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TABLE 1
Training details for UDA semantic segmentation methods in
Cityscapes—ACDC adaptation. “SSL rounds”: number of training
rounds that include supervision from pseudo-labels; if not relevant for a
method, — is reported. “Training iterations”: number of SGD iterations
for each training round (number of epochs for each training round is
alternatively reported).

Method SSL rounds Training iterations
AdaptSegNet - 95k
ADVENT - 80k

BDL 0 80k
CLAN - 90k

CRST 3 2 epochs
FDA 1 80k

SIM 1 80k
MRNet 1 50k

TABLE 2

Training details for UDA semantic segmentation methods in
Cityscapes—ACDC adaptation for individual conditions. “SSL
rounds”: number of training rounds that include supervision from
pseudo-labels; if not relevant for a method, — is reported. “Training
iterations”: number of SGD iterations for each training round.

Method SSL rounds Training iterations
AdaptSegNet - 40k
ADVENT - 40k
BDL 0 40k
CLAN - 40k
FDA 1 40k
SIM 1 40k
MRNet 1 40k
APPENDIX A

TRAINING DETAILS

We provide the detailed training configurations for the various
methods for semantic segmentation that have been used in Sec. 4
of the paper and for the method in [1] for uncertainty-aware
semantic segmentation that has been used in Sec. 5 of the paper.

TABLE 3
Training details for supervised semantic segmentation methods

on ACDC.

Method Base LR Training epochs

RefineNet 5 x 1072 60

DeepLabv2 2.5 x 1074 60

DeepLabv3+ 1074 60

HRNet 10" 60

AA
A 1.1

Normal-to-Adverse Adaptation
Domain adaptive semantic segmentation

For the comparison in Table 2, we use as source-domain model
the DeepLabv2 [5] model that is used as the Cityscapes oracle
in AdaptSegNet [43], with a performance of 65.1% mloU on
the Cityscapes validation set. For all eight unsupervised domain
adaptation (UDA) methods that are compared, we use their default
training configurations, including the learning rate schedule and
the weights of the various losses. The number of training iterations
run for each method as well as the number of self-supervised
learning rounds that are used by some of the methods are reported
in Table 1. For FDA, SIM and MRNet, we run a first training
round without self-training followed by a second training round
with self-training, as per default implementation of these methods.
For FDA, we train three separate models in each training round,
one for each different value of the [ parameter from the set
{0.01, 0.05, 0.09}, and use the average prediction of the three
models at test time. In all cases, we use the model weights
corresponding to the final training iteration for testing.

The same source-domain model is also used for the experi-
ment on adaptation to individual conditions presented in Table 3.
Again, we use the default training configurations for all examined
methods and across all four conditions. The number of training
iterations run for each method to adapt to each condition as well
as the number of self-supervised learning rounds that are used by
some of the methods are reported in Table 2. For MRNet and fog,
the self-supervised training round includes 35k iterations instead
of 40k. In addition, for MRNet and rain, the first training round
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TABLE 4
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes—ACDC adaptation for
fog. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.

2 £ 2 = 8 =2 = g © § = B B . % gz =5 £ 3B
Method E .‘Lg’ g § § g o o éo E < é 2 s g 2 g g g mloU
Source model 66.4 31.2 268 229 18.6 8.2 323 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 343 183 423 29.0 335
AdaptSegNet 35.4 459 354 256 17.5 9.0 325 23.1 705 474 11.6 223 282 444 439 350 46.0 156 150 31.8
ADVENT 442 389 264 207 20.1 79 344 236 70.7 356 83 17.3 435 60.0 48.6 46.8 40.5 199 17.6 329
BDL 369 37.8 47.0 28.2 21.6 13.7 372 345 672 494 27.6 29.1 513 585 494 51.8 303 214 225 377
CLAN 488 41.3 29.6 272 21.0 16.1 41.1 39.6 67.7 50.2 154 36.2 30.8 72.2 522 544 472 27.1 22.6 39.0
FDA 68.8 373 27.1 27.6 19.8 21.6 37.5 433 749 437 33.1 350 215 657 44.6 453 47.1 415 158 39.5
SIM 76.7 43.1 235 236 179 109 32.1 153 704 50.5 21.4 348 443 584 50.5 552 347 230 88 36.6
MRNet 78.6 26.1 19.6 29.0 13.5 12.0 41.9 49.0 782 59.0 6.6 39.8 26.1 72.5 448 379 59.6 19.1 24.1 38.8
Oracle 89.9 65.6 81.2 39.1 259 28.1 459 47.7 83.0 674 96.7 352 384 735 46.1 29.8 379 284 316 522
TABLE 5

Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes—ACDC adaptation for
nighttime. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.

B. — 15 - - E = = -~ » =] 8 =
Method g 3 E g E i ) §° %1) g _E‘ % %’ g 8 B 'g g % mloU
17 - > - o, = =) B
Source model 77.0 22.9 563 13.5 92 238 229 256 414 16.1 2.9 441 175 64.1 11.9 345 424 226 227 30.1
AdaptSegNet 84.9 399 66.8 17.2 17.7 134 17.6 164 39.6 16.1 57 428 214 448 119 13.0 39.1 275 284 29.7
ADVENT 86.5 453 60.8 232 125 154 18.0 194 412 183 27 438 213 61.6 126 19.1 43.0 30.2 276 31.7
BDL 87.1 49.6 68.8 202 17.5 167 199 24.1 39.1 237 02 420 204 63.7 18.0 27.0 456 27.8 31.3 33.8
CLAN 82.3 288 659 151 9.3 221 16.1 265 39.2 234 04 459 254 636 95 242 398 315 31.1 31.6
FDA 82.7 394 57.0 147 7.6 26.1 37.8 305 532 140 153 48.0 288 62.6 26.6 47.5 515 27.0 350 37.1
SIM 87.0 484 42.1 63 83 158 84 176 21.7 228 0.1 393 22.1 603 87 182 423 30.1 329 28.0
MRNet 83.6 363 65.6 81 82 215 30.0 23.7 394 242 00 44.1 260 649 08 36 76 103 31.8 279
Oracle 90.5 63.7 78.0 30.0 29.6 329 37.0 412 619 252 753 479 234 69.5 2.7 154 603 39.7 379 454
TABLE 6

Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes—ACDC adaptation for
rain. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.

= B = = 8 o . o o g = 5 v " = o K>

Method < Q — = — = 9] < > 3 = Q 4 B= g Q IoU
etho e = 3 g E g B .2 %0 E 4 g B S g2 B g c g» mlo

Source model 71.2 26.7 73.8 20.8 27.1 299 393 444 873 252 820 42.0 143 76.2 363 26.6 49.8 303 422 445
AdaptSegNet 81.2 432 833 27.3 314 23.0 41.4 405 872 350 93.1 402 155 739 457 349 57.0 27.1 49.1 49.0
ADVENT 77.0 31.0 525 350 342 234 421 41.0 853 342 26.7 413 14.1 75.6 473 404 643 29.6 46.2 443
BDL 79.1 39.0 82.8 30.0 34.5 28.1 40.1 473 87.0 287 91.8 40.6 17.8 74.6 463 36.7 604 332 463 49.7
CLAN 77.5 400 46.8 249 303 28.1 37.7 483 838 37.0 6.6 457 174 79.7 437 429 63.7 350 46.1 44.0
FDA 76.6 45.0 829 37.0 35.6 34.8 49.8 52.0 88.77 37.8 88.8 43.6 174 76.8 46.5 53.6 64.8 345 455 533
SIM 76.6 29.6 8577 20.4 287 213 374 342 873 348 94.0 294 166 732 46.1 223 462 21.8 393 445
MRNet 705 99 46.5 35.6 36.1 365 564 562 902 413 43 530 235 81.6 393 267 57.8 43.6 545 454
Oracle 87.3 639 89.0 50.3 40.6 384 522 534 892 422 96.7 51.5 13.0 819 479 472 722 29.1 488 57.6

without self-supervised training includes 25k iterations instead of
40k.

A.1.2 Domain adaptive object detection

For the comparison in Table 5, we use the representative FCOS
and Faster R-CNN as the source-domain models for object de-
tection. For a fair and consistent comparison, each model is

trained with a ResNet-50 backbone. For all compared UDA obejct
detection methods, we use their default training configurations for
Cityscapes to Foggy Cityscapes adaptation task as it is a common
normal-to-adverse setting in existing UDA object detection works.
All hyperparameters including the learning rate scheduling, the
loss weights and the training iterations are consistent with the
original configurations. Following SIGMA [33], we use the ACDC
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TABLE 7
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes—ACDC adaptation for
snow. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.

