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TABLE 1
Training details for UDA semantic segmentation methods in

Cityscapes→ACDC adaptation. “SSL rounds”: number of training
rounds that include supervision from pseudo-labels; if not relevant for a
method, – is reported. “Training iterations”: number of SGD iterations
for each training round (number of epochs for each training round is

alternatively reported).

Method SSL rounds Training iterations

AdaptSegNet – 95k
ADVENT – 80k
BDL 0 80k
CLAN – 90k
CRST 3 2 epochs
FDA 1 80k
SIM 1 80k
MRNet 1 50k

TABLE 2
Training details for UDA semantic segmentation methods in

Cityscapes→ACDC adaptation for individual conditions. “SSL
rounds”: number of training rounds that include supervision from

pseudo-labels; if not relevant for a method, – is reported. “Training
iterations”: number of SGD iterations for each training round.

Method SSL rounds Training iterations

AdaptSegNet – 40k
ADVENT – 40k
BDL 0 40k
CLAN – 40k
FDA 1 40k
SIM 1 40k
MRNet 1 40k

APPENDIX A
TRAINING DETAILS

We provide the detailed training configurations for the various
methods for semantic segmentation that have been used in Sec. 4
of the paper and for the method in [1] for uncertainty-aware
semantic segmentation that has been used in Sec. 5 of the paper.

TABLE 3
Training details for supervised semantic segmentation methods

on ACDC.

Method Base LR Training epochs

RefineNet 5× 10−5 60
DeepLabv2 2.5× 10−4 60
DeepLabv3+ 10−4 60
HRNet 10−4 60

A.1 Normal-to-Adverse Adaptation

A.1.1 Domain adaptive semantic segmentation

For the comparison in Table 2, we use as source-domain model
the DeepLabv2 [5] model that is used as the Cityscapes oracle
in AdaptSegNet [43], with a performance of 65.1% mIoU on
the Cityscapes validation set. For all eight unsupervised domain
adaptation (UDA) methods that are compared, we use their default
training configurations, including the learning rate schedule and
the weights of the various losses. The number of training iterations
run for each method as well as the number of self-supervised
learning rounds that are used by some of the methods are reported
in Table 1. For FDA, SIM and MRNet, we run a first training
round without self-training followed by a second training round
with self-training, as per default implementation of these methods.
For FDA, we train three separate models in each training round,
one for each different value of the β parameter from the set
{0.01, 0.05, 0.09}, and use the average prediction of the three
models at test time. In all cases, we use the model weights
corresponding to the final training iteration for testing.

The same source-domain model is also used for the experi-
ment on adaptation to individual conditions presented in Table 3.
Again, we use the default training configurations for all examined
methods and across all four conditions. The number of training
iterations run for each method to adapt to each condition as well
as the number of self-supervised learning rounds that are used by
some of the methods are reported in Table 2. For MRNet and fog,
the self-supervised training round includes 35k iterations instead
of 40k. In addition, for MRNet and rain, the first training round
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TABLE 4
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes→ACDC adaptation for

fog. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 66.4 31.2 26.8 22.9 18.6 8.2 32.3 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 34.3 18.3 42.3 29.0 33.5

AdaptSegNet 35.4 45.9 35.4 25.6 17.5 9.0 32.5 23.1 70.5 47.4 11.6 22.3 28.2 44.4 43.9 35.0 46.0 15.6 15.0 31.8
ADVENT 44.2 38.9 26.4 20.7 20.1 7.9 34.4 23.6 70.7 35.6 8.3 17.3 43.5 60.0 48.6 46.8 40.5 19.9 17.6 32.9
BDL 36.9 37.8 47.0 28.2 21.6 13.7 37.2 34.5 67.2 49.4 27.6 29.1 51.3 58.5 49.4 51.8 30.3 21.4 22.5 37.7
CLAN 48.8 41.3 29.6 27.2 21.0 16.1 41.1 39.6 67.7 50.2 15.4 36.2 30.8 72.2 52.2 54.4 47.2 27.1 22.6 39.0
FDA 68.8 37.3 27.1 27.6 19.8 21.6 37.5 43.3 74.9 43.7 33.1 35.0 21.5 65.7 44.6 45.3 47.1 41.5 15.8 39.5
SIM 76.7 43.1 23.5 23.6 17.9 10.9 32.1 15.3 70.4 50.5 21.4 34.8 44.3 58.4 50.5 55.2 34.7 23.0 8.8 36.6
MRNet 78.6 26.1 19.6 29.0 13.5 12.0 41.9 49.0 78.2 59.0 6.6 39.8 26.1 72.5 44.8 37.9 59.6 19.1 24.1 38.8

Oracle 89.9 65.6 81.2 39.1 25.9 28.1 45.9 47.7 83.0 67.4 96.7 35.2 38.4 73.5 46.1 29.8 37.9 28.4 31.6 52.2

TABLE 5
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes→ACDC adaptation for

nighttime. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 77.0 22.9 56.3 13.5 9.2 23.8 22.9 25.6 41.4 16.1 2.9 44.1 17.5 64.1 11.9 34.5 42.4 22.6 22.7 30.1

AdaptSegNet 84.9 39.9 66.8 17.2 17.7 13.4 17.6 16.4 39.6 16.1 5.7 42.8 21.4 44.8 11.9 13.0 39.1 27.5 28.4 29.7
ADVENT 86.5 45.3 60.8 23.2 12.5 15.4 18.0 19.4 41.2 18.3 2.7 43.8 21.3 61.6 12.6 19.1 43.0 30.2 27.6 31.7
BDL 87.1 49.6 68.8 20.2 17.5 16.7 19.9 24.1 39.1 23.7 0.2 42.0 20.4 63.7 18.0 27.0 45.6 27.8 31.3 33.8
CLAN 82.3 28.8 65.9 15.1 9.3 22.1 16.1 26.5 39.2 23.4 0.4 45.9 25.4 63.6 9.5 24.2 39.8 31.5 31.1 31.6
FDA 82.7 39.4 57.0 14.7 7.6 26.1 37.8 30.5 53.2 14.0 15.3 48.0 28.8 62.6 26.6 47.5 51.5 27.0 35.0 37.1
SIM 87.0 48.4 42.1 6.3 8.3 15.8 8.4 17.6 21.7 22.8 0.1 39.3 22.1 60.3 8.7 18.2 42.3 30.1 32.9 28.0
MRNet 83.6 36.3 65.6 8.1 8.2 21.5 30.0 23.7 39.4 24.2 0.0 44.1 26.0 64.9 0.8 3.6 7.6 10.3 31.8 27.9

Oracle 90.5 63.7 78.0 30.0 29.6 32.9 37.0 41.2 61.9 25.2 75.3 47.9 23.4 69.5 2.7 15.4 60.3 39.7 37.9 45.4

TABLE 6
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes→ACDC adaptation for

rain. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels
(Oracle) is also reported.
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Source model 71.2 26.7 73.8 20.8 27.1 29.9 39.3 44.4 87.3 25.2 82.0 42.0 14.3 76.2 36.3 26.6 49.8 30.3 42.2 44.5

AdaptSegNet 81.2 43.2 83.3 27.3 31.4 23.0 41.4 40.5 87.2 35.0 93.1 40.2 15.5 73.9 45.7 34.9 57.0 27.1 49.1 49.0
ADVENT 77.0 31.0 52.5 35.0 34.2 23.4 42.1 41.0 85.3 34.2 26.7 41.3 14.1 75.6 47.3 40.4 64.3 29.6 46.2 44.3
BDL 79.1 39.0 82.8 30.0 34.5 28.1 40.1 47.3 87.0 28.7 91.8 40.6 17.8 74.6 46.3 36.7 60.4 33.2 46.3 49.7
CLAN 77.5 40.0 46.8 24.9 30.3 28.1 37.7 48.3 83.8 37.0 6.6 45.7 17.4 79.7 43.7 42.9 63.7 35.0 46.1 44.0
FDA 76.6 45.0 82.9 37.0 35.6 34.8 49.8 52.0 88.7 37.8 88.8 43.6 17.4 76.8 46.5 53.6 64.8 34.5 45.5 53.3
SIM 76.6 29.6 85.7 20.4 28.7 21.3 37.4 34.2 87.3 34.8 94.0 29.4 16.6 73.2 46.1 22.3 46.2 21.8 39.3 44.5
MRNet 70.5 9.9 46.5 35.6 36.1 36.5 56.4 56.2 90.2 41.3 4.3 53.0 23.5 81.6 39.3 26.7 57.8 43.6 54.5 45.4

Oracle 87.3 63.9 89.0 50.3 40.6 38.4 52.2 53.4 89.2 42.2 96.7 51.5 13.0 81.9 47.9 47.2 72.2 29.1 48.8 57.6

without self-supervised training includes 25k iterations instead of
40k.

