

Fully Distributed Peer-to-Peer Optimal Voltage Control with Minimal Model Requirements

Lukas Ortmann¹, Alexander Prostejovsky², Kai Heussen², Saverio Bolognani¹

- ¹ ETH Zurich, Switzerland
- ² Technical University of Denmark, Denmark

Congestion Leading to Overvoltage

Volt/VAR Problem

for every inverter h find q_h subject to $v_{\min} \le v_h(q, w) \le v_{\max}$ $q_{\min,h} \le q_h \le q_{\max,h}$

Example:

- Long distribution grid line
- Wind/Solar inject p₃ leads to overvoltage
- Power consumption of EV p₁ is higher than Wind/Solar production p₃

Local Feedback Solutions

- Jahangiri & Aliprantis (2013)
- Farivar, Zhou, & Chen (2015)
- Yeh, Gayme, & Low (2012)
- VDE-AR-N 4105 technical req. (2011)

Properties

- No communication
- No model information
- Only inverter measurements

But suboptimal

- Zhu & Liu (2015)
- IEEE P1547.8
- Turitsyn et al. (2011)
- Kekatos et al. (2015)
- Li, Gu, & Dahleh (2014)
- Cavraro & Carli (2015)
- ENTSO-E Draft network code (2012)

Does communication allow to achieve optimality?

Today: Systematic way of designing communication

The Optimization Problem

$$\begin{array}{ll} \min_{q} & \frac{1}{2}q^{T}Mq\\ \text{subject to} & v_{\min} \leq v_{h}(q,w) \leq v_{\max}\\ & q_{\min,h} \leq q_{h} \leq q_{\max,h} \end{array}$$

How to distributedly solve this optimization problem?

Dualizing the Constraints

Multipliers λ and μ **Lagrangian** $\mathcal{L}(q, \lambda, \mu) = \frac{1}{2}q^T Mq + \lambda_{\max}^T (v(q, w) - v_{\max}) + \lambda_{\min}^T (v_{\min} - v(q, w)) + \mu_{\min}^T (q_{\min} - q) + \mu_{\max}^T (q - q_{\max})$

Dual Updates

 $\mathcal{L}(\boldsymbol{q},\boldsymbol{\lambda},\boldsymbol{\mu}) = \frac{1}{2}\boldsymbol{q}^T\boldsymbol{M}\boldsymbol{q} + \boldsymbol{\lambda}_{\max}^T(\boldsymbol{v}(\boldsymbol{q},\boldsymbol{w}) - \boldsymbol{v}_{\max}) + \boldsymbol{\lambda}_{\min}^T(\boldsymbol{v}_{\min} - \boldsymbol{v}(\boldsymbol{q},\boldsymbol{w})) + \boldsymbol{\mu}_{\min}^T(\boldsymbol{q}_{\min} - \boldsymbol{q}) + \boldsymbol{\mu}_{\max}^T(\boldsymbol{q} - \boldsymbol{q}_{\max}) + \boldsymbol{\lambda}_{\max}^T(\boldsymbol{v}_{\max}) + \boldsymbol{\lambda}_{\max}^T(\boldsymbol{v}$

 λ -Update (Locally integrate the voltage violation)

$$\lambda(t+1) = [\lambda(t) + \alpha \nabla_{\lambda} \mathcal{L}(q, \lambda, \mu)]_{\geq 0}$$

$$\lambda_{\min}(t+1) = [\lambda_{\min}(t) + \alpha (v_{\min} - v(q, w))]_{\geq 0}$$

$$\lambda_{\max}(t+1) = [\lambda_{\max}(t) + \alpha (v(q, w) - v_{\max})]_{> 0}$$

 μ -Update (Locally integrate the reactive power violation)

$$\mu(t + 1) = [\mu(t) + \gamma \nabla_{\mu} \mathcal{L}(q, \lambda, \mu)]_{\geq 0}$$

$$\mu_{\min}(t + 1) = [\mu_{\min}(t) + \gamma(q_{\min} - q)]_{\geq 0}$$

$$\mu_{\max}(t + 1) = [\mu_{\max}(t) + \gamma(q - q_{\max})]_{> 0}$$

Automatic Control Laboratory

Primal Update and Grid Sparsity

q-Update (unconstrained QP)

$$\begin{aligned} \mathcal{L}(q,\lambda,\mu) &= \frac{1}{2}q^T M q + \lambda_{\max}^T (v(q,w) - v_{\max}) + \lambda_{\min}^T (v_{\min} - v(q,w)) + \mu_{\min}^T (q_{\min} - q) + \mu_{\max}^T (q - q_{\max}) \\ q(t+1) &= \arg\min \mathcal{L}(q,\lambda(t+1),\mu(t+1)) \\ &= I(\lambda_{\min} - \lambda_{\max}) + G(\mu_{\min} - \mu_{\max}) \end{aligned}$$

G is sparse \Rightarrow sparse communication

Block Diagram & Time-Line

- Inverters take local voltage magnitude measurements
- Only dual multipliers μ are send to neighbours
- Guaranteed convergence from distributed optimization theory

Automatic Control Laboratory

Active Power and Reactive Power Capabilities

Battery:P=10 kW $Q=\pm 8 \text{ kVAr}$ Static Load:P=15 kWQ=0 kVArPV Inverter:P=0 kW $Q=\pm 6 \text{ kVAr}$

Experimental Results - Droop Control

Local control at PV1 makes overvoltage worse

Automatic Control Laboratory

Exp. Results - Distributed Control

Convergence to the allowed voltage band

Scalability

Necessary Communication Steps

	$K \gg 1$	<i>K</i> = 1	
nodes	communication steps	actuation steps	actuation steps
3	35	46	258 (α = 40)
7	566	46	2975 (<i>α</i> = 3.1)
10	1417	47	5972 (<i>α</i> = 1.6)
30	14515	51	>30000
100	19848	61	>30000

Scaling of Communication Steps

- More nodes more communication steps
- No exponential rise though
 - \Rightarrow The algorithm is scalable

Necessary Actuation Steps

Actuation steps required for convergence, for different values of *K* (communication steps) in a network of 30 nodes.

К	100	300	1000	3000	10000	30000
actuation steps	724	211	67	39	50	51

Scaling of Actuation Steps

- Faster convergence with larger K
- K should be as large as possible
- But it doesn't need to be very large

Conclusions

Take-Away Messages

- All local control strategies can make over/undervoltages worse
- Peer-to-peer communication enables convergence to optimal solution
- Communication should happen more often then actuation
- Scales nicely with number of nodes

People Involved

Lukas Ortmann

Alexander Prostejovsky

Kai Heussen

Saverio Bolognani

Acknowledgement

Horizon 2020 European Union funding for Research & Innovation

Technical University of Denmark