2 £ 2 = 8 =2 = g © § = B B . % gz =5 £ 3B
Method E _.é’ g § § g o 2 éo E < é 2 s g 2 g g g mloU
Source model 68.5 26.6 52.7 18.8 269 222 357 40.7 76.5 3.6 499 504 27.1 73.7 27.6 39.1 609 21.1 42.5 402
AdaptSegNet 51.3 32.5 473 21.5 31.5 13.2 37.8 232 760 2.6 45 499 23.1 687 38.3 31.8 51.5 21.7 450 353
ADVENT 50.8 24.8 46.2 155 26.0 155 279 23.0 700 2.1 95 442 253 685 229 249 50.1 239 389 32.1
BDL 423 364 602 157 304 15.1 414 304 713 17 112 46.8 27.8 577 38.6 34.1 592 28.1 437 364
CLAN 71.8 26.0 373 125 27.0 21.1 32.0 41.1 785 19 0.9 509 239 824 432 39.5 61.6 252 394 37.7
FDA 74.6 309 56.1 20.5 34.8 287 539 478 80.5 1.1 559 53.1 379 79.7 405 519 67.4 343 41.8 469
SIM 72.1 26.7 394 133 295 153 264 179 764 48 5.1 459 320 762 298 26.6 48.3 232 242 333
MRNet 67.7 3.5 36.8 83 248 18.0 526 554 824 05 0.1 622 302 792 32.1 593 584 29.1 35.8 38.7
Oracle 89.1 61.7 82.7 264 409 355 56.5 54.1 852 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
TABLE 8

Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes—ACDC for fog. The first and
second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is
also reported.

8 o) % 42 g s % b. b.
Method 2 3 g = 2 g g = APES® APboz

a B . - £ s
Source model (Faster R-CNN) 18.2 10.7 46.2 16.8 30.3 12.3 15.6 7.1 19.7 10.8
DA-Faster 8.1 8.9 51.5 13.0 24.6 12.3 12.5 7.3 17.3 9.0
SADA 233 39 60.8 11.7 24.9 8.2 16.6 6.7 19.5 10.0
MIC (SADA) 31.3 19.2 64.8 10.3 16.1 16.7 27.3 12.6 24.8 12.4
FRCNN-SIGMA++ 19.1 14.4 54.8 16.7 33.1 22.6 16.6 8.4 23.2 12.2
Oracle 27.5 13.1 58.5 29.8 41.0 26.6 22.7 12.1 28.9 16.4
Source model (FCOS) 29.9 12.4 53.0 18.8 33.9 11.7 12.7 3.2 22.0 12.9
EPM 28.4 9.7 56.3 16.7 33.8 11.1 14.1 8.6 22.3 12.3
SIGMA 32.1 16.7 59.2 17.9 25.1 17.7 27.3 7.0 25.4 14.2
Oracle 30.4 12.2 64.8 26.7 32.0 23.6 29.4 9.5 28.6 16.9

TABLE 9

Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes—ACDC for nighttime. The first
and second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is
also reported.

8 g % ] - g % box box
Method g B 5 g k= g ] 2 APZE AP

=3 - £ B
Source model (Faster R-CNN) 19.0 17.0 27.3 32 28.3 8.1 34 8.8 14.4 7.2
DA-Faster 15.1 14.5 20.1 2.1 133 8.4 3.8 15.2 11.6 53
SADA 34.7 23.7 37.0 2.8 15.2 6.3 6.5 17.1 17.9 7.8
MIC (SADA) 26.6 21.1 34.0 53 27.8 53 7.5 19.1 18.4 8.9
FRCNN-SIGMA++ 24.5 24.0 41.7 10.1 40.4 16.9 6.6 214 23.2 11.1
Oracle 28.7 28.9 51.0 11.1 315 329 14.6 243 27.9 14.1
Source model (FCOS) 235 15.9 25.9 2.5 26.8 6.7 55 8.8 144 7.2
EPM 25.1 15.4 29.8 1.9 30.5 9.5 39 9.2 15.7 7.8
SIGMA 29.9 18.8 38.2 1.5 332 52 8.2 132 18.5 9.3
Oracle 39.0 30.2 54.2 3.6 394 28.9 15.2 19.1 28.7 15.1

validation set for each condition to select the model weights for
testing.

A.2 Supervised Learning on Adverse Conditions
A.2.1 Supervised Semantic Segmentation

For training the four semantic segmentation methods that are
compared in Tables 9 and 10, we have generally used the default

configuration for each method both in the case of condition experts
and uber models. For DeepLabv2 [5], we use the architecture em-
ployed in AdaptSegNet [43] in the context of domain adaptation
and not the original architecture. We have used the default learning
rate schedule for each method, with the base learning rates that are
reported in Table 3. We generally use 60 training epochs for all
four methods, which yields 96k training iterations for uber models
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TABLE 10
Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes—ACDC for rain. The first and
second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is
also reported.

g g g Mo g = g % box box

Method é "g s g 2 g g g AP:g AP

Source model (Faster R-CNN) 23.1 8.1 66.2 29.6 2.9 20.4 25.1 15.5 23.9 11.2
DA-Faster 19.5 8.3 64.1 24.5 4.2 16.7 22.1 14.0 21.7 9.7
SADA 34.8 11.4 78.0 20.3 0.4 74 22.6 17.0 24.0 11.3
MIC (SADA) 38.7 13.4 76.7 19.9 0.2 15.3 26.0 18.4 26.1 12.5
FRCNN-SIGMA++ 30.3 79 69.0 36.2 1.0 29.3 28.5 17.2 27.4 12.7
Oracle 36.7 12.5 73.8 49.0 12.6 374 37.1 28.1 35.9 17.8
Source model (FCOS) 27.3 6.2 68.2 20.3 2.8 18.6 20.8 16.5 22.6 11.2
EPM 29.3 9.3 65.8 17.1 1.5 16.6 19.6 15.8 21.9 10.6
SIGMA 28.0 5.3 72.3 25.1 1.7 26.2 16.5 20.1 24.4 12.1
Oracle 44.4 15.0 79.0 38.8 13.3 40.1 31.8 26.9 36.2 18.9

TABLE 11

Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes—ACDC for snow. The first and
second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is
also reported.

g g A‘i 4 g g % box box
Method Z = g = 2 g g = APES AP

2, - g 5
Source model (Faster R-CNN) 334 17.6 66.8 25.5 29.7 232 21.6 15.7 29.2 14.7
DA-Faster 37.3 12.3 67.5 214 31.2 234 214 24.8 29.9 14.3
SADA 48.1 20.2 74.6 7.2 7.2 11.5 23.8 32.6 28.2 12.3
MIC (SADA) 46.3 30.1 76.4 8.1 19.3 19.9 239 28.3 31.5 15.9
FRCNN-SIGMA++ 41.5 19.1 69.3 194 334 28.4 339 25.1 33.8 16.4
Oracle 49.4 19.2 73.2 32.0 37.0 48.5 41.7 33.7 41.9 20.8
Source model (FCOS) 40.9 18.3 68.1 233 24.4 18.6 19.3 14.3 28.4 15.2
EPM 41.8 22.2 70.9 134 18.6 15.7 13.5 10.5 25.8 14.3
SIGMA 40.6 8.1 57.6 0.5 14.9 15.8 17.4 4.8 19.9 10.1
Oracle 56.6 22.8 76.2 36.4 30.5 38.6 26.0 26.2 39.2 21.5

TABLE 12

Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for fog. The first group of rows presents
condition-specific expert models trained only on fog, while the second group presents uber models trained on all conditions.