A.1.2 Domain adaptive object detection

For the comparison in Table 5, we use the representative FCOS
and Faster R-CNN as the source-domain models for object de-
tection. For a fair and consistent comparison, each model is

trained with a ResNet-50 backbone. For all compared UDA obejct
detection methods, we use their default training configurations for
Cityscapes to Foggy Cityscapes adaptation task as it is a common
normal-to-adverse setting in existing UDA object detection works.
All hyperparameters including the learning rate scheduling, the
loss weights and the training iterations are consistent with the
original configurations. Following SIGMA [33], we use the ACDC
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TABLE 7
Comparison of state-of-the-art unsupervised domain adaptive semantic segmentation methods on Cityscapes→ACDC adaptation for
snow. Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels

(Oracle) is also reported.
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Source model 68.5 26.6 52.7 18.8 26.9 22.2 35.7 40.7 76.5 3.6 49.9 50.4 27.1 73.7 27.6 39.1 60.9 21.1 42.5 40.2

AdaptSegNet 51.3 32.5 47.3 21.5 31.5 13.2 37.8 23.2 76.0 2.6 4.5 49.9 23.1 68.7 38.3 31.8 51.5 21.7 45.0 35.3
ADVENT 50.8 24.8 46.2 15.5 26.0 15.5 27.9 23.0 70.0 2.1 9.5 44.2 25.3 68.5 22.9 24.9 50.1 23.9 38.9 32.1
BDL 42.3 36.4 60.2 15.7 30.4 15.1 41.4 30.4 71.3 1.7 11.2 46.8 27.8 57.7 38.6 34.1 59.2 28.1 43.7 36.4
CLAN 71.8 26.0 37.3 12.5 27.0 21.1 32.0 41.1 78.5 1.9 0.9 50.9 23.9 82.4 43.2 39.5 61.6 25.2 39.4 37.7
FDA 74.6 30.9 56.1 20.5 34.8 28.7 53.9 47.8 80.5 1.1 55.9 53.1 37.9 79.7 40.5 51.9 67.4 34.3 41.8 46.9
SIM 72.1 26.7 39.4 13.3 29.5 15.3 26.4 17.9 76.4 4.8 5.1 45.9 32.0 76.2 29.8 26.6 48.3 23.2 24.2 33.3
MRNet 67.7 3.5 36.8 8.3 24.8 18.0 52.6 55.4 82.4 0.5 0.1 62.2 30.2 79.2 32.1 59.3 58.4 29.1 35.8 38.7

Oracle 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8

TABLE 8
Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes→ACDC for fog. The first and

second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is

also reported.
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Source model (Faster R-CNN) 18.2 10.7 46.2 16.8 30.3 12.3 15.6 7.1 19.7 10.8
DA-Faster 8.1 8.9 51.5 13.0 24.6 12.3 12.5 7.3 17.3 9.0
SADA 23.3 3.9 60.8 11.7 24.9 8.2 16.6 6.7 19.5 10.0
MIC (SADA) 31.3 19.2 64.8 10.3 16.1 16.7 27.3 12.6 24.8 12.4
FRCNN-SIGMA++ 19.1 14.4 54.8 16.7 33.1 22.6 16.6 8.4 23.2 12.2
Oracle 27.5 13.1 58.5 29.8 41.0 26.6 22.7 12.1 28.9 16.4

Source model (FCOS) 29.9 12.4 53.0 18.8 33.9 11.7 12.7 3.2 22.0 12.9
EPM 28.4 9.7 56.3 16.7 33.8 11.1 14.1 8.6 22.3 12.3
SIGMA 32.1 16.7 59.2 17.9 25.1 17.7 27.3 7.0 25.4 14.2
Oracle 30.4 12.2 64.8 26.7 32.0 23.6 29.4 9.5 28.6 16.9

TABLE 9
Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes→ACDC for nighttime. The first

and second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is

also reported.
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Source model (Faster R-CNN) 19.0 17.0 27.3 3.2 28.3 8.1 3.4 8.8 14.4 7.2
DA-Faster 15.1 14.5 20.1 2.1 13.3 8.4 3.8 15.2 11.6 5.3
SADA 34.7 23.7 37.0 2.8 15.2 6.3 6.5 17.1 17.9 7.8
MIC (SADA) 26.6 21.1 34.0 5.3 27.8 5.3 7.5 19.1 18.4 8.9
FRCNN-SIGMA++ 24.5 24.0 41.7 10.1 40.4 16.9 6.6 21.4 23.2 11.1
Oracle 28.7 28.9 51.0 11.1 31.5 32.9 14.6 24.3 27.9 14.1

Source model (FCOS) 23.5 15.9 25.9 2.5 26.8 6.7 5.5 8.8 14.4 7.2
EPM 25.1 15.4 29.8 1.9 30.5 9.5 3.9 9.2 15.7 7.8
SIGMA 29.9 18.8 38.2 1.5 33.2 5.2 8.2 13.2 18.5 9.3
Oracle 39.0 30.2 54.2 3.6 39.4 28.9 15.2 19.1 28.7 15.1

validation set for each condition to select the model weights for
testing.

A.2 Supervised Learning on Adverse Conditions
A.2.1 Supervised Semantic Segmentation
For training the four semantic segmentation methods that are
compared in Tables 9 and 10, we have generally used the default

configuration for each method both in the case of condition experts
and uber models. For DeepLabv2 [5], we use the architecture em-
ployed in AdaptSegNet [43] in the context of domain adaptation
and not the original architecture. We have used the default learning
rate schedule for each method, with the base learning rates that are
reported in Table 3. We generally use 60 training epochs for all
four methods, which yields 96k training iterations for uber models



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, MAY 2024 4

TABLE 10
Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes→ACDC for rain. The first and

second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is

also reported.
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Source model (Faster R-CNN) 23.1 8.1 66.2 29.6 2.9 20.4 25.1 15.5 23.9 11.2
DA-Faster 19.5 8.3 64.1 24.5 4.2 16.7 22.1 14.0 21.7 9.7
SADA 34.8 11.4 78.0 20.3 0.4 7.4 22.6 17.0 24.0 11.3
MIC (SADA) 38.7 13.4 76.7 19.9 0.2 15.3 26.0 18.4 26.1 12.5
FRCNN-SIGMA++ 30.3 7.9 69.0 36.2 1.0 29.3 28.5 17.2 27.4 12.7
Oracle 36.7 12.5 73.8 49.0 12.6 37.4 37.1 28.1 35.9 17.8

Source model (FCOS) 27.3 6.2 68.2 20.3 2.8 18.6 20.8 16.5 22.6 11.2
EPM 29.3 9.3 65.8 17.1 1.5 16.6 19.6 15.8 21.9 10.6
SIGMA 28.0 5.3 72.3 25.1 1.7 26.2 16.5 20.1 24.4 12.1
Oracle 44.4 15.0 79.0 38.8 13.3 40.1 31.8 26.9 36.2 18.9

TABLE 11
Comparison of state-of-the-art unsupervised domain-adaptive object detection methods on Cityscapes→ACDC for snow. The first and

second groups of rows present two-stage domain-adaptive detection and one-stage domain-adaptive detection methods, respectively.
Performance of the model trained only on the source domain (Source model) and of the oracle with access to the target domain labels (Oracle) is

also reported.
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Source model (Faster R-CNN) 33.4 17.6 66.8 25.5 29.7 23.2 21.6 15.7 29.2 14.7
DA-Faster 37.3 12.3 67.5 21.4 31.2 23.4 21.4 24.8 29.9 14.3
SADA 48.1 20.2 74.6 7.2 7.2 11.5 23.8 32.6 28.2 12.3
MIC (SADA) 46.3 30.1 76.4 8.1 19.3 19.9 23.9 28.3 31.5 15.9
FRCNN-SIGMA++ 41.5 19.1 69.3 19.4 33.4 28.4 33.9 25.1 33.8 16.4
Oracle 49.4 19.2 73.2 32.0 37.0 48.5 41.7 33.7 41.9 20.8

Source model (FCOS) 40.9 18.3 68.1 23.3 24.4 18.6 19.3 14.3 28.4 15.2
EPM 41.8 22.2 70.9 13.4 18.6 15.7 13.5 10.5 25.8 14.3
SIGMA 40.6 8.1 57.6 0.5 14.9 15.8 17.4 4.8 19.9 10.1
Oracle 56.6 22.8 76.2 36.4 30.5 38.6 26.0 26.2 39.2 21.5

