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Abstract

Mathematical optimization is one of the cornerstones of modern engineering research and practice. Yet, throughout all
application domains, mathematical optimization is, for the most part, considered to be a numerical discipline. Opti-
mization problems are formulated to be solved numerically with specific algorithms running on microprocessors. An
emerging alternative is to view optimization algorithms as dynamical systems. While this new perspective is insightful
in itself, liberating optimization methods from specific numerical and algorithmic aspects opens up new possibilities to
endow complex real-world systems with sophisticated self-optimizing behavior. Towards this goal, it is necessary to un-
derstand how numerical optimization algorithms can be converted into feedback controllers to enable robust “closed-loop
optimization”. In this article, we review several research streams that have been pursued in this direction, including
extremum seeking and pertinent methods from model predictive and process control. However, our primary focus lies
on recent methods under the name of “feedback-based optimization”. This research stream studies control designs that
directly implement optimization algorithms in closed loop with physical systems. Such ideas are finding widespread
application in the design and retrofit of control protocols for communication networks and electricity grids. In addition
to an overview over continuous-time dynamical systems for optimization, our particular emphasis in this survey lies on
closed-loop stability as well as the enforcement of physical and operational constraints in closed-loop implementations.
We further illustrate these methods in the context of classical problems, namely congestion control in communication
networks and optimal frequency control in electricity grids, and we highlight one potential future application in the form
of autonomous reserve dispatch in power systems.
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1. Introduction

Most advances in mathematical optimization in the past
decades have been geared towards numerical implementa-
tions of iterative algorithms. The common viewpoint is
that an optimization problem can be formulated, trans-
formed, reduced, and relaxed, but ultimately the neces-
sary steps to solve the problem rely purely on numerical
linear algebra, which can be implemented and run on mi-
croprocessors. This offline computed solution is then used
to reach and realize some decision.

This paradigm of optimization as a computational prob-
lem is almost synonymous with the field of management
science and operations research (Bertsimas & Freund,
2004; Hillier & Lieberman, 2001), which has flourished ever
since the inception of linear programming in the mid-20th
century. Today, this kind of offline optimization is applied
in various disciplines ranging from econometrics over sta-
tistical and machine learning (Bishop, 2009) to optimal
control (Bertsekas, 2017).

From a control perspective, solving an optimization
problem offline (with known data) and implementing its
output as a decision is a feedforward approach. In contrast,
in this article, we consider feedback approaches to con-
strained nonlinear optimization to drive a physical system
towards an optimal steady state. This type of closed-loop
optimization has been pursued mainly for four reasons:

(i) to increase the robustness against inaccurate problem
data and time-varying disturbances,

(ii) to reduce model-dependence, i.e., to make the opti-
mization procedure model-free,

(iii) to minimize computational effort, and

(iv) to eliminate exogenous setpoints and reference signals.

These reasons resonate well with the general feedback
and feedforward paradigms advocated in control textbooks
(Doyle et al., 2009; Franklin et al., 2010), and we further
dwell on them hereafter.

Robustness is key in optimization. More often than
not, practical problems lack precise data. Parameters and
states based on measurements and statistical inference are
inherently inaccurate, and so is the solution of an optimiza-
tion problem based on such data. The earliest attempts at
addressing this issue have resulted in sensitivity analysis
for optimization problems (Shapiro, 1988) which asks how
a solution changes as problem parameters vary. From a
more practical perspective, robust optimization (Ben-Tal
et al., 2009) and stochastic programming (Bonnans, 2019)
offer ways to incorporate uncertainty in the problem. How-
ever, these approaches are inherently conservative and can
entail massive computational cost because they need to
take into account the full set of possible problem instances.
In contrast, using feedback, one needs to react only to the
actual realization of the underlying disturbance process.

More radical than improving robustness is the idea of
rendering optimization schemes model-free: A physical
system defines a set of constraints (either algebraic or dy-
namic and often time-varying). Therefore, it is only natu-
ral to probe a system for information and learn its behavior
from measurements instead of building a static model from
first principles or previously acquired data.

Rather than learning its behavior online, a physical sys-
tem can also be used to enforce constraints directly: The
laws of nature couple inputs and outputs of a plant. Hence,
for any input, the physical system will produce an output
that satisfies this input-output relation. Similarly, satura-
tion effects will naturally guarantee that states and inputs
do not exceed their limits. Especially if a plant can be
safely operated at the saturation limit, this type of natural
constraint satisfaction can be used to lighten the compu-
tational load of a closed-loop optimization scheme because
the physical system acts as a “constraint enforcer”.

Finally, compared to standard feedback loops, closed-
loop optimization setups can run without external set-
points or references. Instead, an economic objective can be
directly optimized as long as a cost function can be spec-
ified and evaluated. This feature is particularly powerful
in combination with the inherent constraint enforcement:
Whereas in classical control setups pre-computed setpoints
have to be feasible (e.g., lie within actuator limits), con-
vergence to a feasible and optimal state is a defining aspect
of closed-loop optimization.

The boundary between feedforward and feedback opti-
mization, however, is not always clear cut. For instance,
model predictive control (MPC) uses feedback to achieve
robustness but relies on an accurate model for the formu-
lation and solution of an optimal control problem at every
iteration. On the other hand, some of the control schemes
presented in this article require the computationally cheap
solution of a simple quadratic program (QP) to compute
a feasible descent direction at every iteration.

Given this potential ambiguity, the focus of this arti-
cle are the implementation of optimization algorithms in
closed loop, rather than “real-time numerical optimization”
to control a physical process. Nevertheless, we give an
overview over various other approaches in Section 2.

For the sake of a concise presentation, we restrict our-
selves to continuous-time systems. Even though, analo-
gous discrete-time results exist or can be derived similarly
to the continuous-time case.

1.1. Illustrative Examples and Prototypical Problem Setup

The following idealized yet general example of a gradient
system interconnected with a physical plant illustrates the
central idea of this article and serves as a starting point
for subsequent comparisons and variations.

Example 1.1. Consider a dynamic nonlinear plant

ζ̇ = f(ζ, u) y = g(ζ) + d , (1)
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ε
ζ̇ = f(ζ, u)

ŷ = g(ζ)

−∇h(u)T∇Φ(y)T

∫ u

y
d

Controller (Optimization Algorithm) Plant

Figure 1: Simple feedback-based gradient flow

where ζ, u and y are the state, input, and output, and d
denotes an additive disturbance. The vector field f(·, ·)
and the map g(·) describe the process and output mea-
surement, respectively.

We assume that, for any fixed u and d, the plant is
asymptotically stable with fast-decaying transients such
that, for every u, there exists a unique steady state ĥ(u)

such that 0 = f(ĥ(u), u). Consequently, there also exists
a steady-state map h(u) := g(ĥ(u)). We assume h to be
continuously differentiable in u.

We wish to minimize a cost Φ(y) which is a function of
the plant output y. Given h and d, we may equivalently
minimize the reduced cost Φ̃(u) := Φ(h(u) + d) instead.
For this purpose, we consider a simple gradient flow

u̇ = −∇Φ̃(u)T = −∇h(u)T∇Φ(h(u) + d)T , (2)

where∇h(u) is due to the chain rule applied to Φ(h(u)+d).
The gradient flow (2) is a closed system. However, rec-

ognizing h(u) + d as the measurable output y, (2) can be
easily transformed into an open system and interconnected
with the plant (1) as shown in Figure 1. This yields the
closed-loop dynamics

plant

{
ζ̇ = f(ζ, u)

y = g(ζ) + d

controller
{
u̇ = −ε∇h(u)T∇Φ(y)T ,

(3)

where ε > 0 is a scalar control gain.
The systems (1), (2) and (3) can be understood from a

singular perturbation viewpoint (Khalil, 2002, Chap. 11):
As ε→ 0+, the plant behavior is replaced by the algebraic
map h, and the remaining dynamics (2) are the “slow”
reduced system. Conversely, on a fast timescale, on which
u and d can be assumed to be constant, the plant dynamics
(1) are referred to as the “fast” boundary-layer system.

Thanks to the integral control structure of (3), it can
be easily seen that any equilibrium point (ζ?, u?) of (3)
is a steady-state of the plant and satisfies ∇Φ̃(u?)T =
∇h(u?)T∇Φ̃(h(u?) + d)T = 0. Therefore, u? is a critical
point of Φ̃ (and a minimizer if Φ̃ is convex).