] S 5 = 3 ° - = = .g = . v " = ] o)
Method s &5 = 3 = 5 &5 B E 2 2 S B 2 g 5 2 ¢ IoU
etho g = E g § g 2 o tq:)n E ~ g B 3 E 2 £ g E mlo
RefineNet 932 755 86.1 44.1 376 460 642 648 855 708 979 461 348 793 594 648 824 366 388 636
DeepLabv2 89.9 65.6 812 39.1 259 281 459 477 830 674 967 352 384 735 461 298 379 284 316 522
DeepLabv3+ 93.8 774 888 51.0 433 542 682 717 877 746 982 535 321 838 693 844 853 472 401 687
HRNet 946 79.6 899 53.6 449 594 743 761 889 776 983 615 533 860 66.6 80.0 885 411 302 70.8
RefineNet ~ 93.5 75.6 87.2 423 392 498 685 672 856 70.1 979 526 482 810 626 620 69.1 577 374 657
DeepLabv2 90.9 67.2 816 387 29.5 297 512 507 814 619 960 348 405 741 534 531 599 83 325 545
DeepLabv3+ 93.6 77.6 89.2 540 448 558 67.6 720 880 735 982 495 244 839 722 842 892 528 424 69.1
HRNet 949 810 905 589 537 619 790 787 893 787 983 632 546 872 723 878 90.6 587 389 747

and 24k training iterations for condition experts. Exceptions to this
rule are RefineNet and fog where we use 30 epochs, DeepLabv2
and fog where we use 45 epochs, DeepLabv2 and night where
we use 240 epochs, and the DeepLabv3+ uber model for which
we use 30 epochs. For HRNet, we use the snapshot with the best
mloU performance on the respective validation set of ACDC for
predicting on the test set, while for the rest of the methods we use
the final training snapshot for the same purpose.

A.2.2 Supervised Instance Segmentation

For training the four instance segmentation methods that are
compared in Tables 13 and 14, we have generally used the default
configuration for each method both in the case of condition experts
and uber models. We use the consistent ResNet-50 backbone for
each model and train each model on data of each condition for
60 epoches. We use the model weights corresponding to the final
training iteration for testing.
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TABLE 13
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for nighttime. The first group of rows presents
condition-specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions.

Method

road

mloU

sidew
build
wall
fence
pole
light
sign
veget
terrain
sky
rider
car
truck
bus
train
motorc
bicycle

person

RefineNet 934 703 78.6 343 341 469 522 542 663 187 781 603 355 762 47 478 594 360 453 522
DeepLabv2 90.5 63.7 78.0 300 29.6 329 370 412 619 252 753 479 234 695 27 154 603 397 379 454
DeepLabv3+ 94.7 759 850 484 38.6 522 558 544 761 303 842 674 41.1 850 83 623 80.6 356 498 592
HRNet 955 788 865 492 441 580 645 632 756 410 839 71.7 488 846 155 769 812 259 559 632

RefineNet 935 709 803 320 320 46.0 539 541 692 319 780 61.0 354 802 11.6 60.0 694 489 468 555
DeepLabv2 86.6 57.8 71.7 303 236 31.8 374 389 600 268 728 476 251 71.1 169 27.8 651 30.6 385 453
DeepLabv3+ 94.7 753 849 469 37.8 538 573 5211 757 412 829 666 402 83.6 247 679 808 417 494 609
HRNet 95.7 79.0 86.2 46.8 435 592 649 645 753 403 827 721 526 869 188 788 83.6 525 573 653

TABLE 14
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for rain. The first group of rows presents
condition-specific expert models trained only on rain, while the second group presents uber models trained on all conditions.

Method

road

mloU

sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky
rider
car
truck
bus
train
motorc
bicycle

person

RefineNet 892 698 91.7 522 513 579 710 699 936 505 984 658 251 881 494 554 748 470 602 664
DeepLabv2 873 639 89.0 503 40.6 384 522 534 892 422 967 515 130 819 479 472 722 29.1 488 57.6
DeepLabv3+ 928 774 939 673 58.1 641 744 759 942 508 986 708 334 904 677 792 86.8 546 66.1 735
HRNet 948 81.8 949 69.6 637 695 79.6 807 948 512 987 735 27.0 93.1 754 409 614 596 708 727

RefineNet 915 735 911 51.0 51.6 583 725 737 929 512 979 655 295 892 598 682 803 480 595 68.7
DeepLabv2 874 64.8 88.1 482 404 384 520 569 893 402 965 523 174 839 555 630 758 289 472 593
DeepLabv3+ 92.7 765 935 648 580 638 758 773 941 500 98.0 705 331 912 759 851 86.2 558 650 74.1
HRNet 95.6 83.1 942 60.1 663 712 823 824 946 551 986 752 397 934 738 862 859 664 713 717

TABLE 15
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for snow. The first group of rows presents
condition-specific expert models trained only on snow, while the second group presents uber models trained on all conditions.

Method

road

mloU

sidew.
build
wall
fence
pole
light
sign
veget
terrain
sky
person
rider
car
truck
bus
train
motorc
bicycle

RefineNet 90.1 657 864 312 481 580 767 703 897 457 973 708 154 87.1 350 43.1 79.1 387 599 625
DeepLabv2 89.1 61.7 827 264 409 355 565 541 852 390 951 550 257 843 386 538 776 29.0 495 56.8
DeepLabv3+ 919 709 90.1 489 520 622 792 745 920 470 976 782 359 904 617 643 892 439 694 705
HRNet 936 752 89.0 420 556 677 833 789 930 489 978 781 164 92,6 548 61.6 870 500 689 702

RefineNet 90.2 65.7 86.5 33.7 506 578 780 715 892 445 970 73.8 46.0 884 500 480 799 406 603 659
DeepLabv2 88.7 625 825 353 41.7 350 59.0 528 844 360 952 581 29.8 848 489 309 779 329 484 57.1
DeepLabv3+ 91.4 69.6 88.8 488 539 60.6 79.5 729 905 447 974 774 372 900 643 550 87.8 41.7 700 69.6
HRNet 944 773 915 531 636 702 851 814 921 577 977 833 696 93.6 718 545 863 527 731 763

TABLE 16
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for fog. The first group of rows presents
condition-specific expert models trained only on fog, while the second group presents uber models trained on all conditions. For each condition we
report the performance in AP™ask,

g o) = ﬁ a £ g % mask
Method g —E S g B g 2 ? AP

a g RS
Mask R-CNN 14.7 1.5 41.3 17.5 21.3 17.3 8.5 2.8 15.6
Cascaded Mask R-CNN 15.5 0.8 423 21.7 23.6 13.2 10.3 24 16.2
HTC 17.4 1.3 439 21.8 28.1 14.7 8.0 3.1 17.3
Detectors 16.2 14 44.0 22.0 25.9 20.0 6.8 2.6 17.4
Mask R-CNN 22.7 9.8 46.8 23.8 31.3 33.5 20.6 7.1 24.4
Cascaded Mask R-CNN 22.6 9.7 47.7 25.1 339 31.9 15.5 8.0 24.3
HTC 26.6 9.3 49.4 27.3 35.8 33.9 18.4 7.1 26.0

Detectors 23.8 8.0 49.3 26.8 35.1 37.6 154 6.3 253
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TABLE 17
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for nighttime. The first group of rows presents
condition-specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions. For each
condition we report the performance in AP™ask,

= [ ~ @ o 2
Method 2 :-8 § % 2 § g % Apmask
& - - - £ B2
Mask R-CNN 13.7 34 36.6 2.2 8.1 14.4 2.9 39 10.7
Cascaded Mask R-CNN 13.8 34 36.9 2.2 8.7 17.8 4.8 4.2 11.5
HTC 14.9 4.7 39.1 2.5 10.6 17.5 5.3 4.5 12.4
Detectors 15.1 3.8 394 5.5 12.6 18.3 5.9 43 13.1
Mask R-CNN 16.9 4.9 40.7 8.3 9.5 21.1 5.8 6.3 14.2
Cascaded Mask R-CNN 17.1 4.8 41.6 3.5 94 22.7 5.6 6.3 13.9
HTC 18.6 6.8 43.0 2.2 15.7 233 6.6 7.3 154
Detectors 19.3 6.7 42.5 5.7 15.9 27.6 6.0 8.0 16.5
TABLE 18

Comparison of state-of-the-art supervised instance segmentation methods on ACDC for rain. The first group of rows presents
condition-specific expert models trained only on rain, while the second group presents uber models trained on all conditions. For each condition
we report the performance in ApP™ask,

(=1 [ ~ . =] 3 L
Method % ':1%) § é B é g % Apmask
a £ S
Mask R-CNN 20.7 1.4 56.1 26.1 20.9 27.9 9.8 7.7 21.3
Cascaded Mask R-CNN 20.1 1.0 56.6 24.3 21.0 28.0 11.2 7.0 21.2
HTC 22.2 1.0 58.9 25.2 19.7 30.5 11.1 9.3 223
Detectors 21.0 34 59.1 26.4 25.4 31.5 10.5 9.0 23.3
Mask R-CNN 20.2 1.4 57.1 27.1 20.7 27.1 10.7 8.4 21.6
Cascaded Mask R-CNN 20.4 1.4 58.0 26.9 24.5 29.3 11.4 8.2 22.5
HTC 22.6 2.5 60.3 25.0 22.7 32.1 11.0 9.7 23.2
Detectors 23.2 3.0 60.6 30.5 26.1 32.7 12.7 10.7 24.9
TABLE 19

