

Experimental Validation of Feedback Optimization in Power Distribution Grids

Lukas Ortmann, Adrian Hauswirth, Ivo Caduff, Florian Dörfler, Saverio Bolognani ETH Zurich, Switzerland

Congestion Leading to Overvoltage

Volt/VAR Problemfind $q_h \min_q$ $\frac{1}{2}q^T M q$ subject to $v_{\min} \leq v_h(q, w) \leq v_{\max}$ $q_{\min,h} \leq q_h \leq q_{\max,h}$

Example:

- Long distribution grid line
- Wind/Solar inject p₃ leads to overvoltage
- Power consumption of EV p₁ is higher than Wind/Solar production p₃

Local Feedback Control

Local Strategies

$$q_h(t+1) = g_h(q_h(t),v_h(t))$$

where $g_h(q, v)$ only uses local information

Local control strategies cannot solve this problem

Mathematically proven in "On the need for communication for voltage regulation of power distribution grids"

A Feedforward Approach

Optimal Reactive Power Flow (ORPF)

- Similar to power transmission grid ORPF
- Motivated by encouraging results on ORPF convexification Lavaei (2012), Farivar (2013), ...
- Requires load knowledge full communication
- Heavily model based

The Optimization Problem

$$\begin{array}{ll} \min_{q} & \frac{1}{2} q^{T} M q \\ \text{subject to} & v_{\min} \leq v_{h}(q,w) \leq v_{\max} \\ & q_{\min,h} \leq q_{h} \leq q_{\max,h} \end{array}$$

Without model for $v_h(q, w)$ and knowledge of w

How to design a feedback controller that steers grid to the solution?

Lagrangian $\mathcal{L}(\boldsymbol{q}, \lambda) = \frac{1}{2} \boldsymbol{q}^T \boldsymbol{M} \boldsymbol{q} + \lambda_{\max}^T (\boldsymbol{v}(\boldsymbol{q}, \boldsymbol{w}) - \boldsymbol{v}_{\max}) + \lambda_{\min}^T (\boldsymbol{v}_{\min} - \boldsymbol{v}(\boldsymbol{q}, \boldsymbol{w}))$

Optimization Algorithm

- **Dual update** $\lambda(t+1) = \left[\lambda(t) + \alpha \frac{\partial \mathcal{L}}{\partial \lambda}\right]_{>0}$
- Primal update $q(t + 1) = \arg \min_{q \in Q} \mathcal{L}(q, \lambda(t + 1))$

Feedback Optimization Control

Lagrangian $\mathcal{L}(q, \lambda) = \frac{1}{2}q^T M q + \lambda_{\max}^T (v(q, w) - v_{\max}) + \lambda_{\min}^T (v_{\min} - v(q, w))$ **Dual update**

$$\lambda(t+1) = \left[\lambda(t) + \alpha \frac{\partial \mathcal{L}}{\partial \lambda}\right]_{\geq 0}$$

$$\lambda_{\max}(t+1) = [\lambda_{\max}(t) + \alpha(v(q, w) - v_{\max})]_{\geq 0}$$

$$\lambda_{\min}(t+1) = [\lambda_{\min}(t) + \alpha(v_{\min} - v(q, w))]_{\geq 0}$$
Locally integrate the voltage violation
rimal update $q(t+1) = \arg\min_{q \in Q} \mathcal{L}(q, \lambda(t+1))$

$$\frac{\partial \mathcal{L}}{\partial q} = 0 \quad \Rightarrow \quad Mq + \underbrace{\frac{\partial v}{\partial q}}_{X} (\lambda_{\max} - \lambda_{\min}) = 0 \quad \Rightarrow \quad q_{\text{unc}} = -M^{-1}X(\lambda_{\max} - \lambda_{\min})$$

$$q(t+1) = \arg\min_{q \in Q} ||q - q_{\text{unc}}||_{M} \qquad (q\text{-Update})$$

Automatic Control Laboratory

Ρ

Block Diagram

- Inverters take local voltage magnitude measurements
- · Central control unit calculates set-points
- · Set-points are send to the inverters

Needed Model Information

Linear Model Approximation

- The derivative $\frac{\partial v(q,w)}{\partial q}$ can be approximated by a constant X
- X models the sensitivity of v with respect to q
- · Can be calculated using topology and cable data
- Similar to Power Transfer Distribution Factors

Model-free Approximation

All entries of X are positive

$$\Rightarrow X = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

Active Power and Reactive Power Capabilities

Battery:P=10 kW $Q=\pm 8 \text{ kVAr}$ Static Load:P=15 kWQ=0 kVArPV Inverter:P=0 kW $Q=\pm 6 \text{ kVAr}$

Experimental Results - ORPF

Steady-state error with voltage violation

Experimental Results - Droop Control

Reactive power of PVs not used \Rightarrow persistant overvoltage

Exp. Results - Feedback Optimization

Conclusions

Take-Away Messages

- All local control strategies can make over/undervoltages worse
- Feedback Optimization can solve the problem
- Feedback Optimization has great potential for power grid applications
- Feedback Optimization is very robust

People Involved

Lukas Ortmann

Adrian Hauswirth

Ivo Caduff

Florian Dörfler

Saverio Bolognani

Acknowledgement

Horizon 2020 European Union funding for Research & Innovation

Technical University of Denmark