Crucially, the controller in (3) does not require explicit
knowledge of h (nor of f, g). Instead, only the cost func-
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Figure 2: Illustrations for Example 1.2 (top left: objective function;
remaining panels: system trajectories for different control gains ε)

tion gradient ∇Φ(y) as well as steady-state input-output
sensitivities ∇h(u) are required. Moreover, the additive
disturbance d does not need to be known or explicitly esti-
mated and is fully rejected, i.e., an equilibrium is a critical
point of Φ(h(u) + d), independently of the value of d. �

One of the fundamental points left open by Example 1.1
is closed-loop stability. The idea that plant dynamics in (3)
need to be fast-decaying is indeed crucial as the following
numerical example shows.

Example 1.2. Consider the objective Φ(y) = (y2 − 1)2

which is illustrated in the top left panel of Figure 2 and
has two isolated minima {−1, 1}. Consider a single-input-
single-output second-order plant governed by

ζ̈ + aζ̇ + b(ζ − u) = 0

with a = 2 and b = 25 and y = ζ. The plant is asymptoti-
cally stable, under-damped, and, at steady state, we have
y = ζ = u. Hence, the controller in (3) takes the form

u̇ = −ε∇Φ(y)T = −4εy(y2 − 1) .

Figure 2 shows trajectories of the closed-loop system (3)
for the same initial condition, but different values of the
gain ε, and comparing it to the “algebraic” gradient flow
(2) given by u̇ = −ε∇Φ(h(u))T = −4εu(u2 − 1).

We observe, that for the given initial condition the alge-
braic gradient trajectory converges to the minimizer at 1.
In contrast, the trajectories of the closed-loop system (3)
converge to either one of the two minimizers or diverge,
depending on ε. In other words, closed-loop stability of
(3) is not guaranteed, and even if it is, convergence may
not be to the same minimizer as for (2). �
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The issue of stability is central to many closed-loop op-
timization setups and work on this topic, including quan-
titative stability requirements, will be discussed in more
detail in Section 4.2.

Another key challenge of many real-world problems (and
another main topic of this article) is the handling of in-
put and output constraints. Because we consider physi-
cal systems, these constraints may be of different nature.
For instance, thermal limits of physical components are
often fairly benign since they can be violated temporarily,
but should be satisfied in the long run. These constraints
are not enforced automatically and need to be addressed
with proper control design. Another type of constraints
are imposed by input saturation of a plant due to limited
actuator capabilities or due to the actions of a low-level
controller. These constraints are enforced by the physical
system irrespective of the controller. However, in order
to achieve desirable closed-loop dynamics, the control de-
sign has to account for them. Finally, certain constraints
may constitute hard physical limits whose violation would
trigger the immediate instability, collapse, or destruction
of the entire system. Thus, these constraints need to be
satisfied at all times.

Hence, in real-world applications constraints on the
plant inputs and outputs often take center stage and the
general optimization problem that one wishes to solve in
closed loop can be expressed as

minimize Φ(u, y) (4a)
subject to y = h(u, d) (4b)

u ∈ U (4c)
(u, y) ∈ X , (4d)

where h is the steady-state input-output map of a dynamic
plant (like (1) in Example 1.1) and d is a disturbance,
albeit not necessarily additive. Further, U denotes a set of
admissible inputs, and X is a set of additional engineering
constraints.

The particular structure and properties of Φ, h,U , and
X largely depend on the specific problem setup, but a
variety of “algorithmic strategies” from optimization can
be cast into feedback control components to solve (4) in
closed loop. This will be the overall topic of Sections 3
and 4 where we discuss optimization dynamics and their
feedback realizations, respectively.

1.2. Key Application: Optimal Power Reserve Dispatch

Throughout this article, we provide small educational
examples illustrating key concepts. In Section 4 we fur-
ther present two classical applications that can be cast as
closed-loop optimization problems: congestion avoidance
in communication networks and secondary frequency con-
trol in power systems. These examples concern special
cases of (4). One application where the full generality of
(4) is required is the optimal real-time operation of future
power systems with highly variable operating conditions.

Because of changing consumption patterns (e.g., caused
by charging of electric vehicles) and increasing infeed from
intermittent renewable generation (e.g., from solar and
wind plants) future power systems will be faced with less
predictable and more volatile conditions. These circum-
stances require new control and decision protocols to con-
tinue to operate power grids safely and efficiently. In a
simplified and idealized fashion, this task of optimal real-
time grid operation can be cast as tracking the solution of
a (time-varying) AC optimal power flow (ACOPF) prob-
lem (Frank et al., 2012a,b; Huneault & Galiana, 1991) and
has has been studied from an online closed-loop perspec-
tive in Dall’Anese & Simonetto (2018); Hauswirth et al.
(2017); Tang et al. (2017), among others.

In this subsection, we provide a brief formal description
of this problem and formulate the main challenges from
an online optimization viewpoint. In Section 4 we then
revisit this problem and present feedback-based optimiza-
tion solutions from the literature.

1.2.1. Problem Description
Consider an AC power transmission network as an undi-

rected graph with a set N of buses and a setM of trans-
mission lines. We write l → k to denote a line from bus l
to bus k, i.e., (l, k) ∈ M. As decision variables, each bus
l ∈ N has an associated voltage magnitude vl, voltage an-
gle θl, and active and reactive power generation pG

l , q
G
l . By

pG, qG, etc. we denote the vectors obtained from stacking
all respective components pG

l for all l ∈ N .
For simplicity and without loss of generality, we consider

the cost Φ(pG) =
∑
l∈N Φl(p

G
l ) for active power as the

minimization objective.
Hence, a basic ACOPF problem is given by

minimize
v,θ,pG,qG

Φ(pG) (5a)

subject to
∀l∈N

0 = pG
l − pL

l −
∑

l→k
plk(vl, vk, θl, θk) (5b)

0 = qG
l − qL

l −
∑

l→k
qlk(vl, vk, θl, θk) (5c)

p
l
≤ pG

l ≤ pl (5d)

q
l
≤ qG

l ≤ ql (5e)

vl ≤ vl ≤ vl (5f)

i2lk(vl, vk, θl, θk) ≤ i2kl ∀(l, k) ∈M , (5g)

The inequalities (5d–f) denote box constraints on power
generation and voltages at each bus, and (5g) limits the
current that flows through the line from k to `.

The functions plk(·), qlk(·) and i2lk(·) denote active and
reactive power flow and squared current magnitude from
bus l in direction of bus k, respectively, as illustrated
in Figure 3. These nonlinear terms depend on line pa-
rameters and constitute the main source of complexity in
ACOPF problems. Their explicit expressions (neglecting
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Figure 3: Physical AC power flow quantities

so-called shunt elements) are given by

plk(vl, vk, θl, θk) := vlvk (glk cos(θl − θk) + blk sin(θl − θk))

qlk(vl, vk, θl, θk) := vlvk (glk sin(θl − θk)− blk cos(θl − θk))

i2lk(vl, vk, θl, θk) := (g2
lk + b2

lk)
(
v2
k + v2

l − 4vkvl cos(θk − θl)
)

where glk and blk denote the conductance and susceptance
of the transmission line connecting buses l and k. Note
that i2lk = i2kl holds (without shunt elements), but plk =
−pkl and plk = −pkl are not generally true. For a more
comprehensive introduction to AC power flow including
alternative formulations the reader is referred to Frank &
Rebennack (2016); Molzahn & Hiskens (2019).

ACOPF problems like (5) are well-studied and routinely
solved (numerically) in practice. Yet, they remain compu-
tationally demanding, because of the nonlinear power flow
equations (5b–c) which render the problem non-convex (al-
though convex relaxations can yield global optimality cer-
tificates; Low 2014; Molzahn & Hiskens 2019).

1.2.2. Closed-Loop Optimization Modeling
In an online setting, the purpose of (5) is to find ad-

justments to the power flow and power injections pG, qG,
given the actual power consumption pL, qL (as opposed to
predictions used in offline day/hour-ahead calculations).
The power consumption pL, qL and other parameters in (5)
are generally time-varying. Hence, rather than solving (5)
once for a given configuration, online optimization schemes
need to track the ACOPF problem’s solution across time.
Moreover, (5) can also be considered when reacting to un-
foreseen contingencies such as line outages (which modify
gkl and bkl) or generator outages (which modify pl, ql).

Further, note that (5b–c) are the steady-state equations
of a complicated, interconnected nonlinear dynamics of
transmission lines, generation units, and their low-level
controllers. Although these dynamics can be assumed to
be asymptotically stable, attempts at steering the physi-
cal system too aggressively towards a solution of (5) can
destabilize them, similarly to Example 1.2.