Comparison of state-of-the-art supervised instance segmentation methods on ACDC for snow. The first group of rows presents
condition-specific expert models trained only on snow, while the second group presents uber models trained on all conditions. For each condition
we report the performance in AP™aesk,

g 3 =1 'MU 2 g g % mask

Method i g s g 2 5 .g g AP

Mask R-CNN 28.6 5.1 52.9 17.7 19.0 21.5 17.1 4.5 20.8
Cascaded Mask R-CNN 28.8 59 52.6 21.3 28.3 26.5 9.0 5.8 22.3
HTC 29.8 5.3 55.0 21.2 28.5 28.0 13.0 6.2 23.4
Detectors 29.2 5.7 55.5 23.1 29.3 26.7 12.2 5.8 23.4
Mask R-CNN 30.0 7.3 58.4 27.2 37.3 304 18.2 10.1 27.4
Cascaded Mask R-CNN 30.5 10.3 59.5 27.2 40.1 30.8 17.0 10.1 28.2
HTC 33.0 10.1 61.9 32.2 40.1 35.5 17.9 11.2 30.2
Detectors 33.8 11.7 61.2 28.9 37.3 37.9 17.9 9.5 29.8

A.2.3 Supervised Panoptic Segmentation

For training the four panoptic segmentation methods that are
compared in Tables 15 and 16, we have generally used the default
configuration for each method both in the case of condition experts
and uber models. We also use the consistent ResNet-50 backbone
for each model and train each model on data of each condition for
60 epoches. The model weights corresponding to the final training
iteration are reported for testing.

A.3 Uncertainty-Aware Semantic Segmentation

We have used the two-head model designed in [1] and trained it
on the entire training set of ACDC for 60 epochs. We use the
default learning rate schedule of [1], with a base learning rate of

4 x 1074, which is equal to the default. For predicting on the test
set, we use the final training snapshot.

APPENDIX B
DETAILED CLASS-LEVEL RESULTS

We provide class-level performance for the experiments for which
only mean performance over all classes is reported in the paper
due to space limitations.

B.1

In Tables 4-7, we present the class-level IoU performance of the
UDA semantic segmentation methods that are examined in the

Normal-to-Adverse Adaptation
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TABLE 20
Comparison of state-of-the-art supervised panoptic segmentation
methods on ACDC for fog. The first group of rows presents
condition-specific expert models trained only on fog, while the second
group presents uber models trained on all conditions.

TABLE 23
Comparison of state-of-the-art supervised panoptic segmentation
methods on ACDC for snow. The first group of rows presents
condition-specific expert models trained only on snow, while the
second group presents uber models trained on all conditions.

Method PQ  PQ'Mnes  pQstuff SQ RQ  Method PQ  PQ'Mnes  pQstuff SQ RQ
PanopticFPN 38.4 25.2 48.0 72.8 473 PanopticFPN 44.8 36.3 51.0 74.1 55.1
K-Net 37.9 16.1 53.8 68.8  47.1 K-Net 48.0 32.4 59.4 742 594
Panoptic-Deeplab  42.4 239 55.8 79.9 512 Panoptic-Deeplab  51.6 384 61.2 81.6 619
Mask2Former 44.9 23.8 60.3 79.0 545 Mask2Former 52.5 37.0 63.8 80.6 634
PanopticFPN 43.9 33.3 51.6 79.0 534 PanopticFPN 49.1 44.2 52.7 79.0 599
K-Net 47.8 32.3 59.1 78.9  59.1 K-Net 53.2 40.7 62.3 789  65.6
Panoptic-Deeplab  49.1 33.8 60.1 80.1 589 Panoptic-Deeplab ~ 55.1 43.2 63.8 81.6 657
Mask2Former 52.9 37.0 64.5 82.0 632 Mask2Former 58.6 46.0 67.7 822 69.8
TABLE 21

Comparison of state-of-the-art supervised panoptic segmentation
methods on ACDC for nighttime. The first group of rows presents
condition-specific expert models trained only on nighttime, while the

second group presents uber models trained on all conditions.

Method PQ  PQ'Mn9s  pQetvff SQ  RQ
PanopticFPN 29.8 22.0 35.4 67.4 39.5
K-Net 30.7 15.6 41.7 673 41.0
Panoptic-Deeplab ~ 34.1 20.2 44.3 68.9 443
Mask2Former 34.0 18.0 45.7 69.5 44.1
PanopticFPN 32.6 26.6 37.0 734 429
K-Net 334 18.3 444 70.6 447
Panoptic-Deeplab  37.2 22.9 47.7 749 479
Mask2Former 394 26.5 48.8 74.9 50.6
TABLE 22

Comparison of state-of-the-art supervised panoptic segmentation
methods on ACDC for rain. The first group of rows presents
condition-specific expert models trained only on rain, while the second
group presents uber models trained on all conditions.

Method PQ  PQ'Mmes pQi/f SQ  RQ
PanopticFPN 46.7 379 53.0 719 575
K-Net 48.5 29.6 62.2 78.0  60.1
Panoptic-Deeplab  52.7 37.9 63.5 80.0 63.6
Mask2Former 53.0 347 66.4 80.8 64.0
PanopticFPN 43.9 33.3 51.6 79.0 534
K-Net 471 28.8 60.4 764 593
Panoptic-Deeplab  53.1 38.2 63.9 799 639
Mask2Former 54.2 36.3 67.3 81.2 652

setting of adaptation to individual conditions in Table 3 of the
paper.

In Tables 8—11, the class-wise APY” for each UDA object
detection methods are reported, which corresponds to the results
in Table 5 of the paper.

B.2 Supervised Learning on Adverse Conditions

In Tables 12-15, we present the class-level IoU performance of
the supervised semantic segmentation methods that are examined
in Table 10 of the paper. In particular, we consider the individual
conditions of ACDC separately for evaluation, and evaluate on
each condition both the respective condition experts that have

been trained only on that condition and uber models trained on
all conditions.

In Tables 16-19, we present the class-level AP™%% per-
formance of the supervised instance segmentation methods that
are examined in Table 14 of the paper. The performance of
condition experts and uber models are reported for each condition
respectively.

In Tables 20-23, we present the detailed performance of the
supervised panoptic segmentation methods that are examined in
Table 16 of the paper. The performance of condition experts and
uber models are reported for each condition respectively.

B.3 Evaluation of Pre-trained Models on ACDC

In Tables 24-28, we present the class-level IoU performance of
the externally pre-trained semantic segmentation models that are
evaluated in Table 17 of the paper.

In Tables 29-33, we present the class-level APY? and
AP™esF performance of the externally pre-trained instance seg-
mentation models that are evaluated in Table 18 of the paper.

In Tables 34-38, we present the detailed performance of
the externally pre-trained panoptic segmentation models that are
evaluated in Table 19 of the paper.

B.4 Uncertainty-aware Semantic Segmentation

In Tables 39—43, we present the class-level average uncertainty-
aware IoU (AUIoU) performance of the baselines and oracles that
are examined in Table 9 of the paper. More specifically, Table 39
considers methods trained jointly on all conditions of ACDC and
also evaluated jointly on all conditions, while Tables 40—43 present
methods trained and evaluated on individual conditions. The
results corresponding to the baseline that uses constant confidence
equal to 1 are omitted, as they are identical by definition to IoU
results and are thus already included in Table 5 of the paper and
Tables 12—-15.

