

Optimization Algorithms as Robust Feedback Controllers

Saverio Bolognani

Towards a Systems Theory for Optimization Algorithms

Optimal steady-state regulation

- Stable or pre-stabilized nonlinear plant
- Steady-state specifications in terms of optimality (efficiency, economic cost, ...)
- Multiple constrained inputs to be set
- Multiple steady-state constraints to be satisfied
- Exogenous factors (disturbances) affect the plant steady state

Data networks

- Multiple source-destination pairs
- Network utility maxim.
- Coupling via congestion
- Throughput

Grid frequency control

- Activation of reserves (generation ramp up/down)
- Exogenous time-varying demand
- Economic cost

Processes (compressors)

- Complex steady-state
 mapping
- Tunable parameters and set-points
- Efficiency and safety

Real-time power system operation

- Power system dynamics are considered at steady state
- Disturbances (renewable generation) require corrections from the predicted schedule
- Operational limits on all electrical quantities
- Economic interest defines the **optimal operation** (best generation set-points)

Desired operation: solution of a non-convex Optimal Power Flow problem

A control interpretation of real-time grid operation

Goal: The solution of the Optimal Power Flow problem is an asymptotically stable equilibrium for the closed-loop dynamics

 \rightarrow Feedback optimization

Outline

- 1. Feedback optimization design
- 2. Closed-loop analysis
- 3. Conclusions

Outline

1. Feedback optimization design

2. Closed-loop analysis

3. Conclusions

"Certainty-equivalence" design

How to design feedback controllers that yield the desired (autonomous) closed-loop behavior?

Algebraic input/output steady-state map y = h(u; w)+ Classical iterative nonlinear optimization algorithms

"Certainty-equivalence" design

Steady state specsminimize $_{u,y}$ $\phi(u,y)$ subject to $y \in \mathcal{Y}$ $u \in \mathcal{U}$ y = h(u;w)

Optimization perspective

Analysis and design of algorithms with the tools of dynamical systems **but we implement them via the physics**

Control perspective

Feedback controllers interpreted as solvers of a specific optimization problem **but we** require general objective + constraints

Keywords: Self-optimizing control, steady-state optimization, economic MPC, online optimization, extremum seeking, real-time iteration, modifier adaptation...

Design of feedback optimizers

Borrow ideas from **iterative optimization algorithms** for **nonlinear optimization** and interpret these algorithms as dynamical systems

- Gradient Flows [Brockett, 1991], [Bloch et al., 1992], [Helmke & Moore, 1994], ...
- Interior-point methods [Karmarkar, 1984], [Khachian, 1979], [Faybusovich, 1992], ...
- Acceleration & Momentum methods [Su et al., 2014], [Wibisono et al, 2016], [Krichene et al., 2015], [Wilson et al., 2016], [Lessard et al., 2016], ...
- Saddle-Point Flows

[Arrow et al., 1958], [Kose, 1956], [Feijer & Paganini, 2010], [Cherukuri et al., 2017], [Holding & Lestas, 2014], [Cortés & Niederländer, 2018], [Qu & Li, 2018], ...

Claim: In continuous-time, most algorithms reduce to either (projected) gradient flows (w/o momentum) or (projected) saddle-point flows.

Re-deriving PI controllers

Dual ascent iteration

$$\mathcal{L}(x,\lambda) = u^2 + \lambda(h(u;w) - r)$$

- Primal minimization $u = -\frac{1}{2}\nabla h(u; w)\lambda$
- Dual ascent $\dot{\lambda} = \alpha \frac{\partial \mathcal{L}}{\partial \lambda} = \alpha (h(u; w) r)$

I controller

$$\dot{u} = \frac{\alpha}{2} \nabla h(u; w)(r - y)$$

 $\begin{array}{ll} {\rm minimize}_{u,y} & u^2 \\ {\rm subject \ to} & y=r \quad ({\rm tracking}) \\ & y=h(u;w) \quad ({\rm plant \ steady-state}) \end{array}$

Augmented dual ascent iteration

$$\mathcal{L}(x,\lambda) = u^{2} + \lambda(h(u;w) - r) + \rho(h(u;w) - r)^{2}$$

PI controller

$$\begin{split} \dot{\lambda} &= \alpha(r-y) \\ u &= \frac{1}{2} \nabla h(u; w) \lambda + \rho \nabla h(u; w) (r-y) \end{split}$$