In order to express (5) as a problem of the form (4),
we need to identify inputs, outputs, and disturbances. For
this purpose, for each generation unit, the active power
output and either the reactive power or voltage magnitude
are assumed to be controllable1 and thus make up the

1One distinguishes between so-called PQ- and PV -buses. See

control input u. The loads pL, qL define the disturbance d.
All remaining quantities form the output y.

Consequently, (5) can be brought into the form (4)
where the constraints (5d–g) are assigned to either U or X
according to whether they apply only to controllable vari-
ables or not. Under normal operating conditions, the local
existence and differentiability of the steady-state map h(·)
derived from (5b–c) is guaranteed by the implicit function
theorem (Bolognani & Dörfler, 2015).

From a practical perspective, “closing the loop” on the
ACOPF problem (5) offers an opportunity to more closely
integrate and combine different power system control tasks
and thereby increase economic efficiency, resilience, and
autonomy. More concretely, a controller tracking the so-
lution of (5) makes complex, yet economically efficient
re-dispatch decisions in response to unscheduled events
to guarantee voltage and line flow limits are respected.
Thus, (5) should be interpreted as a “residual” optimiza-
tion problem around a pre-planned generation schedule
and constraints (5d–e) do not necessarily quantify the full
production capacity of a generation unit, but rather the
amount of dispatchable reserves.

From a theoretical viewpoint, robustly tracking solu-
tions of (5) presents important challenges:

(i) A large number of physical and engineering con-
straints of different nature have to be satisfied. Some
of these limits, like the generation constraints (5b–c),
are physical constraints that are strictly enforced by
lower-level controllers or through saturation. Other
constraints, such as the line flow limits (5g), are ther-
mal limits that can be violated temporarily. Yet other
constraints are hard limits that must not be violated
at any time. This mainly concerns dynamic and volt-
age stability limits which we will not dwell on in this
article. Simply note that the voltage constraints (5f)
can be understood as guarding against voltage insta-
bility (Van Cutsem & Vournas, 1998).

(ii) In general, only an approximate model in the form of
the steady-state AC power flow equations (5b–c) can
be employed. A dynamical model for a large-scale
power system is in practice not available, as parts of
the system are owned by different stakeholders, mod-
els are proprietary, operating conditions (e.g., which
generation units are online) change over time, and in-
ternal states are typically inaccessible. Nevertheless,
the power system dynamics may be assumed to be
asymptotically stable under normal operating condi-
tions. But even then, steady-state models have signif-
icant parameter uncertainty and are affected by dis-
turbances.

(iii) The nonlinear nature, especially under critical oper-
ating conditions, of the power flow equations (5b–c)

Hauswirth et al. (2017) for a more detailed discussion including the
role of the slack bus in numerical simulations).
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call for methods that work in the absence of convexity
and for ill-conditioned problems.

To address these challenges, we will show how the con-
ceptually simple Example 1.1 has given rise to a multitude
of variations that enable us to solve and track solutions of
the general problem (4) (and thus of the ACOPF problem
(5), which is revisited in Example 4.7).

1.3. Organization

The remainder of this article is structured as follows: In
Section 2 we discuss several existing approaches which can
be considered closed-loop optimization techniques, each of
them with specific use cases, advantages, and disadvan-
tages. Section 3 reviews various optimization algorithms,
that are suitable for closed-loop implementations, from
the perspective of dynamical systems. This allows us, in
Section 4, to review recent work on constrained feedback-
based optimization and to illustrate different control de-
signs that implement the previously discussed optimiza-
tion dynamics in closed loop. We pay particular atten-
tion to different mechanisms to enforce constraints and to
closed-loop stability conditions. In this section, we also
present the main application examples from communica-
tion networks and power systems. Finally, Section 5 con-
cludes the article, highlights the unresolved problems in
this domain, and presents worthwhile and exciting avenues
for future research.

2. Existing Approaches

Although the key idea studied in this article is the inter-
connection of optimization algorithms with physical sys-
tems (as exemplified in Example 1.1), various other ap-
proaches can be understood as closed-loop optimization.
In the following, we therefore review works from differ-
ent areas that follow the same spirit, even though they
have emerged independently from each other and follow
different philosophies. Each of these methods is particu-
larly suited for specific types of problems, but none comes
without drawbacks.

(i) Extremum seeking, an outgrow of adaptive control,
puts an emphasis on being completely model-free and
probing the system with the help of a perturbation
signal. However, the approach is limited to systems
with low-dimensional inputs and methods for enforc-
ing constraints are limited.

(ii) Emerging from process engineering, the primary merit
of modifier adaptation is to mitigate the effects of
model bias when solving successive optimization prob-
lems. By itself, this method does not reduce the com-
putational requirements compared to feedforward op-
timization. Furthermore, an auxiliary method to es-
timate input-output sensitivities is required.

(iii) Real-time iteration schemes, which are rooted in
model predictive control, aim at solving classical re-
ceding horizon problems with limited resources. The
focus is the stabilization of a plant under state and
input constraints. For this purpose, a full model of
the plant dynamics is generally required and compu-
tational burden scales with the planning horizon.

Remark 2.1. Many more approaches can be interpreted as
optimization in conjunction with feedback control. Sev-
eral topics such as iterative feedback tuning (Hjalmarsson,
2002) or iterative learning control (Bristow et al., 2006)
are concerned with the optimal tuning of controllers by ei-
ther requiring a sequence of experiments or repetitive op-
eration. Although these methods use measurement data
to optimize subsequent control actions, because of their
“episodic” nature, they are related only remotely to the
key idea in this article, the feedback interconnection of
optimization dynamics with physical systems.

For similar reasons, we do not review recent work on
reinforcement learning, even though it has produced stag-
gering results, especially in sequential decision making for
games and in robotics. Even though techniques such as
policy gradient admit a dynamical perspective, RL is gen-
erally (and traditionally) framed as optimal control over
Markov decision processes (Bertsekas, 2017; Lewis & Liu,
2012). �

2.1. Extremum Seeking

Arguably, one of the oldest control methods to steer a
plant to an extremum of a function rather than tracking
a setpoint is extremum seeking (ES) (see Ariyur & Krstic
2003; Tan et al. 2010 for historical accounts). Its popular-
ity rose in the 1950’s and 60’s as part of adaptive control
(Åström & Wittenmark, 2008) and later regained momen-
tum with the rigorous theoretical results derived in Krstic
&Wang (2000); Tan et al. (2006); Wittenmark & Urquhart
(1995).

The main idea behind ES is to inject a dither signal to
locally explore the objective function and “learn” its gradi-
ent. This dither signal is generally a sinusoidal, but other
perturbations have been proposed (Teel & Popovic, 2001).
Consequently, the objective can be optimized without re-
course to any model information about the plant (and ob-
jective) and without any computation aside from the addi-
tion and multiplication of the dither signal. The following
example illustrates this fact.

Example 2.1. We consider the same problem as in Exam-
ple 1.1, i.e., the minimization of Φ(y) where y is the output
of a plant of the form (1). In addition, we assume that the
plant is single-input-single-output (and thus all signals are
scalar). Instead of the gradient scheme in Figure 1, we
apply the ES setup in Figure 4 where a sinusoid perturbs
the signal u, yielding ũ, which is then fed to the plant.

As in Example 1.1, we replace the fast plant dynamics
by the steady-state map y = h(u) + d, and we define the
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2a
∫ ζ̇ = f(ζ, ũ)

ŷ = g(ζ)

sin(ωt) ε
a

× −Φ(y)

+

ũ

d

y

+ u

Figure 4: Simple extremum seeking to minimize Φ(h(u))

reduced cost function Φ̃(u) := Φ(h(u) + d). Consequently,
the reduced ES dynamics of the system in Figure 4 can be
expressed in terms of u̇ as

u̇ = F (u, t) := − ε
a Φ
(
h (u+ 2a sin(ωt)) + d

)︸ ︷︷ ︸
Φ̃(u+2a sin(ωt))

+d
)

sin(ωt) .