APPENDIX C
ADDITIONAL DETAILS ON ACDC DATASET

We provide additional details on the construction and the charac-
teristics of ACDC.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2024 8

TABLE 24
Comparison of externally pre-trained semantic segmentation models on the complete test set of ACDC including all conditions. The
three groups of rows present models pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes,
FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

- 2 8 = o = = g = . - A~ " = g 0=
Method  Tinedon 5 5 2 § 2 g 5 B & E 2 :z 2 5 % 2 E £ Z mw

< s = on E B
RefineNet ~ CS 663 289 67.6 192 259 367 500 47.5 69.4 288 83.0 421 17.7 726 309 316 489 26.1 367 43.7
DeepLabv2  CS 719 262 SLI 188 225 197 330 277 679 286 442 43.1 221 712 298 333 484 262 358 380
DeepLabv3+ CS 75.1 328 659 17.5 202 322 467 452 705 33.5 80.9 239 147 715 40.1 203 512 202 288 416
DANet  CS 580 6.0 573 68 223 277 413 421 664 199 692 322 102 465 224 191 43.1 132 255 33.1
HRNet ~ CS 556 109 554 7.7 159 217 37.8 425 674 133 590 387 140 683 238 480 483 179 23.6 353
SFSU FC 729 288 683 19.6 239 373 493 470 604 334 723 43.1 148 727 317 312 470 254 355 429
CMAda  FC-DBF+FZ 79.9 325 695 147 247 411 53.6 513 674 348 838 49.0 199 77.0 341 385 511 296 427 47.1
DMAda  ND 753 355 674 192 27.1 400 537 509 74.6 309 849 488 23.1 76.6 39.7 374 525 29.1 421 479
GCMA  CS+DZ 79.7 487 715 216 299 425 567 577 758 39.5 872 574 297 80.6 449 462 620 372 465 534
MGCDA  CS+DZ 760 494 720 113 217 39.5 520 549 737 247 88.6 541 272 782 309 419 582 311 444 489

TABLE 25

Comparison of externally pre-trained semantic segmentation models on ACDC for fog. The three groups of rows present models pre-trained
on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy
Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

. ) B3 5 = 3 = = g g 5 A - = g 2
Method Trained on § 3 z g E é ED gﬂ Eo g _E“ % :'q'é g é 2 § g ;>; mloU

s > = a g k)
RefineNet  CS 644 40.0 69.6 242 19.7 36.5 52.7 552 71.1 354 939 274 192 727 420 42.1 693 303 158 464
DeepLabv2 CS 66.4 312 268 229 186 8.2 323 10.7 70.7 39.0 31.3 17.6 41.1 650 30.0 343 183 423 290 335
DeepLabv3+ CS 82.3 57.6 61.5 18.1 164 333 49.6 545 760 44.1 90.0 9.6 287 69.0 35.1 345 289 417 375 457
DANet CS 52.1 145 49.7 55 169 30.0 479 515 722 233 80.1 242 3.0 447 324 275 651 108 7.7 347
HRNet CS 573 193 49.1 128 17.8 273 44.0 547 728 155 81.7 283 39 666 284 52.0 727 72 181 384
SFSU FC 723 379 744 289 193 37.5 494 546 58.0 437 779 286 53 73.6 424 440 727 314 149 456
CMAda FC-DBF+FZ 81.7 43.5 72.8 25.6 19.5 39.8 51.0 589 80.5 51.3 953 369 127 76.5 452 512 77.1 332 199 512
DMAda ND 75.5 447 726 264 20.8 383 529 578 759 38.6 963 355 268 75.8 47.7 50.7 739 358 17.3 50.7
GCMA CS+DZ 80.8 53.5 70.1 29.2 20.7 384 53.0 609 702 465 954 442 38.0 766 524 49.7 568 41.0 17.6 524
MGCDA CS+DZ 71.7 473 657 182 153 344 486 599 649 247 954 448 238 733 36.1 454 639 239 154 459

TABLE 26

Comparison of externally pre-trained semantic segmentation models on ACDC for nighttime. The three groups of rows present models
pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

P B 9 - 3 5 g b v " g 2
Method Trained on % 3 = g % 3 & gﬂ & E oz 2 3 g s B '§ g £ mloU
= 3 28 & 9 = 1z o 8 2 g = =] = g g
RefineNet  CS 66.5 240 503 169 11.6 264 342 255 442 21.6 0.1 408 248 574 68 373 205 239 19.1 29.0
DeepLabv2 CS 77.0 229 563 135 92 238 229 256 414 161 29 441 175 64.1 119 345 424 226 227 30.1
DeepLabv3+ CS 73.0 20.8 504 222 54 226 31.8 230 429 161 6.6 192 11.7 489 09 139 424 105 13.7 250
DANet CS 67.1 45 467 55 51 131 293 196 36.6 156 0.1 293 124 29.1 45 123 9.0 103 133 19.1
HRNet CS 500 10.1 599 0.7 6.0 142 256 223 191 34 0.1 376 79 494 69 459 139 78 113 20.6
SFSU FC 769 262 504 18.1 9.6 274 333 253 410 215 0.0 415 253 587 73 407 179 220 179 295
CMAda FC-DBF+FZ 82.6 254 539 10.1 112 305 36.7 30.0 387 165 0.1 46.0 262 658 139 509 204 248 238 32.0
DMAda ND 74.7 295 494 17.1 126 31.0 382 300 48.0 228 0.2 470 254 638 128 46.1 23.1 247 246 327
GCMA CS+DZ 78.6 459 58.5 17.7 18.6 375 43.6 435 587 392 224 579 299 72.1 215 562 41.8 357 354 429
MGCDA CS+DZ 745 525 694 7.7 10.8 384 402 433 615 363 37.6 553 256 712 109 464 326 273 33.8 40.8
DANNet CS+DZ 90.7 61.1 755 359 288 26.6 31.4 30.6 708 39.4 787 499 288 659 247 44.1 61.1 259 345 47.6
C.1 Collection of semantic segmentation methods, both in the supervised setting

Our recordings were performed in Switzerland. Therefore, the
geographic distribution of ACDC is similar to Cityscapes, which
was also recorded in central Europe. This eliminates geographic
location from the set of factors that introduce a domain shift
between Cityscapes and ACDC and allows to study in isolation the
effect of visual conditions at time of capture on the performance

and the unsupervised domain adaptation setting.

C.2 Correspondence Establishment

We present in Algorithm 1 the dynamic programming algorithm
that we use for matching the GPS sequences of adverse-condition
recordings and normal-condition recordings of ACDC. The algo-
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TABLE 27
Comparison of externally pre-trained semantic segmentation models on ACDC for rain. The three groups of rows present models
pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

- P 5 = 5} - o £ = i . ~ - = 2] <2
Method  Tinedon 5 5 2 § 2 g 5 B & E 2 :z 2 5 % 2 E £ Z mw

< s = on E B
RefineNet ~ CS 739 299 829 263 372 463 618 579 89.4 425 96.6 442 132 80.5 407 229 668 32.0 535 526
DeepLabv2  CS 712 267 738 20.8 27.1 299 393 444 873 252 820 420 143 762 363 266 49.8 303 422 445
DeepLabv3+ CS 744 298 823 181 288 417 543 556 887 328 972 367 85 847 517 340 615 297 400 50.0
DANet  CS 599 24 759 129 315 37.7 49.5 533 855 355 OLI 354 84 535 260 164 578 179 389 415
HRNet ~ CS 650 67 703 161 202 295 485 547 87.5 36.1 80.1 40.6 8.6 782 341 44.6 673 294 346 448
SFSU FC 746 299 814 241 338 462 599 567 868 40.8 934 464 151 805 40.5 186 657 336 525 516
CMAda  FC-DBF+FZ 78.1 348 807 189 333 50.0 63.1 622 87.4 388 96.6 SL1 169 833 379 219 687 365 55.1 53.4
DMAda  ND 783 377 825 242 368 49.0 64.5 615 90.6 428 973 49.6 182 834 451 216 702 352 548 549
GCMA  CS+DZ 81.1 480 848 250 37.3 498 66.5 662 92.1 435 97.6 545 204 855 473 346 713 403 567 58.0
MGCDA  CS+DZ 80.5 465 799 160 288 449 60.0 615 903 448 97.1 SLI 23.1 823 334 302 69.1 365 538 542

TABLE 28

Comparison of externally pre-trained semnatic segmentation models on ACDC for snow. The three groups of rows present models
pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.

