interior shown in red and the rest in blue.
Figure source: [3].

Fig. 10(a). The coordinates and the values of signal strength are normalized and a very small time step ∆t = 10−4 is used to
guarantee convergence, which requires more iterations until termination than in the previous experiments. Other parameters are
set as σ = 0.03, λ = 0.02 and c = 20. The segmented set of vertices in Fig. 10(d) using the GAC algorithm of [3] comprises
two regions, the southern of which is characterized by an increased signal strength compared to the rest of the graph. The
graph segmentation framework with active contours is tailored for geographical data with arbitrary spatial configuration such
as the above case, which grants greater flexibility when collecting measurements.

At this point, we present a short theoretical and experimental comparison between the finite difference-based GAC algorithm
of [3] that was presented previously and the finite element method (FEM) for GACs on graphs that is developed by Kolotouros
and Maragos [4] and is detailed in Section IV. Even though the algorithm of [4] inherits the advantages of the well-established
framework of finite elements, the finite difference algorithm of Sakaridis et al. [3] features greater generality and lower
computational complexity per iteration. On the other hand, the FEM algorithm of [4] achieves slightly better segmentation
results in practice.

In particular, the finite difference framework of [3] is applicable for any type of connectivity pattern defined through the
set of edges E of the input graph. For instance, when E is given as part of the input and models connections of vertices
that follow an arbitrary, non-local pattern which is known a priori, the framework of [3] is still relevant. On the contrary, the
FEM framework of [4] only applies to triangulations; notably, it cannot handle the aforementioned case with arbitrary edge
structure, or other commonly used types of graphs such as k nearest neighbor graphs or RGGs. Furthermore, in the case of
triangulations, the complexity of each iteration of the finite difference-based GAC algorithm is O(n), i.e. linear in the number
of vertices n (which follows from the general Θ(n + m) complexity and planarity of triangulations), whereas the respective
complexity of each iteration of the FEM-based GAC algorithm is O

(
n2
)
, i.e. quadratic in n.

In Fig. 11 we compare the two approaches on the coins image and an image from BSDS500 [67]. The graphs are formed
as DTs with watershed-placed vertices. Whenever possible, we use the same or at least similar parameter values for the
two approaches, so that a fair comparison is ensured. The results of the finite difference GAC algorithm are presented in
Fig. 11(a) and (c) and the respective results of the FEM GAC algorithm are presented in Fig. 11(b) and (d). The two methods
demonstrate similar overall performance on both images, with the FEM algorithm producing slightly more accurate boundaries
in challenging cases such as the bird’s tail.

We now proceed to the presentation of the ACWE algorithm of [3] and related results. The finite difference algorithm of [3]
for ACWE on graphs includes the following steps:

1) Choose a subset X of V and initialize the embedding function with the signed distance function from the boundary of
X , denoted by u0. By convention, u0 is positive inside X .

2) Iterate for r ∈ N:
c1 = average {I(v) : ur−1(v) ≥ 0} , c2 = average {I(v) : ur−1(v) < 0} , (60)
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Fig. 11. Comparison between the finite difference GAC algorithm of [3] and the FEM GAC algorithm of [4]. For the coins image, the foreground is shown
in red and the background in blue and we use σ = 0.01 and λ = 0.07 for both methods. (a) The result of [3] after 4000 iterations (b) The result of [4] after
301 iterations, using c = 10 and ∆t = 0.001. For the bird image, the detected boundary is marked white and we use σ = 0.005 for both methods. (c) The
result of [3] after 4400 iterations, using λ = 0.05. (d) The result of [4] after 4001 iterations, using λ = 0.07, c = 10 and ∆t = 0.001. Figure source: [3].

ur = ur−1 + ∆t
(
δε (ur−1)

(
µκ− ν − λ1(I − c1)

2
+ λ2(I − c2)

2
))

(61)

until convergence. In the difference equation (61), ∆t, ε, µ, ν, λ1 and λ2 are positive constants and κ is the estimated
curvature of the level sets of ur−1 using (20). Moreover, δε is the derivative of a regularized version of the Heaviside
function which was introduced in [6] as:

δε(x) = H ′ε(x) =

(
1

2

(
1 +

2

π
arctan

(x
ε

)))′
=

ε

π (x2 + ε2)
. (62)

The standard ACWE model is modified in [3] for color images, so that it uses all three color channels instead of reducing
the image to a simpler grayscale version. In order for the averages and Euclidean distances to be meaningful, the original RGB
values of the vector-valued image function I at graph vertices are transformed to CIELAB values, as the latter color space is
more perceptually uniform. The update equations are modified to operate on multiple color channels:

c1 = average {I(v) : ur−1(v) ≥ 0} , c2 = average {I(v) : ur−1(v) < 0} (63)

and
ur = ur−1 + ∆t

(
δε (ur−1)

(
µκ− ν − λ1 ‖I− c1‖2 + λ2 ‖I− c2‖2

))
. (64)

In Fig. 12, we present results that are analogous to Fig. 8(f) and Fig. 9(a) and (b) by replacing the GAC algorithm with
the ACWE algorithm and demonstrate the utility of the geometric approximations proposed in [3] for successfully translating
various active contour models to graphs. For the color images from BSDS500 in Fig. 12(a) and (c), the modification of ACWE
in (63) and (64) is used. The segmentation results are of high quality, e.g. capturing the thin feathers at the eagle’s wing very
precisely.