The averaged dynamics are obtained by integrating F (u, t)
from 0 to T = 2π

ω . Namely, using the Taylor expansion of
Φ̃ around u, the average control signal is

1
T

∫ T

0

F (u, t)dt = − ε
aT

∫ T

0

Φ̃
(
u+ 2a sin(ωt)

)
sin(ωt)dt

≈ − ε
aT

∫ T

0

(
Φ̃ (u) + 2a sin(ωt)∇Φ̃(u)

)
sin(ωt)dt

= − ε
a
ω
2π2a∇Φ̃(u)

∫ T

0

sin(ωt)2dt = −ε∇Φ̃(u) ,

where we have neglected higher-order terms in ε. Thus,
the ES scheme approximates the gradient flow (2) from
Example 1.1. However, ES merely requires measurements
of Φ(y) and neither an estimate of ∇h nor of ∇Φ.

In contrast to the design in Example 1.1, ES sys-
tems generally evolve on three (rather than two) different
timescales: the plant dynamics (which have been ignored
for this example), the frequency range of the probing sig-
nal, and the slow averaged optimization dynamics. �

Classically, averaging theory and singular perturbation
analysis (for dynamic plants) are used to render the in-
sights from Example 2.1 rigorous (Guay & Zhang, 2003;
Krstic & Wang, 2000; Tan et al., 2006). More recently,
ES schemes have also been studied with the help of Lie
bracket approximations which offer an alternative perspec-
tive (Dürr et al., 2017, 2013a; Grushkovskaya et al., 2018).

While original work only considered finding extrema
(i.e. minima or maxima) of unconstrained problems,
constraints have been incorporated by submanifold con-
straints (Dürr et al., 2014), barrier function (DeHaan &
Guay, 2005), and saddle-point formulations (Dürr et al.,
2013b), and ES has been studied for Nash-equilibrium
seeking (Frihauf et al., 2012; Stankovic et al., 2012). Fur-
ther, ES has been studied for stochastic (Coito et al., 2005;

Stanković & Stipanović, 2010) and discrete-time setups
(Feiling et al., 2018; Frihauf et al., 2013; Stankovic & Sti-
panovic, 2009), and hybrid extensions have been proposed
(Poveda et al., 2017; Poveda & Teel, 2017).

ES has been applied in the automotive sector
(Killingsworth et al., 2009), process engineering (Guay
et al., 2004), formation flight and obstacle avoidance (Bi-
netti et al., 2003; Montenbruck et al., 2014) and others.
Further applications concern problems in renewable energy
such as maximum power point tracking in photovoltaic
(Ghaffari et al., 2015) or wind energy systems Ghaffari
et al. (2014); Krstic et al. (2014), and Volt-VAR control in
power systems (Arnold et al., 2016).

Despite strong theoretical guarantees and being model-
free, ES has been confined to relatively low-dimensional,
mostly unconstrained, systems. This is due to the fact
that plants with multidimensional input require probing
signals at different, carefully chosen, frequencies that do
not interfere with each other.

2.2. Modifier Adaptation

In the context of real-time optimization in process en-
gineering, the notion of measurement-based optimization
(Chachuat et al., 2009; Francois & Bonvin, 2013) has been
used to collect several approaches towards mitigating the
effects of model bias in repetitive optimization applica-
tions. In the following, we showcase modifier adaptation
(MA) methods by François et al. (2005); Gao & Engell
(2005); Marchetti et al. (2009a,b).

Given a model of a physical system, assume that we can
solve an optimal steady-state problem like (4) numerically.
When implementing this solution by setting the appropri-
ate inputs of the stable plant to their pre-computed opti-
mal setpoints, the mismatch between the model estimate
(used for computing an optimal state) and the actual plant
will invariably lead to a system state that is suboptimal,
and possibly violating constraints.

If the optimization of the optimal plant state is per-
formed repeatedly, and at each step the solution is imple-
mented on the physical system, MA provides a method to
steadily reduce the discrepancy between model-based so-
lution and physical plant by modifying the optimal steady
state problem at every iteration by incorporating plant
measurements from the previous iteration. MA does not
directly “learn” or identify a better model of the plant. In-
stead, MA corrects the optimization problem by adding
adaption terms to the cost and constraint functions. The
following simple example demonstrates one possible adap-
tation mechanism.

Example 2.2. Consider the same setup as in Example 1.1.
Namely, we wish to minimize the function Φ̃(u) :=
Φ(h(u) + d) where y = h(u) + d is the steady-state input-
output map of a plant with fast-decaying dynamics. How-
ever, only an approximate model h̃ of h and an estimate d̃
of d is available.
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Therefore, instead of minimizing Φ̃, we repeatedly solve

minimizeu Φ̃(h̃(u) + d̃) + λku , (6)

where λk is a modifier at iteration k that is adapted at
every iteration based on the outcome of the previous iter-
ation u?k. In particular, λ is updated according to

λk+1 = ∇Φ̃(u?k)−∇Φ̃′(u?k) ,

where ∇Φ̃(u?k) needs to be estimated, and ∇Φ̃′(u?k) :=

∇(Φ(h̃(u?k) + d̃) is model-based. The particular structure
of Φ̃, however, lets us write

∇Φ̃(u?k) = ∇Φ(h(u?k) + d)∇h(u?k) , (7)

where h(u?k)+d is the measured output of the plant. Thus,
essentially, only ∇h(u?k) needs to be estimated. If the
scheme converges to some u?, we can easily verify that
u? is a critical point of Φ̃(u). �

Example 2.2 is simplified to the point that a comparison
with Example 1.1 is easily possible. However, MAmethods
are easily applied to constrained problems where modifiers
on constraints are introduced analogously (Costello et al.,
2014; Faulwasser et al., 2018; Grégory et al., 2014).

Clearly, the tricky part about MA is the estimation of
the (true) plant sensitivities∇Φ̃(u?k). This can be achieved
with finite differences (Mansour & Ellis, 2003). Moreover,
MA does not reduce the computation burden nor does it
aim to reduce the amount of model information required.

2.3. Model Predictive Control with Incomplete Optimiza-
tion and Real-Time Iterations

Historically, model predictive control (MPC) is an ap-
proach to control and stabilize a plant that is subject to in-
put and state constraints. This is achieved by numerically
solving an optimal control problem with a finite receding
horizon at every sampling time (or, every few sampling
instants), but implementing only the first (respectively,
few) input(s) of the computed optimal policy before solv-
ing the next problem with shifted horizon and based on an
updated state measurement.

The high computational requirements have long re-
stricted the application of MPC to relatively slow and low-
dimensional plants in process engineering. For standard
(linear) MPC, this issue has led to explicit MPC (Alessio
& Bemporad, 2009; Bemporad et al., 2002) which ex-
ploits multi-parametric optimization (Tondel et al., 2003)
to solve the receding horizon problem ahead of time and
implement the controller as a simple lookup table.

More interesting from our perspective are real-time iter-
ations (RTIs) for nonlinear MPC (Bock et al., 2000; Diehl
et al., 2002). These methods have emerged as an approx-
imation of multiple shooting methods (Diehl et al., 2006)
and have been proposed for various applications in pro-
cess engineering (Diehl et al., 2003), robotics (Diehl et al.,
2006), and for airborne kites (Diehl et al., 2005a).

The main idea of RTIs is to solve the optimal control
problem only approximately at every iteration by perform-
ing only a single iteration of the underlying optimization
algorithm (which is usually a sequential quadratic pro-
gramming (SQP) scheme; Nocedal & Wright 2006; Quiry-
nen et al. 2018; Zavala & Biegler 2009). The first in-
put of the approximate control policy is implemented and
the optimization problem for the next sampling period is
warm-started at a shifted version of the previous (approx-
imate) solution. In other words, RTIs are a special case of
MPC methods with incomplete optimization (Graichen &
Kugi, 2010; Grüne & Pannek, 2010; Liao-McPherson et al.,
2020). Example 2.3 below illustrates this procedure.

The underlying idea of RTIs is that the approximation
error committed by performing only a single optimization
iteration is offset by savings in computation time. In par-
ticular, because the receding horizon problem is solved
more often, it changes less between samples. This fea-
ture allows one to prove stability and convergence of RTI
schemes (Diehl et al., 2005a, 2007, 2005b; Zanelli et al.,
2020).

However, although they interleave optimization itera-
tions with physical dynamics, RTIs have been developed
for stabilization and require an exogenous setpoint as well
as a dynamic model of the plant. This is particularly re-
flected in the assumptions on the state cost function, which
are, roughly speaking, required to be quadratic functions
centered at the origin (see also Remark 2.2 further below
on economic MPC).

Example 2.3. We consider a discrete-time plant ζ+ =
f(ζ, u) for which the origin is a steady state, i.e., 0 =
f(0, 0). For simplicity, we do not model any constraints,
although RTIs can incorporate them naturally.