. T ¢ 2= = 8 & =2 g % 5§ - 8 B o % g =5 £ %
Method Trained on § é é g § s B o q;,‘) E’ < é 2 g E B E é g mloU
RefineNet CS 61.0 255 737 11.7 31.1 372 53.1 577 713 09 927 44.1 147 77.0 30.3 269 572 184 385 433
DeepLabv2 CS 68.5 26.6 52.7 18.8 269 222 357 40.7 765 3.6 499 504 27.1 737 27.6 39.1 60.9 21.1 42.5 402
DeepLabv3+ CS 739 326 71.3 11.1 256 314 50.6 544 77.8 4.1 87.0 25.1 14.6 827 39.5 172 552 120 312 420
DANet CS 476 54 575 29 29.1 293 414 512 71.1 0.5 648 32.7 11.7 56.5 145 279 537 8.1 259 333
HRNet CS 59.6 93 439 40 17.8 17.6 356 470 77.0 0.0 325 394 392 742 134 540 61.1 159 26.1 351
SFSU FC 64.5 240 72.6 109 28.8 378 549 58.1 624 0.8 784 442 95 760 29.5 256 552 167 373 414
CMAda FC-DBF+FZ 74.6 31.6 73.6 94 303 43.1 619 61.7 757 0.7 93.5 53.1 19.1 79.6 29.7 31.6 619 229 503 47.6
DMAda ND 73.6 344 749 123 334 41.1 584 60.1 799 0.6 954 53.1 23.0 804 40.3 345 629 227 48.6 489
GCMA CS+DZ 79.7 49.5 753 175 379 432 59.0 619 788 22 955 625 33.6 832 425 434 72.1 322 51.1 537
MGCDA CS+DZ 80.1 495 702 6.1 278 39.6 554 58.0 76.0 0.3 955 575 357 81.0 28.6 489 703 27.8 50.5 50.5
TABLE 29

Comparison of externally pre-trained instance segmentation models on ACDC including all conditions. The two groups of rows present
performance in AP%® and AP™%s* respectively. CS: Cityscapes.

=) = 4 . = 8 =
Method Trained on 2 5 g £ 2 & g S AP

g 2 5 5 S i)

7 g )
Mask R-CNN CS 12.8 6.3 29.9 8.2 8.2 52 6.5 4.5 10.2
Cascaded Mask R-CNN CS 15.4 6.2 29.6 8.0 8.2 6.9 39 6.6 10.6
HTC CS 8.6 1.7 21.8 53 5.5 4.6 1.6 2.9 6.5
Detectors CS 12.5 4.6 28.3 6.4 8.8 4.3 4.8 5.2 9.4
Mask R-CNN CS 9.9 34 27.5 8.1 8.8 5.7 4.7 24 8.8
Cascaded Mask R-CNN CS 11.8 2.7 26.6 7.8 8.6 8.1 33 3.1 9.0
HTC CS 6.8 1.2 20.7 5.3 5.7 4.7 0.9 1.8 5.9
Detectors CS 8.3 2.1 24.8 6.2 9.0 5.5 3.8 2.5 7.8

rithm takes into account the sequential nature of the GPS measure-
ments from the two recordings in computing the correspondence
function A. In particular, we enforce k < i = A(k) < A(3).
That is, for a given sample % of the adverse-condition sequence P,
its matched sample A(%) of the normal-condition sequence R is
restricted to not precede in time any sample of R that has been
matched to a sample k of P that precedes ¢. This constraint is
based on the fact that the routes of the two recordings are driven
in the same direction and thus in the same order. Consequently, for
routes that contain loops, our formulation prevents the matching

of samples that are nearest neighbors but correspond to different
passes from the same location and are thus potentially associated
with different driving directions and 3D rotations of the camera.

C.3 Annotation

In Fig. 1, we show for the adverse-condition part of ACDC (4006
images) the percentage of the pixels of each semantic class that
are marked as invalid in the ground-truth invalid mask J. For the
majority of the classes, a notable percentage of more than 5% of
the pixels are labeled as invalid, which demonstrates the ability
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TABLE 30
Comparison of externally pre-trained instance segmentation models on ACDC for fog. The two groups of rows present performance in
APPo® and AP™ask respectively. CS: Cityscapes.

Method Trained on % -g s g 3 < g ? AP
a, g B
Mask R-CNN CS 13.1 7.5 27.5 8.4 214 1.6 5.8 3.5 11.1
Cascaded Mask R-CNN CS 17.2 10.0 26.8 4.6 17.6 3.1 3.3 6.3 11.1
HTC CS 8.9 5.3 21.8 3.1 11.8 2.9 2.4 4.9 7.6
Detectors CS 15.7 7.5 31.1 54 22.5 4.0 5.9 4.4 12.1
Mask R-CNN CS 9.9 2.5 26.4 8.2 21.0 1.1 5.8 32 9.8
Cascaded Mask R-CNN CS 12.3 53 24.6 4.1 17.0 6.6 4.8 4.0 9.8
HTC CS 6.8 4.0 20.6 3.2 129 2.1 2.4 3.7 7.0
Detectors CS 11.5 4.4 29.0 5.5 20.3 4.0 3.1 2.8 10.1
TABLE 31

Comparison of externally pre-trained instance segmentation models on ACDC for nighttime. The two groups of rows present performance
in APP* and AP™esk respectively. CS: Cityscapes.

Method Trained on g 'g 8 g 2 < g ? AP
Q. = RS
Mask R-CNN CS 10.6 6.1 8.7 0.4 6.2 1.2 2.6 29 4.8
Cascaded Mask R-CNN CS 12.1 7.1 8.6 0.1 6.9 1.5 1.1 52 5.3
HTC CS 6.3 2.0 3.0 0.1 6.1 0.5 1.5 1.6 2.6
Detectors CS 8.6 3.6 6.1 3.5 34 0.2 2.4 2.4 3.8
Mask R-CNN CS 7.4 2.7 7.6 0.1 6.7 0.8 1.6 1.7 3.6
Cascaded Mask R-CNN CS 8.3 2.7 7.7 0.0 7.3 1.5 1.3 2.3 3.9
HTC CS 4.6 1.3 2.7 0.1 7.7 0.2 1.3 0.9 2.3
Detectors CS 5.2 1.3 5.3 1.5 3.5 0.2 2.4 1.2 2.6
TABLE 32

Comparison of externally pre-trained instance segmentation models on ACDC for rain. The two groups of rows present performance in
APbYor and AP™ask respectively. CS: Cityscapes.

Method Trained on E -g s g B2 g g . ? AP
=% g B
Mask R-CNN CS 12.7 4.5 43.9 129 2.7 8.8 10.2 6.4 12.8
Cascaded Mask R-CNN CS 14.3 2.5 44.9 13.5 2.6 13.4 7.9 7.5 13.3
HTC CS 9.6 0.5 34.8 8.1 4.9 9.6 1.6 4.7 9.2
Detectors CS 14.1 5.5 41.6 11.0 2.8 10.2 8.1 10.0 129
Mask R-CNN CS 10.5 1.9 39.9 13.1 34 9.9 6.6 2.9 11.0
Cascaded Mask R-CNN CS 12.3 0.5 40.2 13.8 3.8 13.5 6.2 3.7 11.8
HTC CS 8.0 0.2 33.4 8.2 4.5 94 0.7 2.8 8.4
Detectors CS 10.0 2.5 35.7 11.1 4.6 13.7 6.1 3.9 10.9
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Fig. 1. Per-class percentages of labeled pixels that are marked as invalid in the adverse-condition part ACDC.

of our specialized annotation protocol with privileged information = ambiguous semantic content.

to assign a legitimate semantic label even to invalid regions with . . .
The total number of annotated pixels in ACDC is presented
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TABLE 33
Comparison of externally pre-trained instance segmentation models on ACDC for snow. The two groups of rows present performance in
APbo® and AP™ask respectively. CS: Cityscapes.

g S — %4 2} g = %
Method Trained on Z i 8 é 2 EE = 5 AP
=Y g o

Mask R-CNN CS 18.6 18.5 38.9 7.7 9.6 6.8 7.3 6.8 14.3
Cascaded Mask R-CNN CS 25.0 16.4 37.3 9.3 12.4 1.5 5.7 10.2 15.5
HTC CS 13.9 4.9 28.4 6.0 8.7 4.1 33 4.6 9.2
Detectors CS 18.8 13.6 35.0 4.2 14.7 2.5 5.8 7.1 12.7
Mask R-CNN CS 15.6 13.4 35.8 7.1 10.8 7.9 8.0 4.3 12.9
Cascaded Mask R-CNN CS 19.2 9.4 33.4 8.4 12.0 10.0 32 4.6 12.5
HTC CS 11.7 33 272 59 8.0 5.6 1.3 33 8.3
Detectors CS 12.4 7.7 29.8 32 16.0 3.0 4.5 4.0 10.1
Algorithm 1 Dynamic programming algorithm for GPS sequence matching
Input: Adverse-condition GPS sequence P = (py, ..., Pn), normal-condition GPS sequence R = (ry, ..., Ty,)
Output: Correspondence function A : {1, ...,n} — {1, ..., m}

1: > Compute pairwise Euclidean distances of GPS samples

2dij  |lpi—rjl, 1<i<n, 1<j<m

3: > Compute cost matrix C' (n. X m)

4: Clj<—d1j,1§j§m

5: Cij — Ikn<1n{0171,k} + dij, 2<1 < n, 1 S] <m

6: > Compute backtracking indices matrix v

7: 04”<—au1rgmln{C’Z 1k 2<i<n,1<j<m

8: D> Backtrackmg

9: A(n) < argmin{C,,;}

J
10: A(@) = @ip1,agi41), 1 <i<n—1
TABLE 34 TABLE 36

Comparison of externally pre-trained panoptic segmentation
models on ACDC including all conditions. CS: Cityscapes.