TABLE 12
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for fog. The first group of rows presents

condition-specific expert models trained only on fog, while the second group presents uber models trained on all conditions.
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RefineNet 93.2 75.5 86.1 44.1 37.6 46.0 64.2 64.8 85.5 70.8 97.9 46.1 34.8 79.3 59.4 64.8 82.4 36.6 38.8 63.6
DeepLabv2 89.9 65.6 81.2 39.1 25.9 28.1 45.9 47.7 83.0 67.4 96.7 35.2 38.4 73.5 46.1 29.8 37.9 28.4 31.6 52.2
DeepLabv3+ 93.8 77.4 88.8 51.0 43.3 54.2 68.2 71.7 87.7 74.6 98.2 53.5 32.1 83.8 69.3 84.4 85.3 47.2 40.1 68.7
HRNet 94.6 79.6 89.9 53.6 44.9 59.4 74.3 76.1 88.9 77.6 98.3 61.5 53.3 86.0 66.6 80.0 88.5 41.1 30.2 70.8

RefineNet 93.5 75.6 87.2 42.3 39.2 49.8 68.5 67.2 85.6 70.1 97.9 52.6 48.2 81.0 62.6 62.0 69.1 57.7 37.4 65.7
DeepLabv2 90.9 67.2 81.6 38.7 29.5 29.7 51.2 50.7 81.4 61.9 96.0 34.8 40.5 74.1 53.4 53.1 59.9 8.3 32.5 54.5
DeepLabv3+ 93.6 77.6 89.2 54.0 44.8 55.8 67.6 72.0 88.0 73.5 98.2 49.5 24.4 83.9 72.2 84.2 89.2 52.8 42.4 69.1
HRNet 94.9 81.0 90.5 58.9 53.7 61.9 79.0 78.7 89.3 78.7 98.3 63.2 54.6 87.2 72.3 87.8 90.6 58.7 38.9 74.7

and 24k training iterations for condition experts. Exceptions to this
rule are RefineNet and fog where we use 30 epochs, DeepLabv2
and fog where we use 45 epochs, DeepLabv2 and night where
we use 240 epochs, and the DeepLabv3+ uber model for which
we use 30 epochs. For HRNet, we use the snapshot with the best
mIoU performance on the respective validation set of ACDC for
predicting on the test set, while for the rest of the methods we use
the final training snapshot for the same purpose.

A.2.2 Supervised Instance Segmentation

For training the four instance segmentation methods that are
compared in Tables 13 and 14, we have generally used the default
configuration for each method both in the case of condition experts
and uber models. We use the consistent ResNet-50 backbone for
each model and train each model on data of each condition for
60 epoches. We use the model weights corresponding to the final
training iteration for testing.
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TABLE 13
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for nighttime. The first group of rows presents

condition-specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions.
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RefineNet 93.4 70.3 78.6 34.3 34.1 46.9 52.2 54.2 66.3 18.7 78.1 60.3 35.5 76.2 4.7 47.8 59.4 36.0 45.3 52.2
DeepLabv2 90.5 63.7 78.0 30.0 29.6 32.9 37.0 41.2 61.9 25.2 75.3 47.9 23.4 69.5 2.7 15.4 60.3 39.7 37.9 45.4
DeepLabv3+ 94.7 75.9 85.0 48.4 38.6 52.2 55.8 54.4 76.1 30.3 84.2 67.4 41.1 85.0 8.3 62.3 80.6 35.6 49.8 59.2
HRNet 95.5 78.8 86.5 49.2 44.1 58.0 64.5 63.2 75.6 41.0 83.9 71.7 48.8 84.6 15.5 76.9 81.2 25.9 55.9 63.2

RefineNet 93.5 70.9 80.3 32.0 32.0 46.0 53.9 54.1 69.2 31.9 78.0 61.0 35.4 80.2 11.6 60.0 69.4 48.9 46.8 55.5
DeepLabv2 86.6 57.8 71.7 30.3 23.6 31.8 37.4 38.9 60.0 26.8 72.8 47.6 25.1 71.1 16.9 27.8 65.1 30.6 38.5 45.3
DeepLabv3+ 94.7 75.3 84.9 46.9 37.8 53.8 57.3 52.1 75.7 41.2 82.9 66.6 40.2 83.6 24.7 67.9 80.8 41.7 49.4 60.9
HRNet 95.7 79.0 86.2 46.8 43.5 59.2 64.9 64.5 75.3 40.3 82.7 72.1 52.6 86.9 18.8 78.8 83.6 52.5 57.3 65.3

TABLE 14
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for rain. The first group of rows presents

condition-specific expert models trained only on rain, while the second group presents uber models trained on all conditions.
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RefineNet 89.2 69.8 91.7 52.2 51.3 57.9 71.0 69.9 93.6 50.5 98.4 65.8 25.1 88.1 49.4 55.4 74.8 47.0 60.2 66.4
DeepLabv2 87.3 63.9 89.0 50.3 40.6 38.4 52.2 53.4 89.2 42.2 96.7 51.5 13.0 81.9 47.9 47.2 72.2 29.1 48.8 57.6
DeepLabv3+ 92.8 77.4 93.9 67.3 58.1 64.1 74.4 75.9 94.2 50.8 98.6 70.8 33.4 90.4 67.7 79.2 86.8 54.6 66.1 73.5
HRNet 94.8 81.8 94.9 69.6 63.7 69.5 79.6 80.7 94.8 51.2 98.7 73.5 27.0 93.1 75.4 40.9 61.4 59.6 70.8 72.7

RefineNet 91.5 73.5 91.1 51.0 51.6 58.3 72.5 73.7 92.9 51.2 97.9 65.5 29.5 89.2 59.8 68.2 80.3 48.0 59.5 68.7
DeepLabv2 87.4 64.8 88.1 48.2 40.4 38.4 52.0 56.9 89.3 40.2 96.5 52.3 17.4 83.9 55.5 63.0 75.8 28.9 47.2 59.3
DeepLabv3+ 92.7 76.5 93.5 64.8 58.0 63.8 75.8 77.3 94.1 50.0 98.0 70.5 33.1 91.2 75.9 85.1 86.2 55.8 65.0 74.1
HRNet 95.6 83.1 94.2 60.1 66.3 71.2 82.3 82.4 94.6 55.1 98.6 75.2 39.7 93.4 73.8 86.2 85.9 66.4 71.3 77.7

TABLE 15
Comparison of state-of-the-art supervised semantic segmentation methods on ACDC for snow. The first group of rows presents

condition-specific expert models trained only on snow, while the second group presents uber models trained on all conditions.
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RefineNet 90.1 65.7 86.4 31.2 48.1 58.0 76.7 70.3 89.7 45.7 97.3 70.8 15.4 87.1 35.0 43.1 79.1 38.7 59.9 62.5
DeepLabv2 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
DeepLabv3+ 91.9 70.9 90.1 48.9 52.0 62.2 79.2 74.5 92.0 47.0 97.6 78.2 35.9 90.4 61.7 64.3 89.2 43.9 69.4 70.5
HRNet 93.6 75.2 89.0 42.0 55.6 67.7 83.3 78.9 93.0 48.9 97.8 78.1 16.4 92.6 54.8 61.6 87.0 50.0 68.9 70.2

RefineNet 90.2 65.7 86.5 33.7 50.6 57.8 78.0 71.5 89.2 44.5 97.0 73.8 46.0 88.4 50.0 48.0 79.9 40.6 60.3 65.9
DeepLabv2 88.7 62.5 82.5 35.3 41.7 35.0 59.0 52.8 84.4 36.0 95.2 58.1 29.8 84.8 48.9 30.9 77.9 32.9 48.4 57.1
DeepLabv3+ 91.4 69.6 88.8 48.8 53.9 60.6 79.5 72.9 90.5 44.7 97.4 77.4 37.2 90.0 64.3 55.0 87.8 41.7 70.0 69.6
HRNet 94.4 77.3 91.5 53.1 63.6 70.2 85.1 81.4 92.1 57.7 97.7 83.3 69.6 93.6 71.8 54.5 86.3 52.7 73.1 76.3

TABLE 16
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for fog. The first group of rows presents

condition-specific expert models trained only on fog, while the second group presents uber models trained on all conditions. For each condition we
report the performance in APmask.
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Mask R-CNN 14.7 1.5 41.3 17.5 21.3 17.3 8.5 2.8 15.6
Cascaded Mask R-CNN 15.5 0.8 42.3 21.7 23.6 13.2 10.3 2.4 16.2
HTC 17.4 1.3 43.9 21.8 28.1 14.7 8.0 3.1 17.3
Detectors 16.2 1.4 44.0 22.0 25.9 20.0 6.8 2.6 17.4