Consider the receding horizon problem at time l

minimize
r1:K−1,s1:K

K−1∑
k=1

[ skrk ]
T
Q [ skrk ] + sTKRsK

subject to s1 = ζl

sk+1 = f(sk, rk) ∀k ∈ {1, . . . ,K − 1}

(8)

where K denotes the horizon length, Q,R are positive def-
inite stage and terminal cost matrices, and ζl denotes the
measured plant state at time l. Let (r̂l, ŝl) denote the solu-
tion of (8) for the sampling instant l. Then, the feedback
law at l is given by u[l] = r̂l1. In other words, upon solving
(8), the first control of the optimal policy is implemented
at l. This is the key mechanism behind standard MPC.

RTI schemes approximate the solution of (8) by per-
forming only a single iteration of an SQP method. Namely,
let z = (s, r, λ) and consider the Lagrangian of (8) at time
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l defined as

Ll(z) :=

K−1∑
k=1

[ skrk ]
T
Q [ skrk ] + sTKRsK + λ1(s1 − ζl)

+

K−1∑
k=1

λk (sk+1 − f(sk, rk)) .

An SQP iteration then takes the form

z+ = z + ∆z (9)

where ∆z solves the first-order condition

∇Ll(z) +∇2
zzL

l(z)∆z = 0 .

where, in practice, the inverse of the Hessian∇2
zzL

l is often
approximated.

Crucially, the receding horizon problem (8) at the next
sample l+ 1 is warm-started with the shifted approximate
of the previous sample. This procedure leads, under addi-
tional assumptions, to local stability of the scheme. �

Example 2.3 elucidates several differences with respect
to the optimal steady-state control problem (4) we wish
to solve: First, the purpose of RTIs is primarily to drive a
plant to the steady state at the origin, not seeking out an
operating point with minimal cost (see Remark 2.2 below).
Further, a full dynamic model f of the plant dynamics is
required, and finally, the computational burden of solv-
ing the SQP iteration scales not only with the system di-
mension but also with the prediction horizon. Conversely,
compared to Example 1.1, while stabilizing the system RTI
also seeks to minimize a quadratic running stage cost.
Remark 2.2. Traditionally, linear and nonlinear MPC have
been considered with the goal of stabilizing a plant and to
track a precomputed setpoint or trajectory. The modern
variation of economic MPC (Ellis et al., 2014; Faulwasser
et al., 2018; Rawlings et al., 2012) studies the effects of
incorporating an economic objective directly and thus not
requiring an exogenous setpoint. This idea is very much
in line with the topic of this article.

Economic MPC, however, still requires the solution of
an optimal control problem at every iteration. Thus, it
is computationally very expensive. Moreover, the optimal
solution is not a-priori guaranteed to be a steady-state of
the plant. This makes the stability analysis of economic
MPC more involved and, in particular, still requires a full
model of the plant dynamics. �

3. Optimization Algorithms as Dynamical Systems

In recent years, renewed attention has been paid to the
fact that many numerical optimization algorithms can be
interpreted as dynamical systems. This perspective is es-
sential to bridge the gap between algorithms and their
implementation as feedback systems. In this section, we
therefore give a tutorial-like overview of different optimiza-
tion dynamics and related tools. Feedback aspects will be
treated in the subsequent section.

3.1. Gradient Methods
Arguably as old as differential calculus itself are meth-

ods that seek out (local) minima of a function by following
a descent direction. The most prototypical class of meth-
ods are gradient (or “steepest descent”) schemes. Gradient
methods exist in a wide variety of forms and contexts.
Apart from Rn, they can be defined on non-Euclidean
manifolds (Absil et al., 2008; Brockett, 1988; Helmke &
Moore, 1996) and on infinite-dimensional spaces (Ambro-
sio et al., 2005). In the absence of smoothness they can
also be generalized to subgradient methods (Beck, 2017;
Clarke, 1990). On top of that, steepest descent methods
are generally available as continuous-time flows, discrete-
time algorithms, or stochastic processes (Borkar, 2008).
For ease of exposition and in line with the rest of this ar-
ticle, we will limit ourselves to continuous-time gradient
flows and its variations.

At least for continuous-time negative gradient flows,
convergence to minimizers appears plausible, if not tau-
tological. However, closer inspection reveals important
technical details, summarized in the following theorem.

Theorem 1. Let Φ : Rn → R be continuously differen-
tiable with locally Lipschitz derivative ∇Φ such that, for
some c ∈ R, the sublevel set Φ−1(c) = {x ∈ Rn |Φ(x) ≤ c}
is compact. Then, the following statements hold for the
gradient flow ẋ = −∇Φ(x)T :

(i) Trajectories starting in Φ−1(c) converge to the set of
critical points, i.e., points x? such that ∇Φ(x?) = 0.

(ii) If Φ is analytic or convex, then every solution starting
in Φ−1(c) converges to a single point.

(iii) Every asymptotically stable equilibrium is a strict and
isolated minimizer, and every local minimizer is sta-
ble. If Φ is analytic or convex, then the set of all
(strict) minimizers is equivalent to the set of (asymp-
totically) stable equilibria.

(iv) If Φ is twice continuously differentiable, the stability
of an critical points is partially governed by its Hes-
sian: If ∇2Φ(x?) is positive definite, x? is a local min-
imizer and locally exponentially stable. If ∇2Φ(x?)
has at least one negative eigenvalue, x? is unstable.

Point (i) in Theorem 1 is a simple consequence of LaSalle
invariance (Khalil, 2002). Namely, it is immediate that Φ
is non-increasing along gradient trajectories. Compactness
of Φ−1(c) is generally required to preclude unbounded tra-
jectories that escape to the horizon. Further, compactness
of Φ−1(c) together with the continuity of Φ guarantees
lower boundedness and thus the existence of a minimizer.

In general, however, trajectories may not converge to a
single point but to the entire set of critical points (Palis
& De Melo, 1982). This pathological behavior is ruled out
in (ii) if Φ is analytic, which guarantees the finite length
of trajectories due to Lojasiewicz’s inequality (Absil et al.,
2005), or if Φ is convex.
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In the absence of local Lipschitz continuity of ∇Φ,
uniqueness of trajectories is not guaranteed and a dis-
tinction between weak and strong equilibria has to be
made (Cortés, 2008; Hauswirth et al., 2020a).

As indicated in (iii), the stability of equilibria is related
to their optimality, but an equivalence between the two
is given only under additional assumptions. See Absil &
Kurdyka (2006) for a proof and counterexamples. Finally,
(iv) follows since, if Φ is smooth enough, the stability of
an equilibrium x? can be analyzed by investigating the
linearized dynamics ẋ = −∇2Φ(x?) · x
Example 3.1. A straightforward degree of freedom for gra-
dient flows is the use of a metric Q(·) that maps every
point x ∈ Rn to a square symmetric positive-definite ma-
trix Q(x). Under minor technical conditions (e.g., that
Q has a uniformly bounded condition number; Hauswirth
et al. 2020a) trajectories of the generalized gradient flow

ẋ = −Q(x)∇Φ(x)T (10)

converge to the set of critical points of Φ. Namely, the use
of Q, does neither alter the equilibrium points nor quali-
tative attractivity and stability, but only the trajectories.
This feature is illustrated in Figure 5 which shows gradient
trajectories for the same nonconvex potential function but
for different metrics.

If Q is constant, (10) is equivalent to a Euclidean gra-
dient flow in linearly transformed coordinates. Namely, if
Q = V TΛV is the eigenvalue decomposition of Q, we can
define the coordinate transformation y :=

√
Λ
−1
V x where√

Λ denotes the diagonal matrix of square root eigenval-
ues. Then, it can be easily shown that (10) is equivalent
to ẏ = −∇Φ̂(y)T with Φ̂(y) := Φ(V T

√
Λy).

If Q is not constant, then, from differential geometric
viewpoint, Q can be interpreted as a matrix representation
of a non-Euclidean Riemannian metric on Rn. Thus, Q
endows Rn with a non-flat geometry (Lee, 1997).

As a special case of a non-constant metric, assume that
Φ is twice differentiable and strongly convex. Then, Q
can be chosen to be the inverse of the Hessian ∇2Φ. This
results in a continuous-time version of the classic Newton
method, also referred to as “Newton Gradient Flows” (Jon-
gen et al., 2001, Chap. 9.3). However, unlike the iterative
Newton method, the continuous-time flow does not exhibit
an inherently faster convergence rate compared to other
gradient flows. For the inverted Hessian metric, conver-
gence is merely isotropic, i.e., the same from all directions.
This property counteracts ill-conditioning of the objective
function as illustrated in Figure 6.