Comparison of externally pre-trained panoptic segmentation
models on ACDC for nighttime. CS: Cityscapes.

Method Trained on PQ PQ"9% pQs*“ff SQ RQ  Method Trained on PQ PQ™"9% pQs*“ff SQ RQ

PanopticFPN CS 130 11.1 145 69.3 17.6  PanopticFPN CS 40 32 48 494 6.0

K-Net CS 16.7  14.6 183 702 233  K-Net CS 60 38 76 489 9.0

Panoptic-Deeplab CS 4.7 0.7 7.7 472 6.8 Panoptic-Deeplab CS 1.6 0.4 2.5 29.7 2.6

Mask2Former CS 377 29.0 44.1 775 474  Mask2Former CS 199 172 220 717 265
TABLE 35 TABLE 37

Comparison of externally pre-trained panoptic segmentation
models on ACDC for fog. CS: Cityscapes.

Comparison of externally pre-trained panoptic segmentation
models on ACDC for rain. CS: Cityscapes.

Method Trained on PQ PQ'™"9% pQ***/f SQ RQ  Method Trained on PQ PQ'™"9% pQ***/f SQ RQ
PanopticFPN CS 15.9 17.1 15.0 702 21.5 PanopticFPN CS 18.6 142 21.9 677 252
K-Net CS 17.3 17.0 17.6  65.7 242 K-Net CS 23.0 187 26.1 694 31.7
Panoptic-Deeplab CS 6.5 1.9 9.9 404 9.1 Panoptic-Deeplab CS 8.3 0.5 139 446 11.7
Mask2Former CS 42.7 30.8 514  79.1 52.7 Mask2Former CS 414 30.8 492  77.0 52.1

in Table 44. Note that labeled pixels that are marked as valid in
the ground-truth invalid masks J constitute ca. 85% of the pixels
in the adverse-condition part of the dataset. From the remaining
15% of pixels in the adverse-condition part that did not receive
a legitimate semantic label in stage 1 of the annotation because
of their ambiguity, it was possible to label half of them (7.5%)
with a legitimate semantic label in stage 2 of the annotation, by
making use of the additional privileged information in the form

of corresponding normal-condition images and original adverse-
condition videos. Note that for stage 2 of the annotation, we
explicitly set the time budget (excluding quality control) to 20
minutes and asked the annotators to prioritize labeling of (i)
traffic participants and (ii) distant and/or unclear objects that were
affected the most by the adverse conditions at the time of capture.
The normal-condition part of the dataset was annotated with the
standard semantic segmentation protocol, so none of the labeled
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Create New Submission

Please fill out this form to upload your submission. The target challenge, target condition(s), a name for your method and the type(s) of supervision it uses
are required. All other fields are optional and can be left empty. You cannot edit the fields Challenge, Task, and Data used for training later on. All other fields
can be edited later on. Note that your submission is kept private until you choose to publish it on our benchmark.

For a single challenge, you can only submit once within 48 h and 6 times within 30 days.

For participants to the ACDC Challenge 2023, please also see the instructions below.

Submission

Requirements.

« single zip archive
« Semantic Segmentation:
> Size limit: 200 MB
o Zip structure:
yourSubmission. zip
- labelTrainIds/

o Result files with filename ‘GOPRO364_frame_000021*png’ for all adverse images or "GOPRO364_frame_000021+_ref_* png" for the reference (normal
condition) images. The files can be in arbitrary locations inside 'labelTrainlds,/"
o Exactly one result file per test image.
o Image dimensions of result files must be equal to input RGB image dimensions, i.e., 1920 x 1080.
Labels must be encoded in trainiDs format, e.q., road should correspond to ID 0.
« Object Detection:
> Size limit: 100 MB
© Zip structure:
yoursubmission.zip
- yourResults. json

o The JSON result file must contain the predictions in the standard COCO format
« Panoptic Segmentation:
o Size limit: 400 MB
Zip structure:
yoursubmission. zip
- labellds/
- .png

- yourResults.json

> Results must be organized in the standard COCO format.
o PNG result files with filename *GOPR0364.frame_000021*png’ for all adverse images or "GOPRO364_frame_000021+_ref_*png’ for the reference
(normal condition) images. The PNG result files can be in arbitrary locations inside ‘labellds/"
o Exactly one PNG result file per test image.
> Image dimensions of PNG result files must be equal to input RGB image dimensions, i.e., 1920 x 1080
The JSON result file must be directly under the “labelds/” directory.
o Labels of segments in the JSON result file must be encoded in IDs format, e.g., road should correspond to ID 7.
« Uncertainty-Aware Semantic Segmentation:
o Size limit: 1 GB
Zip structure:
yoursubmission.zip
- labelTrainlds/
- confidence/

> Resultfiles with filename 'GOPRO364_frame_000021%png". The label files can be in arbitrary locations inside "labelTrainids/". The confidence map
files can be in arbitrary locations inside “confidence/"

> Exactly one label file per test image and one confidence map per test image

> Image dimensions of result files must be equal to input RGB image dimensions, i.e., 1920 x 1080.

o Labels must be encoded in trainiDs format, e.g., road should correspond to ID 0
Confidence maps must be 8-bit grayscale images, where a value of 0 corresponds to confidence 0.0 and a value of 255 corresponds to confidence
1.0.

© Semantic Segmentation
Object Detection
Panoptic Segmentation
Uncertainty-aware Semantic Segmentation

Challenge*

O all adverse
fog
night
rain

Task*

snow
normal
all adverse and normal

Method *

Method description

Data used for Labels

training* O Normal-condition Images

O External Data

Publication and Code  Publication title

Publication
authors

Publication venue
Publication link

Link to Code

Upload* Choose File |No file chosen

Model File Choose File |No file chosen

Fig. 2. The submission page of our benchmark website. Our eval-
uation server supports four tasks, i.e. semantic segmentation, object
detection, panoptic segmentation, and uncertainty-aware semantic seg-
mentation, and seven condition configurations of ACDC, accepting sub-
missions for each of the four individual adverse conditions, for normal
conditions, all adverse conditions, and all adverse and normal condi-
tions. Best viewed on a screen.

TABLE 38
Comparison of externally pre-trained panoptic segmentation
models on ACDC for snow. CS: Cityscapes.

Method Trained on PQ PQ!*m9s pQst“/f SQ RQ

CS 13.1 12.5 136 620 174
CS 187 19.8 180 66.6 258
CS 1.6 0.1 27 270 25
CS 420 369 458 779 52.6

PanopticFPN
K-Net
Panoptic-Deeplab
Mask2Former

pixels is invalid. It is worth noting that, probably due to the
normality of the conditions in this part of the dataset, a slightly
larger percentage of pixels (96.8%) was possible to label compared
to the adverse-condition part. Overall, more than 10 billion pixels
in ACDC have received panoptic labels.