Mask R-CNN 22.7 9.8 46.8 23.8 31.3 33.5 20.6 7.1 24.4
Cascaded Mask R-CNN 22.6 9.7 47.7 25.1 33.9 31.9 15.5 8.0 24.3
HTC 26.6 9.3 49.4 27.3 35.8 33.9 18.4 7.1 26.0
Detectors 23.8 8.0 49.3 26.8 35.1 37.6 15.4 6.3 25.3
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TABLE 17
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for nighttime. The first group of rows presents
condition-specific expert models trained only on nighttime, while the second group presents uber models trained on all conditions. For each

condition we report the performance in APmask.
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Mask R-CNN 13.7 3.4 36.6 2.2 8.1 14.4 2.9 3.9 10.7
Cascaded Mask R-CNN 13.8 3.4 36.9 2.2 8.7 17.8 4.8 4.2 11.5
HTC 14.9 4.7 39.1 2.5 10.6 17.5 5.3 4.5 12.4
Detectors 15.1 3.8 39.4 5.5 12.6 18.3 5.9 4.3 13.1

Mask R-CNN 16.9 4.9 40.7 8.3 9.5 21.1 5.8 6.3 14.2
Cascaded Mask R-CNN 17.1 4.8 41.6 3.5 9.4 22.7 5.6 6.3 13.9
HTC 18.6 6.8 43.0 2.2 15.7 23.3 6.6 7.3 15.4
Detectors 19.3 6.7 42.5 5.7 15.9 27.6 6.0 8.0 16.5

TABLE 18
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for rain. The first group of rows presents

condition-specific expert models trained only on rain, while the second group presents uber models trained on all conditions. For each condition
we report the performance in APmask.
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Mask R-CNN 20.7 1.4 56.1 26.1 20.9 27.9 9.8 7.7 21.3
Cascaded Mask R-CNN 20.1 1.0 56.6 24.3 21.0 28.0 11.2 7.0 21.2
HTC 22.2 1.0 58.9 25.2 19.7 30.5 11.1 9.3 22.3
Detectors 21.0 3.4 59.1 26.4 25.4 31.5 10.5 9.0 23.3

Mask R-CNN 20.2 1.4 57.1 27.1 20.7 27.1 10.7 8.4 21.6
Cascaded Mask R-CNN 20.4 1.4 58.0 26.9 24.5 29.3 11.4 8.2 22.5
HTC 22.6 2.5 60.3 25.0 22.7 32.1 11.0 9.7 23.2
Detectors 23.2 3.0 60.6 30.5 26.1 32.7 12.7 10.7 24.9

TABLE 19
Comparison of state-of-the-art supervised instance segmentation methods on ACDC for snow. The first group of rows presents

condition-specific expert models trained only on snow, while the second group presents uber models trained on all conditions. For each condition
we report the performance in APmask.
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Mask R-CNN 28.6 5.1 52.9 17.7 19.0 21.5 17.1 4.5 20.8
Cascaded Mask R-CNN 28.8 5.9 52.6 21.3 28.3 26.5 9.0 5.8 22.3
HTC 29.8 5.3 55.0 21.2 28.5 28.0 13.0 6.2 23.4
Detectors 29.2 5.7 55.5 23.1 29.3 26.7 12.2 5.8 23.4

Mask R-CNN 30.0 7.3 58.4 27.2 37.3 30.4 18.2 10.1 27.4
Cascaded Mask R-CNN 30.5 10.3 59.5 27.2 40.1 30.8 17.0 10.1 28.2
HTC 33.0 10.1 61.9 32.2 40.1 35.5 17.9 11.2 30.2
Detectors 33.8 11.7 61.2 28.9 37.3 37.9 17.9 9.5 29.8

A.2.3 Supervised Panoptic Segmentation

For training the four panoptic segmentation methods that are
compared in Tables 15 and 16, we have generally used the default
configuration for each method both in the case of condition experts
and uber models. We also use the consistent ResNet-50 backbone
for each model and train each model on data of each condition for
60 epoches. The model weights corresponding to the final training
iteration are reported for testing.

A.3 Uncertainty-Aware Semantic Segmentation

We have used the two-head model designed in [1] and trained it
on the entire training set of ACDC for 60 epochs. We use the
default learning rate schedule of [1], with a base learning rate of

4× 10−4, which is equal to the default. For predicting on the test
set, we use the final training snapshot.

APPENDIX B
DETAILED CLASS-LEVEL RESULTS

We provide class-level performance for the experiments for which
only mean performance over all classes is reported in the paper
due to space limitations.

B.1 Normal-to-Adverse Adaptation

In Tables 4–7, we present the class-level IoU performance of the
UDA semantic segmentation methods that are examined in the
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TABLE 20
Comparison of state-of-the-art supervised panoptic segmentation

methods on ACDC for fog. The first group of rows presents
condition-specific expert models trained only on fog, while the second

group presents uber models trained on all conditions.

Method PQ PQthings PQstuff SQ RQ

PanopticFPN 38.4 25.2 48.0 72.8 47.3
K-Net 37.9 16.1 53.8 68.8 47.1
Panoptic-Deeplab 42.4 23.9 55.8 79.9 51.2
Mask2Former 44.9 23.8 60.3 79.0 54.5

PanopticFPN 43.9 33.3 51.6 79.0 53.4
K-Net 47.8 32.3 59.1 78.9 59.1
Panoptic-Deeplab 49.1 33.8 60.1 80.1 58.9
Mask2Former 52.9 37.0 64.5 82.0 63.2

TABLE 21
Comparison of state-of-the-art supervised panoptic segmentation

methods on ACDC for nighttime. The first group of rows presents
condition-specific expert models trained only on nighttime, while the

second group presents uber models trained on all conditions.

Method PQ PQthings PQstuff SQ RQ

PanopticFPN 29.8 22.0 35.4 67.4 39.5
K-Net 30.7 15.6 41.7 67.3 41.0
Panoptic-Deeplab 34.1 20.2 44.3 68.9 44.3
Mask2Former 34.0 18.0 45.7 69.5 44.1

PanopticFPN 32.6 26.6 37.0 73.4 42.9
K-Net 33.4 18.3 44.4 70.6 44.7
Panoptic-Deeplab 37.2 22.9 47.7 74.9 47.9
Mask2Former 39.4 26.5 48.8 74.9 50.6

TABLE 22
Comparison of state-of-the-art supervised panoptic segmentation

methods on ACDC for rain. The first group of rows presents
condition-specific expert models trained only on rain, while the second

group presents uber models trained on all conditions.

Method PQ PQthings PQstuff SQ RQ

PanopticFPN 46.7 37.9 53.0 77.9 57.5
K-Net 48.5 29.6 62.2 78.0 60.1
Panoptic-Deeplab 52.7 37.9 63.5 80.0 63.6
Mask2Former 53.0 34.7 66.4 80.8 64.0

PanopticFPN 43.9 33.3 51.6 79.0 53.4
K-Net 47.1 28.8 60.4 76.4 59.3
Panoptic-Deeplab 53.1 38.2 63.9 79.9 63.9
Mask2Former 54.2 36.3 67.3 81.2 65.2

setting of adaptation to individual conditions in Table 3 of the
paper.

In Tables 8–11, the class-wise AP box
50 for each UDA object

detection methods are reported, which corresponds to the results
in Table 5 of the paper.

B.2 Supervised Learning on Adverse Conditions

In Tables 12–15, we present the class-level IoU performance of
the supervised semantic segmentation methods that are examined
in Table 10 of the paper. In particular, we consider the individual
conditions of ACDC separately for evaluation, and evaluate on
each condition both the respective condition experts that have

TABLE 23
Comparison of state-of-the-art supervised panoptic segmentation

methods on ACDC for snow. The first group of rows presents
condition-specific expert models trained only on snow, while the

second group presents uber models trained on all conditions.

Method PQ PQthings PQstuff SQ RQ

PanopticFPN 44.8 36.3 51.0 74.1 55.1
K-Net 48.0 32.4 59.4 74.2 59.4
Panoptic-Deeplab 51.6 38.4 61.2 81.6 61.9
Mask2Former 52.5 37.0 63.8 80.6 63.4

PanopticFPN 49.1 44.2 52.7 79.0 59.9
K-Net 53.2 40.7 62.3 78.9 65.6
Panoptic-Deeplab 55.1 43.2 63.8 81.6 65.7
Mask2Former 58.6 46.0 67.7 82.2 69.8

been trained only on that condition and uber models trained on
all conditions.

In Tables 16–19, we present the class-level APmask per-
formance of the supervised instance segmentation methods that
are examined in Table 14 of the paper. The performance of
condition experts and uber models are reported for each condition
respectively.

In Tables 20–23, we present the detailed performance of the
supervised panoptic segmentation methods that are examined in
Table 16 of the paper. The performance of condition experts and
uber models are reported for each condition respectively.

B.3 Evaluation of Pre-trained Models on ACDC

In Tables 24–28, we present the class-level IoU performance of
the externally pre-trained semantic segmentation models that are
evaluated in Table 17 of the paper.