Finally, if Q is sparse, then the sparsity pattern induces
algebraic structure that can often be exploited for the pur-
pose of a distributed implementation. �

Example 3.2. A relatively easy and widely applicable way
to incorporate constraints into an optimization problem
are the addition of penalty (or regularizing) or barrier
terms to the objective. For a constraint of the form

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

Figure 5: Gradient trajectories for a non-convex objective function.
Trajectories under the Euclidean metric (left) and a generic variable
metric (right) differ significantly. The critical points (i.e., the min-
ima, maximum, and saddle-point) and their stability properties are
unaffected by the choice of metric.
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Figure 6: Gradient trajectories for strongly convex, but ill-
conditioned objective. The trajectories under the Euclidean metric
(left) quickly approach a subspace on which the objective is almost
flat, and then converge only slowly to the global optimizer. Trajecto-
ries under the “Newton metric” (right), approach the global optimizer
isotropically, unaffected by the ill-conditioning of the objective.

g(x) ≤ 0 where g : Rn → R is continuously differ-
entiable, a common penalty function is for example the
squared 2-norm of the constraint violation vector, i.e.,
φ(x) = ρ

2‖max{g(x), 0}‖2 where ρ > 0 denotes a scal-
ing parameter. Many variations, including different norms
on constraint violations are possible. The common feature
of penalty function lies in the fact that they technically al-
low for constraint violations, i.e., minimizers of a penalty-
augmented cost function Φ(x)+φ(x) do not generally sat-
isfy g(x) ≤ 0. A notable exception are so-called exact
penalty methods that transform a constrained optimization
problem into an unconstrained one without changing the
location of minimizers, albeit at the expense of smoothness
or other technical drawbacks (Di Pillo & Grippo, 1989).

Barrier functions, on the other hand, can be used to
apply constraints strictly, i.e., without allowing for any vi-
olation. For this purpose, a barrier function ψ(·) for the
constraint g(x) ≤ 0 needs to be such that for x → x?

with g(x?) = 0 we have ψ(x) → ∞. A common exam-
ple satisfying this condition are negative log-barriers of
the form ψ(x) = − 1

µ log(g(x)) which are important for
interior-point methods for constrained convex program-
ming (Nesterov & Nemirovskii, 1994).
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The effects of penalty and barrier terms on gradient
flows is illustrated in the top panels of Figure 8, respec-
tively. Both types of additional cost terms can enforce con-
straints only approximately. In general, steeper penalties
or barriers (i.e., ρ→∞ or µ→∞) will lead to more pre-
cise results. However, excessively steep augmentations can
lead to stability issues when implemented numerically or in
closed loop with a dynamical system (see Section 4.2). �

3.2. Projected Gradient Flows
To enforce unilateral (i.e., inequality) constraints it is of-

ten possible to rely on projection mechanisms. In a compu-
tational context, this is particularly true if the projection
onto a given constraint set is easy to evaluate numerically.

Consider the constrained optimization problem

minimize Φ(x) subject to x ∈ X , (11)

where X ⊂ Rn is closed convex and non-empty, and Φ is
a convex cost function. The classical projected gradient
descent to solve this problem takes the form

xk+1 = PX
(
xk − αk∇Φ(xk)T

)
. (12)

where PX (y) := arg minx∈X ‖x−y‖ denotes the Euclidean
minimum norm projection onto X , and {αk} is a sequence
of step sizes.

By choosing infinitesimally small step-sizes, the
continuous-time limit of (12) is a projected gradient flow

ẋ = ΠX
[
−∇Φ(x)T

]
(x) (13)

where ΠX [v](x) denotes the projection of the vector v
onto the tangent cone TX (x) of X at x, i.e., ΠX [v](x) =
arg minw∈TX (x) ‖v − w‖. As illustrated in Figure 7, the
tangent cone is the set of all directions starting at x which
point inward into the set X . For convex sets, it takes the
general form TX (x) = cl{d | d = α(y − x), y ∈ X , α ≥ 0}.
For a comprehensive discussion (including for non-convex
sets) see Rockafellar & Wets (2009).

TX (x)

NX (x)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−∇Φ(x)

ΠX [−∇Φ](x)
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−3

−2

−1

0
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Figure 7: Left: Examples of tangent and normal cones of a set X
(gray area is infeasible). Right: Projected vector field onto the tan-
gent cone. See Figure 8e for the resulting projected gradient trajec-
tory.

Figure 8e illustrates the qualitative behavior of pro-
jected gradient flows. Namely, in the interior of the feasi-
ble set, trajectories follow the gradient direction whereas

at the boundary, trajectories follow the steepest feasible
descent direction. It is also evident that, compared to
penalty or barrier approaches, projected gradient flows are
inherently discontinuous systems, and their study requires
tools from non-smooth analysis (Aubin & Cellina, 1984;
Clarke, 1990; Hauswirth et al., 2020a).
Remark 3.1. As mentioned above, the continuous-time
model (13) can be obtained from (12) in the limit as
α → 0+ where α is a constant step size. Conversely,
(12) can be interpreted as a forward Euler discretization of
(13). Analogously, a backward Euler scheme for (13) takes
the implicit form xk+1 = PX

(
xk − αk∇Φ(xk+1)T

)
. Com-

paring optimality conditions, it easy to show that this dis-
cretization is a special case of the more general proximal-
point algorithm (Beck, 2017, Chap. 27.1).

In contrast to the discrete-time system (12), continuous-
time projected gradient flows can be generalized exten-
sively. In particular, convexity of X is not required. More
precisely, whereas PX requires X to be convex to be well-
defined, ΠX is generally well-defined since TX (x) is non-
empty and closed convex for a large class of non-convex
sets called (Clarke) regular. �
Remark 3.2. Convex projected gradient flows also fall into
the category of subgradient flows: If X is convex, we may
consider the minimization of Φ(x) + IX (x) where IX de-
notes the indicator function of the set X . Since IX is not
differentiable, instead of a gradient flow, we need to resort
to the subgradient inclusion ẋ ∈ −∇Φ(x)T − NX (x). (In
particular, the subgradient of IX is given by the normal
cone NX (x) of X at x, i.e., ∂IX (x) = NX (x).) This differ-
ential inclusion is also referred to as differential variational
inequality (Aubin & Cellina, 1984) and can be shown to be
equivalent to (13) (i.e., admit the same trajectories). �

Projected gradient flows inherit various properties from
their unconstrained counterparts. For instance, similarly
to Theorem 1, trajectories of (13) converge to the set of
critical points (in this case, Karush-Kuhn-Tucker points of
(11)), and stability and optimality can be related similarly
to (iii) in Theorem 1.

Analogously to unconstrained gradient flows discussed
in Example 3.1, projected gradient flows can also be de-
fined using a variable metric. This modification, however,
requires a generalization of ΠX to take into account the
effects of the metric. Namely, instead of ΠX [v](x), the
projection operator

ΠQ
X [v](x) := arg min

w∈TX (x)
(w − v)TQ(x)(w − v) (14)

has to be used, where Q(·) is a metric. Thus an “oblique”
projected gradient flow takes the fom

ẋ = ΠQ
X
[
−Q(x)∇Φ(x)T

]
.

This degree of freedom allows, in particular, the definition
of projected Newton flows and will also be applied in Ex-
amples 4.7 and 4.8. See Hauswirth et al. (2020a, 2016) for
precise statements.
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Projected gradient flows are a special case of more
general projected dynamical systems of the form ẋ =
ΠX [f(x)] (x) where f is a general vector field and not nec-
essarily the gradient of a function. This general formalism
is particularly useful in game-theoretic contexts (Nagurney
& Zhang, 1996) and for saddle-point flows for constrained
optimization problems discussed below.

3.3. Primal-Dual Saddle-Point Dynamics
Simply speaking, under weak technical assumptions, so-

lutions of a constrained optimization problem are saddle-
points of the associated Lagrangian. For this reason, dy-
namical systems that seek out saddle-points rather than
extrema of a function are of particular interest for con-
strained optimization.