C.4 Evaluation Server

We have implemented a website and evaluation server for the
ACDC benchmark and have made it publicly available at https:
/lacdc.vision.ee.ethz.ch. An indicative screenshot from the sub-
mission page of the website is provided in Fig. 2.


https://acdc.vision.ee.ethz.ch
https://acdc.vision.ee.ethz.ch
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TABLE 39
Uncertainty-aware semantic segmentation baseline results on the complete test set of ACDC including all conditions. Supervised
methods for standard semantic segmentation are trained and evaluated jointly on all conditions for semantic label prediction. Confidence
prediction baselines: max-softmax network outputs (Max-Softmax) and ground-truth invalid masks (GT).
=) 2 8 D 3 = = g = s_ x " - ST
Method Confidence g 3 E‘ g E L?; Eo gb %o g %‘ % _'qu; 8 é E ‘§ g % mAUIoU
7 > s a. =) °
RefineNet  Max-Softmax 91.3 67.6 84.4 343 42.1 499 64.7 642 858 546 953 59.6 344 846 519 60.6 70.6 43.3 489 62.5
RefineNet GT 929 73.1 89.1 43.1 50.7 57.0 72.9 70.7 90.1 63.4 97.7 67.6 43.1 87.3 573 614 77.1 54.1 583 68.8
DeepLabv2 Max-Softmax 87.1 60.4 79.7 36.1 357 32.6 47.3 48.7 80.2 49.2 922 49.0 247 79.0 51.1 433 723 263 45.1 54.7
DeepLabv2 GT 88.5 644 842 409 41.8 37.8 540 542 86.4 549 96.0 53.6 303 81.8 52.5 42.7 73.6 333 47.6 58.9
DeepLabv3+ Max-Softmax 92.1 71.3 88.2 49.0 473 549 68.7 65.6 88.0 60.7 96.0 65.0 339 87.5 66.7 72.6 813 43.8 55.0 67.8
DeepLabv3+ GT 93.8 76.5 914 56.6 554 623 75.0 723 91.8 66.5 98.0 72.0 41.0 89.5 71.1 74.0 86.5 554 63.7 73.3
TABLE 40

Uncertainty-aware semantic segmentation baseline results on ACDC for fog. Supervised methods for standard semantic segmentation are
trained and evaluated on fog for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and
ground-truth invalid masks (GT).

T 3§ 2= = 8 2 =2 = % § - & 5 5 ¥ 2z £ £ 3
Method Confidence g 8 3 § 5§ © = 2 = £ £ 2 = § 2 2 § & 5 mAUU
R R g I
RefineNet ~ Max-Softmax 92.6 71.9 829 40.7 35.8 427 62.1 62.6 84.1 64.1 97.5 45.0 26.8 77.1 57.8 599 79.8 352 334 60.6
RefineNet  GT 934 76.5 87.6 48.7 455 494 682 689 873 73.0 98.1 55.6 403 809 613 654 83.7 53.6 51.7 67.9
DeepLabv2 Max-Softmax 89.7 63.0 79.2 394 259 25.0 41.4 46.6 825 66.7 95.6 364 356 7277 495 29.6 445 292 333 51.9
DeepLabv2 GT 90.2 66.7 82.8 442 353 31.5 495 522 84.8 694 969 442 445 76.0 48.3 30.1 39.0 48.0 42.7 56.7
DeepLabv3+ Max-Softmax 929 74.8 87.2 51.3 41.7 499 656 69.8 87.1 723 97.6 51.9 27.1 828 67.4 79.1 84.1 42.6 36.4 66.4
DeepLabv3+ GT 939 783 90.0 55.5 52.0 579 723 759 89.2 76.6 984 632 385 850 71.7 85.1 86.7 66.0 53.3 73.1
TABLE 41

Uncertainty-aware semantic segmentation baseline results on ACDC for nighttime. Supervised methods for standard semantic
segmentation are trained and evaluated on nighttime for semantic label prediction. Confidence prediction baselines: max-softmax network outputs
(Max-Softmax) and ground-truth invalid masks (GT).

Method  Confid T E 2 3 %8 2z 5 3 § oz 8 5 5 % oz £ 5 3 mauwu
etho onfidence ] -g E g E 8 ED o §0 E 2 g g s g 3 g £ ? m o
= =9 g i)
RefineNet  Max-Softmax 92.3 66.4 78.6 31.8 37.2 46.2 483 533 73.5 169 83.6 549 346 774 8.5 43.1 53.6 352 41.6 51.4
RefineNet GT 93.6 724 882 42.0 530 555 61.6 61.7 8.0 31.3 97.1 633 419 80.0 18.2 50.3 60.8 49.5 51.9 61.1
DeepLabv2 Max-Softmax 90.2 62.2 78.6 299 329 33.7 36.5 40.3 656 252 779 452 232 702 50 14.6 62.1 40.3 38.8 459
DeepLabv2 GT 90.8 65.8 87.2 37.8 453 433 48.1 49.6 87.8 37.5 97.0 51.1 29.8 743 17.3 17.3 63.0 51.8 43.8 54.7
DeepLabv3+ Max-Softmax 93.8 73.3 85.2 47.0 43.4 513 53.7 543 80.7 28.7 879 62.1 409 84.8 104 652 78.8 347 472 59.1
DeepLabv3+ GT 949 77.5 91.5 547 534 60.2 64.8 62.5 92.7 413 98.5 70.2 49.3 883 224 655 824 50.5 55.0 67.1
TABLE 42

Uncertainty-aware semantic segmentation baseline results on ACDC for rain. Supervised methods for standard semantic segmentation are
trained and evaluated on rain for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and
ground-truth invalid masks (GT).

2 E s = 8§ o = = - 8 > B o} = s w5 % g
Method Confidence 3 = E g § =) =) ab 50 E = g 'g s E 2 g 2 > mAUIoU
@ - > - o9 = =) B
RefineNet  Max-Softmax 86.0 67.8 89.9 449 457 532 65.1 67.3 92.1 484 97.8 58.6 23.6 86.6 44.1 53.1 65.6 40.3 56.6 62.5
RefineNet  GT 89.5 70.8 92.1 54.1 532 599 72.6 723 939 52.1 984 674 26.6 88.7 524 56.4 755 514 629 67.9
DeepLabv2 Max-Softmax 85.9 62.3 87.2 48.3 389 358 48.6 51.5 87.3 41.8 959 472 135 80.8 462 502 69.3 23.9 50.0 56.0
DeepLabv2 GT 87.8 65.1 89.4 52.1 425 40.2 53.7 56.1 89.6 43.6 96.8 534 13.8 827 50.2 48.1 729 333 514 59.1
DeepLabv3+ Max-Softmax 91.2 753 92.8 62.2 53.7 60.0 713 722 932 50.0 98.0 654 30.8 90.0 635 77.0 83.1 48.0 63.9 70.6
DeepLabv3+ GT 93.2 784 942 68.8 60.0 66.0 75.8 782 945 525 98.6 724 35.0 91.0 704 804 87.4 58.8 69.0 75.0
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TABLE 43

14

Uncertainty-aware semantic segmentation baseline results on ACDC for snow. Supervised methods for standard semantic segmentation are
trained and evaluated on snow for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and
ground-truth invalid masks (GT).

Method  Confid T £ 2 = 8 2 2 5 % §F oz § 5 = % z £ E % LaunU
etho on ence e -5 B B QQ_‘) a é}) = §D g ﬁ g "g S g 2 g dg g‘n m. (0]
RefineNet  Max-Softmax 89.1 59.9 838 258 438 53.1 72.6 69.2 88.6 435 968 659 117 858 395 484 741 369 488 599
RefineNet  GT 913 69.1 86.8 324 499 590 782 728 90.0 525 973 718 161 87.6 37.6 447 79.5 398 60.1 640
DeepLabv2 Max-Softmax 89.1 617 827 264 409 355 56.5 541 852 390 951 550 257 843 38.6 538 77.6 290 495 5638
DeepLabv2 GT 903 65.1 83.1 27.6 427 365 579 567 855 463 95.1 564 264 850 41.1 550 782 302 498 584
DeepLabv3+ Max-Softmax 90.6 67.0 88.8 45.1 489 57.8 76.6 729 90.8 457 97.0 748 284 892 633 678 87.8 367 61.1 679
DeepLabv3+ GT 929 740 904 503 539 634 80.5 774 922 536 97.6 792 36.6 909 644 659 90.0 452 69.8 720
TABLE 44

Overall annotation statistics for ACDC. We report the total number of pixels assigned to a legitimate semantic label (Labeled) and of pixels not
assigned to any semantic label (Unlabeled) as well as the respective percentages for the adverse-condition part of the dataset with 4006 images
(Adverse), the normal-condition part of the dataset with 1503 images (Normal), and their union (Full).

Adverse Normal Full
#pixels % of pixels  #pixels % of pixels #pixels % of pixels
Labeled 7.682 x 10° 9247  3.015x 10° 96,77  10.697 x 10°  93.64
-out of which Valid  7.055 x 10°  84.93  3.015x 10° 96.77  10.071 x 10°  88.16
-out of which Invalid 0.627 x 10° 7.54 0 0 0.627 x 10° 5.48
Unlabeled 0.625 x 10° 7.53 0.101 x 10° 3.23 0.726 x 10° 6.36
Total 8.307 x 10°  100.00 3.117 x 10°  100.00  11.423 x 10°  100.00