In Tables 29–33, we present the class-level AP box and
APmask performance of the externally pre-trained instance seg-
mentation models that are evaluated in Table 18 of the paper.

In Tables 34–38, we present the detailed performance of
the externally pre-trained panoptic segmentation models that are
evaluated in Table 19 of the paper.

B.4 Uncertainty-aware Semantic Segmentation

In Tables 39–43, we present the class-level average uncertainty-
aware IoU (AUIoU) performance of the baselines and oracles that
are examined in Table 9 of the paper. More specifically, Table 39
considers methods trained jointly on all conditions of ACDC and
also evaluated jointly on all conditions, while Tables 40–43 present
methods trained and evaluated on individual conditions. The
results corresponding to the baseline that uses constant confidence
equal to 1 are omitted, as they are identical by definition to IoU
results and are thus already included in Table 5 of the paper and
Tables 12–15.

APPENDIX C
ADDITIONAL DETAILS ON ACDC DATASET

We provide additional details on the construction and the charac-
teristics of ACDC.
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TABLE 24
Comparison of externally pre-trained semantic segmentation models on the complete test set of ACDC including all conditions. The

three groups of rows present models pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes,
FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.3 28.9 67.6 19.2 25.9 36.7 50.0 47.5 69.4 28.8 83.0 42.1 17.7 72.6 30.9 31.6 48.9 26.1 36.7 43.7
DeepLabv2 CS 71.9 26.2 51.1 18.8 22.5 19.7 33.0 27.7 67.9 28.6 44.2 43.1 22.1 71.2 29.8 33.3 48.4 26.2 35.8 38.0
DeepLabv3+ CS 75.1 32.8 65.9 17.5 20.2 32.2 46.7 45.2 70.5 33.5 80.9 23.9 14.7 71.5 40.1 20.3 51.2 20.2 28.8 41.6
DANet CS 58.0 6.0 57.3 6.8 22.3 27.7 41.3 42.1 66.4 19.9 69.2 32.2 10.2 46.5 22.4 19.1 43.1 13.2 25.5 33.1
HRNet CS 55.6 10.9 55.4 7.7 15.9 21.7 37.8 42.5 67.4 13.3 59.0 38.7 14.0 68.3 23.8 48.0 48.3 17.9 23.6 35.3

SFSU FC 72.9 28.8 68.3 19.6 23.9 37.3 49.3 47.0 60.4 33.4 72.3 43.1 14.8 72.7 31.7 31.2 47.0 25.4 35.5 42.9
CMAda FC-DBF+FZ 79.9 32.5 69.5 14.7 24.7 41.1 53.6 51.3 67.4 34.8 83.8 49.0 19.9 77.0 34.1 38.5 51.1 29.6 42.7 47.1

DMAda ND 75.3 35.5 67.4 19.2 27.1 40.0 53.7 50.9 74.6 30.9 84.9 48.8 23.1 76.6 39.7 37.4 52.5 29.1 42.1 47.9
GCMA CS+DZ 79.7 48.7 71.5 21.6 29.9 42.5 56.7 57.7 75.8 39.5 87.2 57.4 29.7 80.6 44.9 46.2 62.0 37.2 46.5 53.4
MGCDA CS+DZ 76.0 49.4 72.0 11.3 21.7 39.5 52.0 54.9 73.7 24.7 88.6 54.1 27.2 78.2 30.9 41.9 58.2 31.1 44.4 48.9

TABLE 25
Comparison of externally pre-trained semantic segmentation models on ACDC for fog. The three groups of rows present models pre-trained

on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ: Foggy
Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 64.4 40.0 69.6 24.2 19.7 36.5 52.7 55.2 71.1 35.4 93.9 27.4 19.2 72.7 42.0 42.1 69.3 30.3 15.8 46.4
DeepLabv2 CS 66.4 31.2 26.8 22.9 18.6 8.2 32.3 10.7 70.7 39.0 31.3 17.6 41.1 65.0 30.0 34.3 18.3 42.3 29.0 33.5
DeepLabv3+ CS 82.3 57.6 61.5 18.1 16.4 33.3 49.6 54.5 76.0 44.1 90.0 9.6 28.7 69.0 35.1 34.5 28.9 41.7 37.5 45.7
DANet CS 52.1 14.5 49.7 5.5 16.9 30.0 47.9 51.5 72.2 23.3 80.1 24.2 3.0 44.7 32.4 27.5 65.1 10.8 7.7 34.7
HRNet CS 57.3 19.3 49.1 12.8 17.8 27.3 44.0 54.7 72.8 15.5 81.7 28.3 3.9 66.6 28.4 52.0 72.7 7.2 18.1 38.4

SFSU FC 72.3 37.9 74.4 28.9 19.3 37.5 49.4 54.6 58.0 43.7 77.9 28.6 5.3 73.6 42.4 44.0 72.7 31.4 14.9 45.6
CMAda FC-DBF+FZ 81.7 43.5 72.8 25.6 19.5 39.8 51.0 58.9 80.5 51.3 95.3 36.9 12.7 76.5 45.2 51.2 77.1 33.2 19.9 51.2

DMAda ND 75.5 44.7 72.6 26.4 20.8 38.3 52.9 57.8 75.9 38.6 96.3 35.5 26.8 75.8 47.7 50.7 73.9 35.8 17.3 50.7
GCMA CS+DZ 80.8 53.5 70.1 29.2 20.7 38.4 53.0 60.9 70.2 46.5 95.4 44.2 38.0 76.6 52.4 49.7 56.8 41.0 17.6 52.4
MGCDA CS+DZ 71.7 47.3 65.7 18.2 15.3 34.4 48.6 59.9 64.9 24.7 95.4 44.8 23.8 73.3 36.1 45.4 63.9 23.9 15.4 45.9

TABLE 26
Comparison of externally pre-trained semantic segmentation models on ACDC for nighttime. The three groups of rows present models

pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 66.5 24.0 50.3 16.9 11.6 26.4 34.2 25.5 44.2 21.6 0.1 40.8 24.8 57.4 6.8 37.3 20.5 23.9 19.1 29.0
DeepLabv2 CS 77.0 22.9 56.3 13.5 9.2 23.8 22.9 25.6 41.4 16.1 2.9 44.1 17.5 64.1 11.9 34.5 42.4 22.6 22.7 30.1
DeepLabv3+ CS 73.0 20.8 50.4 22.2 5.4 22.6 31.8 23.0 42.9 16.1 6.6 19.2 11.7 48.9 0.9 13.9 42.4 10.5 13.7 25.0
DANet CS 67.1 4.5 46.7 5.5 5.1 13.1 29.3 19.6 36.6 15.6 0.1 29.3 12.4 29.1 4.5 12.3 9.0 10.3 13.3 19.1
HRNet CS 50.0 10.1 59.9 0.7 6.0 14.2 25.6 22.3 19.1 3.4 0.1 37.6 7.9 49.4 6.9 45.9 13.9 7.8 11.3 20.6

SFSU FC 76.9 26.2 50.4 18.1 9.6 27.4 33.3 25.3 41.0 21.5 0.0 41.5 25.3 58.7 7.3 40.7 17.9 22.0 17.9 29.5
CMAda FC-DBF+FZ 82.6 25.4 53.9 10.1 11.2 30.5 36.7 30.0 38.7 16.5 0.1 46.0 26.2 65.8 13.9 50.9 20.4 24.8 23.8 32.0

DMAda ND 74.7 29.5 49.4 17.1 12.6 31.0 38.2 30.0 48.0 22.8 0.2 47.0 25.4 63.8 12.8 46.1 23.1 24.7 24.6 32.7
GCMA CS+DZ 78.6 45.9 58.5 17.7 18.6 37.5 43.6 43.5 58.7 39.2 22.4 57.9 29.9 72.1 21.5 56.2 41.8 35.7 35.4 42.9
MGCDA CS+DZ 74.5 52.5 69.4 7.7 10.8 38.4 40.2 43.3 61.5 36.3 37.6 55.3 25.6 71.2 10.9 46.4 32.6 27.3 33.8 40.8
DANNet CS+DZ 90.7 61.1 75.5 35.9 28.8 26.6 31.4 30.6 70.8 39.4 78.7 49.9 28.8 65.9 24.7 44.1 61.1 25.9 34.5 47.6

C.1 Collection

Our recordings were performed in Switzerland. Therefore, the
geographic distribution of ACDC is similar to Cityscapes, which
was also recorded in central Europe. This eliminates geographic
location from the set of factors that introduce a domain shift
between Cityscapes and ACDC and allows to study in isolation the
effect of visual conditions at time of capture on the performance

of semantic segmentation methods, both in the supervised setting
and the unsupervised domain adaptation setting.