As a general yet basic setup, consider a differentiable
function L(x, µ) that is convex in x for every µ, concave
in µ for all x, and either strictly convex in x or strictly
concave in µ. Then trajectories of the system

ẋ = −∇xL(x, µ)T µ̇ = ∇µL(x, µ)T (15)

converge to a saddle-point of L, i.e., a point (x?, µ?) such
that L(x, µ?) ≥ L(x?, µ?) ≥ L(x?, µ) for all x and all µ. In
particular, (15) consists of a gradient descent in the primal
variables x and a gradient ascent in the dual variables µ.

Historically, saddle-point flows have primarily been
studied in the context of nonlinear circuit analysis (Bray-
ton & Moser, 1964; Smale, 1972), but their potential for
optimization has been observed even before that (Arrow
et al., 1958; Kose, 1956). Although saddle-point flows have
been studied throughout the years (Bloch et al., 1992;
Venets, 1985), they have recently become a topic of intense
study due their importance in the context of distributed
network optimization (see Example 4.1 below and Cortés
& Niederländer 2019; Feijer & Paganini 2010).
Example 3.3. Consider the linearly constrained problem

minimize Φ(x) subject to Ax = b (16)

where A ∈ Rm×n and b ∈ Rm, and Φ is strictly convex.
The Lagrangian of (16), given by

L(x, µ) := Φ(x) + µT (Ax− b)
is strictly convex in x and linear (thus concave) in µ. Con-
sequently, the saddle-point flow (15) is globally convergent
and takes the form

ẋ = −∇Φ(x)T −ATµ µ̇ = Ax− b . (17)

Note in particular that any equilibrium (x?, µ?) of (17)
satisfies 0 = ∇Φ(x?)T + ATµ? and 0 = Ax? − b and thus
the Karush-Kuhn-Tucker condition which are (for convex
problems) necessary and sufficient for optimality of x?.

Finally, when A is sparse and Φ is separable, then (15)
is amenable to a distributed implementation. This prop-
erty crucial for networked applications and will be further
this discussed in Examples 4.1 and 4.2 for the control of
communication networks and power systems. �

Like gradient flows, saddle-point flows can be modified
through the use of positive definite metrics Qp, Qd as

ẋ = −Qp∇xL(x, µ)T µ̇ = Qd∇µL(x, µ)T . (18)

Often, Qp and Qd are chosen to be constant diagonal ma-
trices that speed up or slow down convergence in specific
directions. Interestingly, in the limit case Qp � Qd, one
recovers a differential-algebraic system

x?(µ) = arg min
x

L(x, µ) µ̇ = Qd∇µL(x?(µ), µ)T ,

which is a continuous-time dual ascent. This idea of replac-
ing the primal gradient flow with an explicit (algebraic)
minimization can also be applied partially to a subset of
variables. This possibility will be applied in Example 4.2.

Differentiability of the saddle-function L is not gener-
ally required. In fact, (15) can be generalized to include
projections on both x and/or µ (Cherukuri et al., 2017a,
2016, 2017b; Hauswirth et al., 2020f; Stegink et al., 2018).
This possibility is particularly important to deal with in-
equality constraints (see Example 3.4 below). Even more
generally, (15) can be formulated in terms of subgradients
if L is not differentiable (Goebel, 2017; Venets, 1985).

Convergence proofs for (15) and its generalization
usually rely on the monotonicity of the vector field
[−∇xL(x, µ) ∇µL(x, µ)]. This type of argument, however,
does not generalize beyond convex-concave saddle-point
flows. Even relaxing strict convexity or concavity require-
ment of either x or µ, respectively, is problematic since this
may lead to oscillations (Holding & Lestas, 2014). How-
ever, these oscillations can be eliminated with a simple
augmentation term (Hauswirth et al., 2020f).

The following inequality-constrained example illustrates
several important aspects of saddle-point flows: Building
upon the previous Example 3.3, we show how the pro-
jected dynamical systems discussed in Section 3.2 can be
used to define projected saddle-point flows for inequality-
constrained optimization problems, and we discuss aug-
mentations based on penalty terms to improve conver-
gence.

Example 3.4. Instead of (16), consider the problem

minimize Φ(x)

subject to x ∈ X
g(x) ≤ 0 ,

(19)

where Φ and g are convex (but not necessarily strictly
convex) and continuously differentiable. Further, let X ⊂
Rn be non-empty and closed convex. We may define the
partial Lagrangian L : X × Rm≥0 → R of (19) as

L(x, µ) := Φ(x) + µT g(x) , (20)

and note that µ must lie in the non-negative orthant Rm≥0

because it is associated with an inequality constraint.
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To find a saddle-point of L on the set X×Rm≥0 we use the
continuous-time projection formalism introduced in Sec-
tion 3.2 for projected gradient flows. Namely, we consider
the projected saddle-point flow

ẋ = ΠX
[−∇Φ(x)T−∇g(x)Tµ︷ ︸︸ ︷
−∇xL(x, µ)T

]
(x) (21)

µ̇ = ΠRm≥0

[
∇µL(x, µ)T︸ ︷︷ ︸

g(x)

]
(µ) (22)

where ΠX [w] (x) and ΠRm≥0
[v] (x) project w and v onto the

tangent cone of X and on the non-negative orthant Rm≥0 at
x and µ, respectively. Consequently, trajectories of (21)
cannot leave X × Rm≥0.

Importantly, two different constraint enforcement mech-
anisms are at play in (21): On one hand, the constraint
x ∈ X is enforced directly by projection, similarly to the
projected gradient flow in Section 3.2. The constraint
g(x) ≤ 0 on the other hand is enforced by dualization.
Namely, the dual variable µ is updated in response to a
constraint violation g(x) > 0 and converges to a dual so-
lution of (19).

As shown, e.g., by Goebel (2017), under weak techni-
cal assumptions and if Φ is strictly convex, trajectories of
(21) are guaranteed to converge to a Karush-Kuhn-Tucker
point (and thereby to a global optimizer) of (19).

If Φ is non-strictly convex, then trajectories of (21) con-
verge to the optimizer of (19) if, instead of L, a penalty
augmented Lagrangian of the form

La(x, µ) := Φ(x) + µT g(x) + φ(x) (23)

is used, where φ is a penalty function, as introduced in
Example 3.2. Namely, φ is often chosen to be of the form
φ(x) := ρ

2‖max{g(x), 0}‖2, but other constructions are
possible to guarantee asymptotic convergence.

If Φ or g are non-convex, convergence of trajectories to a
saddle-point is generally not guaranteed. For this reason,
Bernstein et al. (2019); Dall’Anese & Simonetto (2018);
Tang et al. (2018a,b) have used an additional regulariza-
tion on the dual variables of the form

Lb(x, µ) := Φ(x) + µT g(x) + φ(x) + ρ̂
2‖µ‖2 . (24)

Using this modification and a large enough ρ̂, the corre-
sponding saddle-point flow is convergent, even with expo-
nential stability guarantees. However, saddle-points of Lb
do generally not coincide with Karush-Kuhn-Tucker points
of (19) anymore. In particular, notice that the dual up-
date takes the form µ̇ = ΠRn≥0

[g(x) + ρ̂µ] and thus, at
an equilibrium, it holds that µ?i (gi(x?) + ρ̂µ?i ) = 0. In
the absence of dual regularization, the same equilibrium
condition simplifies to µ?i gi(x?) = 0 which is the comple-
mentary slackness part of the KKT optimality conditions
of (19). �

Example 3.4 yields two insights into saddle-point flows:
First, projections can be used in two different ways to en-

force inequality constraints. Namely, we can either con-
strain the primal variables directly (as with projected gra-
dient flows with ΠX ) or integrate constraint violations to
compute dual variables. In this second case, the projection
ΠRn≥0

ensures the non-negativity of the dual variables. Sec-
ond, it is possible to augment the Lagrangian saddle-point
function to improve convergence. However, regularizing
the dual variables will in general modify the location of
saddle-points.
Remark 3.3. We note that penalty functions (Exam-
ple 3.2) and unprojected saddle-point flows (as in Ex-
ample 3.3) exhibit strong parallels with classical PI-
controllers: Assume that a plant exhibits nonlinear dy-
namics with affine inputs and outputs of the form

ẋ = −∇Φ(x)T +ATu y = Ax .