Last we present some additional qualitative results when applying the FEM framework for solving more complicated active
contour models. Kolotouros and Maragos [4] presented Region-based Geodesic Active Contours (RBGAC), an interactive
segmentation algorithm where the users have to specify some initial markers for the foreground and background and then the
algorithm iterates between expanding and shrinking contours to compute the segmentation. An example use of this method can
be seen in Fig. 13. Also in Fig. 14 we depict a quantitative comparison between RBGAC and several other popular interactive
segmentation algorithms.
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(a)

(b)

(c)

Fig. 12. Segmentation of images with the ACWE algorithm of [3]. (a), (c) Images from BSDS500 with detected boundaries marked white (b) Coins image
with detected foreground shown in red and background in blue. We use ∆t = 0.05, ν = 0, λ1 = λ2 = 1 and ε = medianvw∈E{d(v, w)} in all cases,
µ = 0.1 in (a) and µ = 0.5 in (b) and (c). The total number of iterations to obtain the final segmentation result is (a) 1000, (b) 7000 and (c) 2000. Figure
source: [3].

Fig. 13. Illustration of RBGAC algorithm. Left column: Images and seeds. The red curves are the initial contours and the blue polygons mark the regions
of interest. Right column: Segmentation results.

VI. CONCLUSION

In this chapter, we have delineated two approaches to translate level set-based active contour models to the general case
of arbitrary graphs, using either finite differences [2], [3] or the finite element method [4] for the required discretization of
the employed PDEs. We have overviewed the approximations introduced in [3] for the gradient and curvature terms in active
contour models for 2D graphs with arbitrary vertex and edge configuration and presented the main theoretical results of [3]
regarding asymptotic consistency and accuracy of these approximations for the class of random geometric graphs. In addition,
a detailed presentation of the formulation of the finite element method that is proposed in [4] for the approximate solution of
active contour PDEs through discretization on arbitrary 2D Delaunay triangulations has been provided. The effectiveness of
the two examined methods has been demonstrated experimentally by using them to apply the popular GAC and ACWE models
on regular as well as arbitrary graphs and successfully segment regular images as well as unorganized 2D geographical data.

Although the framework of [3] applies to any type of graph, the presented theoretical analysis considers random geometric
graphs, whose definition simplifies convergence proofs for the proposed approximations. However, judging from segmentation
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Fig. 14. Segmentation Results. Columns 1-5: GrabCut Dataset. Columns 6:9: grabcut Dataset. From top to bottom: Ground Truth, segmentation results from
GrabCut, Laplacian Coordinates, Power Watershed, ACWE and RBGAC. Figure source: [4].

quality, more regular graph structures, such as Delaunay triangulations, lead to more accurate results. Therefore, an interesting
direction in this line is the theoretical study of the approximations of [3] on graphs formed as Delaunay triangulations, ideally
establishing similar asymptotic consistency results to those shown in [3].

Last but not least, both methods [3], [4] are formulated for the case of 2D graphs. While this type of input is sufficient
to model signals such as regular images and geographical profiles, there are several areas of application that involve signals
defined in higher-dimensional—often 3D—Euclidean spaces, including medical image processing and geology. Thus, it is
worth generalizing the above methods to more dimensions. For the approach of [3] in particular, this requires generalizing the
approximation formulae for gradient and curvature. With regard to gradient, the main challenge is the calculation of neighbor
angles (cf. (5)) in higher dimensions. For each vertex v, this would involve the calculation of solid angles which are induced
by the Voronoi tessellation of the ambient d-dimensional space that is defined by the set of neighbors N (v), analogously
to Fig. 1. The general formula of [68] for measuring simplicial solid angles in Euclidean spaces of arbitrary dimensionality
would likely have to be utilized to this end. As far as curvature is concerned, the quantity of interest is the mean curvature
and we foresee that the geometric type of approximation we highlighted in Section III-B will require meticulous calculations
in order to be extended to more dimensions, whereas the gradient-based approximation we briefly mentioned, which uses the
differential definition of divergence, is easier to extend.
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