C.2 Correspondence Establishment
We present in Algorithm 1 the dynamic programming algorithm
that we use for matching the GPS sequences of adverse-condition
recordings and normal-condition recordings of ACDC. The algo-
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TABLE 27
Comparison of externally pre-trained semantic segmentation models on ACDC for rain. The three groups of rows present models

pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 73.9 29.9 82.9 26.3 37.2 46.3 61.8 57.9 89.4 42.5 96.6 44.2 13.2 80.5 40.7 22.9 66.8 32.0 53.5 52.6
DeepLabv2 CS 71.2 26.7 73.8 20.8 27.1 29.9 39.3 44.4 87.3 25.2 82.0 42.0 14.3 76.2 36.3 26.6 49.8 30.3 42.2 44.5
DeepLabv3+ CS 74.4 29.8 82.3 18.1 28.8 41.7 54.3 55.6 88.7 32.8 97.2 36.7 8.5 84.7 51.7 34.0 61.5 29.7 40.0 50.0
DANet CS 59.9 2.4 75.9 12.9 31.5 37.7 49.5 53.3 85.5 35.5 91.1 35.4 8.4 53.5 26.0 16.4 57.8 17.9 38.9 41.5
HRNet CS 65.0 6.7 70.3 16.1 20.2 29.5 48.5 54.7 87.5 36.1 80.1 40.6 8.6 78.2 34.1 44.6 67.3 29.4 34.6 44.8

SFSU FC 74.6 29.9 81.4 24.1 33.8 46.2 59.9 56.7 86.8 40.8 93.4 46.4 15.1 80.5 40.5 18.6 65.7 33.6 52.5 51.6
CMAda FC-DBF+FZ 78.1 34.8 80.7 18.9 33.3 50.0 63.1 62.2 87.4 38.8 96.6 51.1 16.9 83.3 37.9 21.9 68.7 36.5 55.1 53.4

DMAda ND 78.3 37.7 82.5 24.2 36.8 49.0 64.5 61.5 90.6 42.8 97.3 49.6 18.2 83.4 45.1 21.6 70.2 35.2 54.8 54.9
GCMA CS+DZ 81.1 48.0 84.8 25.0 37.3 49.8 66.5 66.2 92.1 43.5 97.6 54.5 20.4 85.5 47.3 34.6 71.3 40.3 56.7 58.0
MGCDA CS+DZ 80.5 46.5 79.9 16.0 28.8 44.9 60.0 61.5 90.3 44.8 97.1 51.1 23.1 82.3 33.4 30.2 69.1 36.5 53.8 54.2

TABLE 28
Comparison of externally pre-trained semnatic segmentation models on ACDC for snow. The three groups of rows present models

pre-trained on normal, foggy, and nighttime conditions respectively. CS: Cityscapes, FC: Foggy Cityscapes, FC-DBF: Foggy Cityscapes-DBF, FZ:
Foggy Zurich, ND: Nighttime Driving, DZ: Dark Zurich.
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RefineNet CS 61.0 25.5 73.7 11.7 31.1 37.2 53.1 57.7 71.3 0.9 92.7 44.1 14.7 77.0 30.3 26.9 57.2 18.4 38.5 43.3
DeepLabv2 CS 68.5 26.6 52.7 18.8 26.9 22.2 35.7 40.7 76.5 3.6 49.9 50.4 27.1 73.7 27.6 39.1 60.9 21.1 42.5 40.2
DeepLabv3+ CS 73.9 32.6 71.3 11.1 25.6 31.4 50.6 54.4 77.8 4.1 87.0 25.1 14.6 82.7 39.5 17.2 55.2 12.0 31.2 42.0
DANet CS 47.6 5.4 57.5 2.9 29.1 29.3 41.4 51.2 71.1 0.5 64.8 32.7 11.7 56.5 14.5 27.9 53.7 8.1 25.9 33.3
HRNet CS 59.6 9.3 43.9 4.0 17.8 17.6 35.6 47.0 77.0 0.0 32.5 39.4 39.2 74.2 13.4 54.0 61.1 15.9 26.1 35.1

SFSU FC 64.5 24.0 72.6 10.9 28.8 37.8 54.9 58.1 62.4 0.8 78.4 44.2 9.5 76.0 29.5 25.6 55.2 16.7 37.3 41.4
CMAda FC-DBF+FZ 74.6 31.6 73.6 9.4 30.3 43.1 61.9 61.7 75.7 0.7 93.5 53.1 19.1 79.6 29.7 31.6 61.9 22.9 50.3 47.6

DMAda ND 73.6 34.4 74.9 12.3 33.4 41.1 58.4 60.1 79.9 0.6 95.4 53.1 23.0 80.4 40.3 34.5 62.9 22.7 48.6 48.9
GCMA CS+DZ 79.7 49.5 75.3 17.5 37.9 43.2 59.0 61.9 78.8 2.2 95.5 62.5 33.6 83.2 42.5 43.4 72.1 32.2 51.1 53.7
MGCDA CS+DZ 80.1 49.5 70.2 6.1 27.8 39.6 55.4 58.0 76.0 0.3 95.5 57.5 35.7 81.0 28.6 48.9 70.3 27.8 50.5 50.5

TABLE 29
Comparison of externally pre-trained instance segmentation models on ACDC including all conditions. The two groups of rows present

performance in AP box and APmask respectively. CS: Cityscapes.
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Mask R-CNN CS 12.8 6.3 29.9 8.2 8.2 5.2 6.5 4.5 10.2
Cascaded Mask R-CNN CS 15.4 6.2 29.6 8.0 8.2 6.9 3.9 6.6 10.6
HTC CS 8.6 1.7 21.8 5.3 5.5 4.6 1.6 2.9 6.5
Detectors CS 12.5 4.6 28.3 6.4 8.8 4.3 4.8 5.2 9.4

Mask R-CNN CS 9.9 3.4 27.5 8.1 8.8 5.7 4.7 2.4 8.8
Cascaded Mask R-CNN CS 11.8 2.7 26.6 7.8 8.6 8.1 3.3 3.1 9.0
HTC CS 6.8 1.2 20.7 5.3 5.7 4.7 0.9 1.8 5.9
Detectors CS 8.3 2.1 24.8 6.2 9.0 5.5 3.8 2.5 7.8

rithm takes into account the sequential nature of the GPS measure-
ments from the two recordings in computing the correspondence
function A. In particular, we enforce k < i ⇒ A(k) ≤ A(i).
That is, for a given sample i of the adverse-condition sequence P ,
its matched sample A(i) of the normal-condition sequence R is
restricted to not precede in time any sample of R that has been
matched to a sample k of P that precedes i. This constraint is
based on the fact that the routes of the two recordings are driven
in the same direction and thus in the same order. Consequently, for
routes that contain loops, our formulation prevents the matching

of samples that are nearest neighbors but correspond to different
passes from the same location and are thus potentially associated
with different driving directions and 3D rotations of the camera.

C.3 Annotation
In Fig. 1, we show for the adverse-condition part of ACDC (4006
images) the percentage of the pixels of each semantic class that
are marked as invalid in the ground-truth invalid mask J . For the
majority of the classes, a notable percentage of more than 5% of
the pixels are labeled as invalid, which demonstrates the ability
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TABLE 30
Comparison of externally pre-trained instance segmentation models on ACDC for fog. The two groups of rows present performance in

AP box and APmask respectively. CS: Cityscapes.
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Mask R-CNN CS 13.1 7.5 27.5 8.4 21.4 1.6 5.8 3.5 11.1
Cascaded Mask R-CNN CS 17.2 10.0 26.8 4.6 17.6 3.1 3.3 6.3 11.1
HTC CS 8.9 5.3 21.8 3.1 11.8 2.9 2.4 4.9 7.6
Detectors CS 15.7 7.5 31.1 5.4 22.5 4.0 5.9 4.4 12.1

Mask R-CNN CS 9.9 2.5 26.4 8.2 21.0 1.1 5.8 3.2 9.8
Cascaded Mask R-CNN CS 12.3 5.3 24.6 4.1 17.0 6.6 4.8 4.0 9.8
HTC CS 6.8 4.0 20.6 3.2 12.9 2.1 2.4 3.7 7.0
Detectors CS 11.5 4.4 29.0 5.5 20.3 4.0 3.1 2.8 10.1

TABLE 31
Comparison of externally pre-trained instance segmentation models on ACDC for nighttime. The two groups of rows present performance

in AP box and APmask respectively. CS: Cityscapes.
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Mask R-CNN CS 10.6 6.1 8.7 0.4 6.2 1.2 2.6 2.9 4.8
Cascaded Mask R-CNN CS 12.1 7.1 8.6 0.1 6.9 1.5 1.1 5.2 5.3
HTC CS 6.3 2.0 3.0 0.1 6.1 0.5 1.5 1.6 2.6
Detectors CS 8.6 3.6 6.1 3.5 3.4 0.2 2.4 2.4 3.8

Mask R-CNN CS 7.4 2.7 7.6 0.1 6.7 0.8 1.6 1.7 3.6
Cascaded Mask R-CNN CS 8.3 2.7 7.7 0.0 7.3 1.5 1.3 2.3 3.9
HTC CS 4.6 1.3 2.7 0.1 7.7 0.2 1.3 0.9 2.3
Detectors CS 5.2 1.3 5.3 1.5 3.5 0.2 2.4 1.2 2.6

TABLE 32
Comparison of externally pre-trained instance segmentation models on ACDC for rain. The two groups of rows present performance in

AP box and APmask respectively. CS: Cityscapes.