Examples of feedback optimization design

 $\begin{array}{ll} {\rm minimize}_{u,y} & \phi(u,y) \\ {\rm subject \ to} & y \in \mathcal{Y} \quad {\rm output \ constraints} \\ & u \in \mathcal{U} \quad {\rm input \ saturation} \\ & y = h(u;w) \quad {\rm steady \ state \ map} \end{array}$

minimize_u $\phi(u, y) + p(y)$ subject to $u \in \mathcal{U}$ y = h(u; w)
$$\begin{split} \mathcal{Y} & \rightarrow \text{Penalty function} \quad (\text{Hauswirth 2017, Tang 2017, Mazzi 2018, ...}) \\ \text{Gradient descent flow} & \rightarrow \text{proportional-like feedback law} \\ \dot{u} &= \Pi_{\mathcal{U}} \bigg[- \nabla_u \phi(u, y) - \underbrace{\nabla h(u; w)'}_{\text{model}} \nabla_y \phi(u, y) - \underbrace{\nabla h(u; w)'}_{\text{model}} \nabla p(y) \bigg] \end{split}$$

 \rightarrow arbitrarily small output constraint violation

Examples of feedback optimization design

 $\begin{array}{ll} {\rm minimize}_{u,y} & \phi(u,y) \\ {\rm subject \ to} & y \in \mathcal{Y} \quad {\rm output \ constraints} \\ & u \in \mathcal{U} \quad {\rm input \ saturation} \\ & y = h(u;w) \quad {\rm steady \ state \ map} \end{array}$

Output constraint representation

$$\mathcal{Y} := \{ y \mid g(y) \le 0 \}$$

Lagrangian

 $\mathcal{L}(u,y,\lambda) = \phi(u,y) + \lambda' g(y)$

$$\begin{array}{ll} \mbox{Saddle flow} & (\mbox{Bolognani 2015, Dall'Anese 2018, Bernstein 2019, Colombino 2020, ...)} \\ \mbox{Primal descent / dual ascent } \rightarrow \mbox{proportional-integral feedback law} \\ & \left\{ \begin{split} \dot{u} &= \Pi_{\mathcal{U}} \left[- \nabla_u \phi(u,y) - \underbrace{\nabla h(u;w)'}_{\text{model}} \nabla_y \phi(u,y) - \underbrace{\nabla h(u;w)'}_{\text{model}} \nabla g(y)' \lambda \right] \\ \dot{\lambda} &= \Pi_{\geq 0} \left[g(y) \right] \end{split} \right.$$

ightarrow asymptotic (exact) constraint satisfaction

Examples of feedback optimization design

 $\begin{array}{ll} {\rm minimize}_{u,y} & \phi(u,y) \\ {\rm subject \ to} & y \in \mathcal{Y} \quad {\rm output \ constraints} \\ & u \in \mathcal{U} \quad {\rm input \ saturation} \\ & y = h(u;w) \quad {\rm steady \ state \ map} \end{array}$

$$ilde{\mathcal{U}} = \mathcal{U} \cap h^{-1}(\mathcal{Y})$$

Projected gradient descent (Hauswirth 2016, Haberle 2020, ...)
Projection on the input and output constraints
$$\dot{u} = \Pi_{\tilde{\mathcal{U}}} \left[-\nabla_u \phi(u, y) - \underbrace{\nabla h(u; w)'}_{\text{model}} \nabla_y \phi(u, y) \right]$$

 \rightarrow any-time constraint satisfaction

→ discretization: repeated QP (projection) Häberle et al., IEEE Control Systems Letters, 2021 C

Projected gradient flow via repeated Quadratic Programming

Theorem: (Häberle et al., IEEE Control Systems Letters, 2021)

LICQ + Lipschitz + differentiability + small $\alpha \rightarrow$ global convergence to the set of local minima

Outline

1. Feedback optimization design

2. Closed-loop analysis

3. Conclusions

Closing the loop

Optimization Dynamics

Example: Generalized gradient descent

$$\dot{u} = -Q(u) \left(-\nabla_u \phi(u, x) - \nabla h(u; w)' \nabla_y \phi(u, x) \right)$$

with $Q(u) \succ 0$

Plant Dynamics

Exponentially stable system

 $\dot{x} = f(x, u; w)$

with steady-state map x = h(u; w)

Closed loop

» Increasing gain $\|Q(u)\|$ »

Singular perturbation analysis

Theorem A. Hauswirth, S. Bolognani, G. Hug, F. Dörfler, IEEE TAC, 2021 🗷

Assume

• Physical system exponentially stable with Lyapunov function W(u, x) s.t.

 $\dot{W}(u,x) \le -\gamma ||x - h(u;w)||^2$ $||\nabla_u W(u,x)|| \le \zeta ||x - h(u;w)||.$

• Nonconvex cost $\phi(u, x)$ has compact level sets and *L*-Lipschitz gradient.