Method Trained on
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Mask R-CNN CS 12.7 4.5 43.9 12.9 2.7 8.8 10.2 6.4 12.8
Cascaded Mask R-CNN CS 14.3 2.5 44.9 13.5 2.6 13.4 7.9 7.5 13.3
HTC CS 9.6 0.5 34.8 8.1 4.9 9.6 1.6 4.7 9.2
Detectors CS 14.1 5.5 41.6 11.0 2.8 10.2 8.1 10.0 12.9

Mask R-CNN CS 10.5 1.9 39.9 13.1 3.4 9.9 6.6 2.9 11.0
Cascaded Mask R-CNN CS 12.3 0.5 40.2 13.8 3.8 13.5 6.2 3.7 11.8
HTC CS 8.0 0.2 33.4 8.2 4.5 9.4 0.7 2.8 8.4
Detectors CS 10.0 2.5 35.7 11.1 4.6 13.7 6.1 3.9 10.9
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Fig. 1. Per-class percentages of labeled pixels that are marked as invalid in the adverse-condition part ACDC.

of our specialized annotation protocol with privileged information
to assign a legitimate semantic label even to invalid regions with

ambiguous semantic content.

The total number of annotated pixels in ACDC is presented
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TABLE 33
Comparison of externally pre-trained instance segmentation models on ACDC for snow. The two groups of rows present performance in

AP box and APmask respectively. CS: Cityscapes.
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Mask R-CNN CS 18.6 18.5 38.9 7.7 9.6 6.8 7.3 6.8 14.3
Cascaded Mask R-CNN CS 25.0 16.4 37.3 9.3 12.4 7.5 5.7 10.2 15.5
HTC CS 13.9 4.9 28.4 6.0 8.7 4.1 3.3 4.6 9.2
Detectors CS 18.8 13.6 35.0 4.2 14.7 2.5 5.8 7.1 12.7

Mask R-CNN CS 15.6 13.4 35.8 7.1 10.8 7.9 8.0 4.3 12.9
Cascaded Mask R-CNN CS 19.2 9.4 33.4 8.4 12.0 10.0 3.2 4.6 12.5
HTC CS 11.7 3.3 27.2 5.9 8.0 5.6 1.3 3.3 8.3
Detectors CS 12.4 7.7 29.8 3.2 16.0 3.0 4.5 4.0 10.1

Algorithm 1 Dynamic programming algorithm for GPS sequence matching
Input: Adverse-condition GPS sequence P = (p1, . . . ,pn), normal-condition GPS sequence R = (r1, . . . , rm)
Output: Correspondence function A : {1, . . . , n} → {1, . . . ,m}

1: . Compute pairwise Euclidean distances of GPS samples
2: dij ← ‖pi − rj‖, 1 ≤ i ≤ n, 1 ≤ j ≤ m
3: . Compute cost matrix C (n×m)
4: C1j ← d1j , 1 ≤ j ≤ m
5: Cij ← min

k≤j
{Ci−1,k}+ dij , 2 ≤ i ≤ n, 1 ≤ j ≤ m

6: . Compute backtracking indices matrix α
7: αij ← argmin

k≤j
{Ci−1,k}, 2 ≤ i ≤ n, 1 ≤ j ≤ m

8: . Backtracking
9: A(n)← argmin

j
{Cnj}

10: A(i)← αi+1,A(i+1), 1 ≤ i ≤ n− 1

TABLE 34
Comparison of externally pre-trained panoptic segmentation

models on ACDC including all conditions. CS: Cityscapes.

Method Trained on PQ PQthings PQstuff SQ RQ

PanopticFPN CS 13.0 11.1 14.5 69.3 17.6
K-Net CS 16.7 14.6 18.3 70.2 23.3
Panoptic-Deeplab CS 4.7 0.7 7.7 47.2 6.8
Mask2Former CS 37.7 29.0 44.1 77.5 47.4

TABLE 35
Comparison of externally pre-trained panoptic segmentation

models on ACDC for fog. CS: Cityscapes.

Method Trained on PQ PQthings PQstuff SQ RQ

PanopticFPN CS 15.9 17.1 15.0 70.2 21.5
K-Net CS 17.3 17.0 17.6 65.7 24.2
Panoptic-Deeplab CS 6.5 1.9 9.9 40.4 9.1
Mask2Former CS 42.7 30.8 51.4 79.1 52.7

in Table 44. Note that labeled pixels that are marked as valid in
the ground-truth invalid masks J constitute ca. 85% of the pixels
in the adverse-condition part of the dataset. From the remaining
15% of pixels in the adverse-condition part that did not receive
a legitimate semantic label in stage 1 of the annotation because
of their ambiguity, it was possible to label half of them (7.5%)
with a legitimate semantic label in stage 2 of the annotation, by
making use of the additional privileged information in the form

TABLE 36
Comparison of externally pre-trained panoptic segmentation

models on ACDC for nighttime. CS: Cityscapes.

Method Trained on PQ PQthings PQstuff SQ RQ

PanopticFPN CS 4.0 3.2 4.8 49.4 6.0
K-Net CS 6.0 3.8 7.6 48.9 9.0
Panoptic-Deeplab CS 1.6 0.4 2.5 29.7 2.6
Mask2Former CS 19.9 17.2 22.0 71.7 26.5

TABLE 37
Comparison of externally pre-trained panoptic segmentation

models on ACDC for rain. CS: Cityscapes.

Method Trained on PQ PQthings PQstuff SQ RQ

PanopticFPN CS 18.6 14.2 21.9 67.7 25.2
K-Net CS 23.0 18.7 26.1 69.4 31.7
Panoptic-Deeplab CS 8.3 0.5 13.9 44.6 11.7
Mask2Former CS 41.4 30.8 49.2 77.0 52.1

of corresponding normal-condition images and original adverse-
condition videos. Note that for stage 2 of the annotation, we
explicitly set the time budget (excluding quality control) to 20
minutes and asked the annotators to prioritize labeling of (i)
traffic participants and (ii) distant and/or unclear objects that were
affected the most by the adverse conditions at the time of capture.
The normal-condition part of the dataset was annotated with the
standard semantic segmentation protocol, so none of the labeled
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Fig. 2. The submission page of our benchmark website. Our eval-
uation server supports four tasks, i.e. semantic segmentation, object
detection, panoptic segmentation, and uncertainty-aware semantic seg-
mentation, and seven condition configurations of ACDC, accepting sub-
missions for each of the four individual adverse conditions, for normal
conditions, all adverse conditions, and all adverse and normal condi-
tions. Best viewed on a screen.

TABLE 38
Comparison of externally pre-trained panoptic segmentation

models on ACDC for snow. CS: Cityscapes.

Method Trained on PQ PQthings PQstuff SQ RQ

PanopticFPN CS 13.1 12.5 13.6 62.0 17.4
K-Net CS 18.7 19.8 18.0 66.6 25.8
Panoptic-Deeplab CS 1.6 0.1 2.7 27.0 2.5
Mask2Former CS 42.0 36.9 45.8 77.9 52.6

pixels is invalid. It is worth noting that, probably due to the
normality of the conditions in this part of the dataset, a slightly
larger percentage of pixels (96.8%) was possible to label compared
to the adverse-condition part. Overall, more than 10 billion pixels
in ACDC have received panoptic labels.

C.4 Evaluation Server
We have implemented a website and evaluation server for the
ACDC benchmark and have made it publicly available at https:
//acdc.vision.ee.ethz.ch. An indicative screenshot from the sub-
mission page of the website is provided in Fig. 2.

https://acdc.vision.ee.ethz.ch
https://acdc.vision.ee.ethz.ch
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TABLE 39
Uncertainty-aware semantic segmentation baseline results on the complete test set of ACDC including all conditions. Supervised
methods for standard semantic segmentation are trained and evaluated jointly on all conditions for semantic label prediction. Confidence

prediction baselines: max-softmax network outputs (Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 91.3 67.6 84.4 34.3 42.1 49.9 64.7 64.2 85.8 54.6 95.3 59.6 34.4 84.6 51.9 60.6 70.6 43.3 48.9 62.5
RefineNet GT 92.9 73.1 89.1 43.1 50.7 57.0 72.9 70.7 90.1 63.4 97.7 67.6 43.1 87.3 57.3 61.4 77.1 54.1 58.3 68.8
DeepLabv2 Max-Softmax 87.1 60.4 79.7 36.1 35.7 32.6 47.3 48.7 80.2 49.2 92.2 49.0 24.7 79.0 51.1 43.3 72.3 26.3 45.1 54.7
DeepLabv2 GT 88.5 64.4 84.2 40.9 41.8 37.8 54.0 54.2 86.4 54.9 96.0 53.6 30.3 81.8 52.5 42.7 73.6 33.3 47.6 58.9
DeepLabv3+ Max-Softmax 92.1 71.3 88.2 49.0 47.3 54.9 68.7 65.6 88.0 60.7 96.0 65.0 33.9 87.5 66.7 72.6 81.3 43.8 55.0 67.8
DeepLabv3+ GT 93.8 76.5 91.4 56.6 55.4 62.3 75.0 72.3 91.8 66.5 98.0 72.0 41.0 89.5 71.1 74.0 86.5 55.4 63.7 73.3

TABLE 40
Uncertainty-aware semantic segmentation baseline results on ACDC for fog. Supervised methods for standard semantic segmentation are
trained and evaluated on fog for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and

ground-truth invalid masks (GT).
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RefineNet Max-Softmax 92.6 71.9 82.9 40.7 35.8 42.7 62.1 62.6 84.1 64.1 97.5 45.0 26.8 77.1 57.8 59.9 79.8 35.2 33.4 60.6
RefineNet GT 93.4 76.5 87.6 48.7 45.5 49.4 68.2 68.9 87.3 73.0 98.1 55.6 40.3 80.9 61.3 65.4 83.7 53.6 51.7 67.9
DeepLabv2 Max-Softmax 89.7 63.0 79.2 39.4 25.9 25.0 41.4 46.6 82.5 66.7 95.6 36.4 35.6 72.7 49.5 29.6 44.5 29.2 33.3 51.9
DeepLabv2 GT 90.2 66.7 82.8 44.2 35.3 31.5 49.5 52.2 84.8 69.4 96.9 44.2 44.5 76.0 48.3 30.1 39.0 48.0 42.7 56.7
DeepLabv3+ Max-Softmax 92.9 74.8 87.2 51.3 41.7 49.9 65.6 69.8 87.1 72.3 97.6 51.9 27.1 82.8 67.4 79.1 84.1 42.6 36.4 66.4
DeepLabv3+ GT 93.9 78.3 90.0 55.5 52.0 57.9 72.3 75.9 89.2 76.6 98.4 63.2 38.5 85.0 71.7 85.1 86.7 66.0 53.3 73.1

TABLE 41
Uncertainty-aware semantic segmentation baseline results on ACDC for nighttime. Supervised methods for standard semantic

segmentation are trained and evaluated on nighttime for semantic label prediction. Confidence prediction baselines: max-softmax network outputs
(Max-Softmax) and ground-truth invalid masks (GT).
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RefineNet Max-Softmax 92.3 66.4 78.6 31.8 37.2 46.2 48.3 53.3 73.5 16.9 83.6 54.9 34.6 77.4 8.5 43.1 53.6 35.2 41.6 51.4
RefineNet GT 93.6 72.4 88.2 42.0 53.0 55.5 61.6 61.7 89.0 31.3 97.1 63.3 41.9 80.0 18.2 50.3 60.8 49.5 51.9 61.1
DeepLabv2 Max-Softmax 90.2 62.2 78.6 29.9 32.9 33.7 36.5 40.3 65.6 25.2 77.9 45.2 23.2 70.2 5.0 14.6 62.1 40.3 38.8 45.9
DeepLabv2 GT 90.8 65.8 87.2 37.8 45.3 43.3 48.1 49.6 87.8 37.5 97.0 51.1 29.8 74.3 17.3 17.3 63.0 51.8 43.8 54.7
DeepLabv3+ Max-Softmax 93.8 73.3 85.2 47.0 43.4 51.3 53.7 54.3 80.7 28.7 87.9 62.1 40.9 84.8 10.4 65.2 78.8 34.7 47.2 59.1
DeepLabv3+ GT 94.9 77.5 91.5 54.7 53.4 60.2 64.8 62.5 92.7 41.3 98.5 70.2 49.3 88.3 22.4 65.5 82.4 50.5 55.0 67.1

TABLE 42
Uncertainty-aware semantic segmentation baseline results on ACDC for rain. Supervised methods for standard semantic segmentation are
trained and evaluated on rain for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and

ground-truth invalid masks (GT).
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RefineNet Max-Softmax 86.0 67.8 89.9 44.9 45.7 53.2 65.1 67.3 92.1 48.4 97.8 58.6 23.6 86.6 44.1 53.1 65.6 40.3 56.6 62.5
RefineNet GT 89.5 70.8 92.1 54.1 53.2 59.9 72.6 72.3 93.9 52.1 98.4 67.4 26.6 88.7 52.4 56.4 75.5 51.4 62.9 67.9
DeepLabv2 Max-Softmax 85.9 62.3 87.2 48.3 38.9 35.8 48.6 51.5 87.3 41.8 95.9 47.2 13.5 80.8 46.2 50.2 69.3 23.9 50.0 56.0
DeepLabv2 GT 87.8 65.1 89.4 52.1 42.5 40.2 53.7 56.1 89.6 43.6 96.8 53.4 13.8 82.7 50.2 48.1 72.9 33.3 51.4 59.1
DeepLabv3+ Max-Softmax 91.2 75.3 92.8 62.2 53.7 60.0 71.3 72.2 93.2 50.0 98.0 65.4 30.8 90.0 63.5 77.0 83.1 48.0 63.9 70.6
DeepLabv3+ GT 93.2 78.4 94.2 68.8 60.0 66.0 75.8 78.2 94.5 52.5 98.6 72.4 35.0 91.0 70.4 80.4 87.4 58.8 69.0 75.0
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TABLE 43
Uncertainty-aware semantic segmentation baseline results on ACDC for snow. Supervised methods for standard semantic segmentation are
trained and evaluated on snow for semantic label prediction. Confidence prediction baselines: max-softmax network outputs (Max-Softmax) and

ground-truth invalid masks (GT).
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RefineNet Max-Softmax 89.1 59.9 83.8 25.8 43.8 53.1 72.6 69.2 88.6 43.5 96.8 65.9 11.7 85.8 39.5 48.4 74.1 36.9 48.8 59.9
RefineNet GT 91.3 69.1 86.8 32.4 49.9 59.0 78.2 72.8 90.0 52.5 97.3 71.8 16.1 87.6 37.6 44.7 79.5 39.8 60.1 64.0
DeepLabv2 Max-Softmax 89.1 61.7 82.7 26.4 40.9 35.5 56.5 54.1 85.2 39.0 95.1 55.0 25.7 84.3 38.6 53.8 77.6 29.0 49.5 56.8
DeepLabv2 GT 90.3 65.1 83.1 27.6 42.7 36.5 57.9 56.7 85.5 46.3 95.1 56.4 26.4 85.0 41.1 55.0 78.2 30.2 49.8 58.4
DeepLabv3+ Max-Softmax 90.6 67.0 88.8 45.1 48.9 57.8 76.6 72.9 90.8 45.7 97.0 74.8 28.4 89.2 63.3 67.8 87.8 36.7 61.1 67.9
DeepLabv3+ GT 92.9 74.0 90.4 50.3 53.9 63.4 80.5 77.4 92.2 53.6 97.6 79.2 36.6 90.9 64.4 65.9 90.0 45.2 69.8 72.0

TABLE 44
Overall annotation statistics for ACDC. We report the total number of pixels assigned to a legitimate semantic label (Labeled) and of pixels not
assigned to any semantic label (Unlabeled) as well as the respective percentages for the adverse-condition part of the dataset with 4006 images

(Adverse), the normal-condition part of the dataset with 1503 images (Normal), and their union (Full).

Adverse Normal Full
#pixels % of pixels #pixels % of pixels #pixels % of pixels

Labeled 7.682× 109 92.47 3.015× 109 96.77 10.697× 109 93.64
-out of which Valid 7.055× 109 84.93 3.015× 109 96.77 10.071× 109 88.16
-out of which Invalid 0.627× 109 7.54 0 0 0.627× 109 5.48
Unlabeled 0.625× 109 7.53 0.101× 109 3.23 0.726× 109 6.36

Total 8.307× 109 100.00 3.117× 109 100.00 11.423× 109 100.00