Then, all trajectories converge to the set of KKT points whenever

$$\sup_{u} \|Q(u)\| < \frac{\gamma}{\zeta L} \,.$$

- Asymptotically stable equilibrium \Rightarrow strict local minimizer
- Strict local minimizer \Rightarrow stable equilibrium

Gradient-based Feedback Optimization

Projected Gradient Descent

Choose $Q(u) = \varepsilon I$. Stability is guaranteed if

 $\varepsilon \leq \frac{\gamma}{\zeta L}$

ightarrow prescription on global control gain

Saddle-flow

Similar prescription on ε , but

→ requires exponential stability of the saddle flow

[Qu & Li, 2018]

Newton GD

Choose $Q(u) = (\nabla^2 \phi(h(u; w), u))^{-1}$ (if $\phi \mu$ -strongly convex and twice differentiable) Stability is guaranteed if

 $\frac{L}{\mu} \leq \frac{\gamma}{\zeta}$

ightarrow invariant under scaling of ϕ

And

Higher-order optimization dynamics

But not

- Subgradient methods
- Accelerated gradient method

Design guideline and tradeoffs

	Penalty	(Augmented) saddle-flow	Projected gradient
Feasibility Controller Stability	arbitrarily small violation "proportional" steep penalty limits speed	asymptotic feasibility "(proportional)-integral" requires exp. stability	any-time feasibility quadratic programming simple gain limit
	3 2 1 0 -1 -2 -3 -3 -2 -3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 -3 -3 -2 -3 -3 -2 -1 -3 -3 -2 -1 -3 -3 -2 -1 -3 -3 -2 -1 -1 -3 -3 -2 -1 -1 -3 -3 -2 -1 -1 -3 -3 -3 -2 -1 -1 -3 -	3 2 1 0 -1 -2 -3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -3 -2 -1 0 1 2 -3 -3 -3 -3 -2 -1 0 1 2 -3	$\begin{array}{c} 3 \\ 2 \\ -1 \\ -1 \\ -2 \\ -3 \\ -3 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \end{array}$

Outline

1. Feedback optimization design

2. Closed-loop analysis

3. Conclusions

Conclusions

Take home

- Feedback optimization: interconnection of optimization algorithms and physical systems
- Robust regulation of stable plants to optimal steady states
- Flexible design: tap into nonlinear optimization algorithms
- Guidelines for stability: algorithm selection and tuning

Next step: Generalization to feedback equilibrium seeking: optima & Nash equilibria

G. Belgioioso, D. Liao-McPherson, M. Hudoba de Badyn, S. Bolognani, J. Lygeros, and F. Dörfler. **Sampled-data online feedback equilibrium seeking: Stability and tracking.** https://arxiv.org/abs/2103.13988

IEEE CDC 2021

TuB15 Tuesday December 14, 2021 16:15

Adrian Hauswirth, Saverio Bolognani, Gabriela Hug, and Florian Dörfler **Optimization Algorithms as Robust Feedback Controllers** arXiv:2103.11329 [math.OC], 2021.

Project UNICORN

http://unicorn.control.ee.ethz.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

Relevant literature

	convex	input	output	continuous- or	plant model
	problem	constraints	constraints	discrete-time	plant model
Gan & Low (2016)	no	yes	none/soft	DT	nonlin. algebraic
Hauswirth et al. (2016)	no	yes	none/soft	CT (non-smooth)	nonlin. algebraic
Tang et al. (2017)	no	yes	none/soft	DT	nonlin. algebraic
Hauswirth et al. (2017)	no	yes	none/soft	DT	nonlin. algebraic
Mazzi et al. (2018)	no	yes	unilateral	DT	nonlin. algebraic
Dall'Anese & Simonetto (2018)	no	yes	unilateral	DT	nonlin. algebraic
Hauswirth et al. (2018)	no	yes	none/soft	CT (non-smooth)	nonlin. algebraic
Tang et al. (2018b)	no	yes	unilateral	DT	nonlin. algebraic
Tang et al. (2018a)	no	yes	unilateral	DT/CT (non-smooth)	nonlin. algebraic
Nelson & Mallada (2018)	yes	no	none/soft	CT (smooth)	LTI
Lawrence et al. (2018)	yes	no	lin. equality	CT (smooth)	LTI
Menta et al. (2018)	yes	no	lin. equality	CT (smooth)	LTI
Zhang et al. (2018)	yes	no	unilateral	CT (non-smooth)	LTI
Colombino et al. (2019b)	no	yes	none/soft	DT	nonlin. algebraic
Bernstein et al. (2019)	yes	yes	unilateral	DT	nonlin. algebraic
Chang et al. (2019)	yes	yes	unilateral	CT (non-smooth)	lin. algebraic
Colombino et al. (2019a)	yes	no	linear eq.	CT (smooth)	LTI
Lawrence et al. (2020)	yes	no	linear eq.	CT (smooth)	LTI
Picallo et al. (2020)	no	yes	none/soft	DT	nonlin. algebraic
Hauswirth et al. (2020e)	yes	yes	none/soft	CT (non-smooth)	nonlin. dynamic
Hauswirth et al. (2020c)	no	yes	unilateral	CT (non-smooth)	nonlin. dynamic
Hauswirth et al. (2020b)	no	yes	unilateral	CT (non-smooth)	nonlin. dynamic
Simpson-Porco (2020)	yes	no	lin. equality	CT (smooth)	nonlin. dynamic