Applying a proportional controller u = −ρ(y − b) realizes
a closed-loop system of the form

ẋ = −∇Φ(x)T − ρAT (Ax− b)

which can easily be identified as a gradient flow of the
penalty-augmented cost Φ(x) + ρ

2‖Ax− b‖2.
An integral controller u̇ = (y − b), on the other hand,

leads exactly to the saddle-point flow (17).
Hence, combining a penalty function approach and a

saddle-point flow leads to an augmented saddle-point flow
that is analogous to a PI-controller, i.e., we get

ẋ = −∇Φ(x)T − ρAT (Ax− b)−ATu
u̇ = Ax− b .

which is a saddle-point flow for the augmented Lagrangian

La(x, u) := Φ(x) + uT (Ax− b) + ρ
2‖Ax− b‖2 . �

All in all, saddle-point flows have proven to be very ver-
satile and particularly useful for distributed optimization
where agents share certain constraints. However, conver-
gence and stability results for non-convex problems are not
generally available. Moreover, even for convex problems,
tuning can be difficult, especially for nonlinear problems.
Suboptimal parameter choices can lead to severely under-
or over-damped transients that may venture far outside the
feasible domain, which is undesirable in online and closed-
loop applications. This problem gets only more challeng-
ing for high-dimensional and ill-conditioned problems.

3.4. Comparison of Constraint Enforcement Mechanisms
In the previous subsections we have presented several

ways to design dynamics that can solve constrained op-
timization problems. Their characteristic behaviors and
different combinations are illustrated in Figure 8. In the
following, we summarize, contrast, and compare these dif-
ferent mechanisms.

Penalty and barrier functions, as discussed in Exam-
ple 3.2, can be used to transform problems into uncon-
strained problems which can then be tackled with a simple
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Figure 8: Behavior of different constraint enforcement mechanisms
All panels show the minimization of a quadratic function subject to
two constraints x2 ≥ 0 and x2 ≥ x1 (the grayed out area is infea-
sible). Penalty (a) and barrier (b) functions allow for smooth outer
and inner approximations of constraints with an unconstrained gra-
dient flow (Example 3.2). Saddle-point flows (c) enforce constraints
only asymptotically by integrating constraint violation over time,
but are often amenable to a distributed implementation. Augment-
ing saddle-point flows with a penalty term can improve convergence
(d) as explained in Example 3.4. Projected gradient flows (e) en-
force constraints directly by projection, which results in non-smooth
trajectories, but their implementation is not immediate (for one pos-
sibility see Example 4.6 below). Individual constraints can also be
enforced with a combination of these mechanisms, e.g., as in (f)
with a projection for x2 ≥ 0 and dualization (saddle-point flow) for
x2 ≥ x1, as in Example 3.4.

gradient flow. However, both approaches by themselves
can enforce constraints only approximately. Barrier func-
tions achieve an “inner” (i.e., conservative) approximation,
whereas penalty functions generally allow for a small con-
straint violation and thus constitute an “outer” approxima-
tion. Both approaches are widely applicable (under minor
technical assumptions) and do not require convexity of the
constraints. However, theoretical guarantees often rely on

additional assumptions and, because of practical consid-
erations, penalty and barrier function cannot be chosen
arbitrarily steep.

Constraint enforcement by (infinitesimal) projection, as
for continuous-time projected gradient flows, is mathemat-
ically well-posed and works in very general settings. In
particular, convexity of the constraint set is not generally
required (as opposed to discrete-time projected gradient
descent). Furthermore, constraints are represented exactly
and satisfied at all times. However, these continuous-time
discontinuous dynamical systems are often not directly im-
plementable. Instead, discrete-time approximations, for
example, rely upon the fact that the numerical projec-
tion onto the feasible constraint set are computationally
inexpensive. In continuous-time, projected dynamical sys-
tems can be implemented by exploiting physical saturation
and applying anti-windup control. This possibility will be
further discussed in Section 4.3 and, particularly, in Ex-
ample 4.6. Another possibility, to approximate projected
gradient flows, is by appropriate discretizations which, in
contrast to (12), do not require an explicit projection PX
onto the feasible set. Such an algorithm will be discussed
in Section 4.3.2.

Dualization of constraints leads to saddle-point flows
where dual variables are computed by integrating the con-
straint violation over time. Hence, transient constraint
violation are generally unavoidable. For an inequality con-
straint, the corresponding dual variable must be kept non-
negative by projection. Formal convergence guarantees are
available only for convex problems (or with dual augmen-
tation which alters equilibrium points) and, in practice,
this method is difficult to tune, but often allows for dis-
tributed implementation that requires only the communi-
cation of dual multipliers.

In theory, each constraint (in functional form) can be
enforced with one these mechanisms independently of the
other constraints. For example, in Figure 8f, the constraint
x2 ≥ 0 is enforced by projection whereas x2 ≥ x1 is du-
alized. As we will see in the forthcoming section, this
freedom of choice is particularly useful in control setups
where the real-world nature of constraints can dictate the
appropriate enforcement mechanism. For instance, bar-
rier functions may be considered for constraints that may
not be violated under any circumstances. Constraints that
are naturally enforced by physical saturation, mechanical
constraints or similar are best represented by projections.
Dualization in combination with a penalty term is par-
ticularly helpful to enforce constraints asymptotically and
often allow for distributed implementations.

As we will see in Section 4.3, all of these constraint en-
forcement methods can be applied in an online feedback
setup, albeit their suitability depends on the specific con-
straint type, problem size and available model information.

3.5. Time-Varying Online Optimization
A topic that is central to online optimization, in open or

closed loop, is the study of problems that vary over time.
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In recent years, this topic has garnered significant interest
because of its relevance to many applications in control,
robotics, machine learning, and others (Dall’Anese et al.,
2020; Simonetto et al., 2020). The focus has been the
development of algorithms that can track the solution of
a non-stationary optimization problem with performance
guarantees. Historically, two perspectives can be distin-
guished:

On the one hand, Besbes et al. (2015); Hall & Wil-
lett (2015); Jadbabaie et al. (2015); Lesage-Landry et al.
(2020); Shi et al. (2020); Zinkevich (2003) and others frame
time-varying optimization as an iterative learning problem
in following sense: At every iteration k an agent chooses
an action xk and subsequently a convex function Φk is re-
vealed. The agent’s goal is to minimize her regret, i.e.,
some measure of accumulated suboptimality.

On the other hand, Rahili & Ren (2017); Rahili et al.
(2015); Simonetto et al. (2017); Tang et al. (2018a) are
inspired more by control theory and describe time-varying
optimization as a tracking problem whereby an optimiza-
tion algorithm defines an time-varying solution map t 7→
x?(t) that needs to be followed as closely as possible by
the online optimization scheme.

Both viewpoints share a common base: First, convex-
ity is generally assumed to guarantee the existence of a
unique minimum and, in the case of strong convexity, a
unique minimizer. Exceptions are Subotić et al. (2020);
Tang et al. (2018a) where results for non-convex optimiza-
tion problems are presented. Second, to give meaningful
performance guarantees, some sort of “bounded variation”
in the optimization problem has to be assumed. A common
starting point for this purpose is to assume that the rate
of change of the optimizers is bounded by a known con-
stant. This assumption is relaxed in Subotić et al. (2020)
which shows how, in special cases, the rate of change of
the optimizer can be bounded using information about the
objective and the constraint functions only.

Depending on the application, the time-varying opti-
mization problem might be unconstrained (Popkov, 2005),
constrained to a stationary set (Hall & Willett, 2015; Jad-
babaie et al., 2015; Mokhtari et al., 2016; Zinkevich, 2003),
or have time-varying constraints (Rahili & Ren, 2017;
Rahili et al., 2015; Subotić et al., 2020; Tang et al., 2018a).
Time-varying constraints have been dealt with using bar-
rier functions (Fazlyab et al., 2016, 2018) or perturbed
sweeping processes (Hauswirth et al., 2018; Subotić et al.,
2020; Tang et al., 2018a).

Roughly speaking, algorithms for time-varying opti-
mization can be divided into running algorithms that do
not incorporate any information about the evolution of the
problem (Bastianello et al., 2020a; Bernstein et al., 2019;
Popkov, 2005; Simonetto, 2017; Simonetto & Leus, 2014;
Tang et al., 2018a) and predictive schemes that exploit
some knowledge or estimate about the change in the opti-
mization problem (Bastianello et al., 2020b; Fazlyab et al.,
2018; Lesage-Landry et al., 2020; Simonetto & Dall’Anese,
2017; Simonetto et al., 2017).

The following examples generalize Example 1.1 to a
time-varying setting and illustrate a running and a pre-
dictive scheme.
Example 3.5. Consider the same setup as in Example 1.1.
Namely, let a physical plant be characterize by the steady-
state input-output map y = h(u) + d(t). We now assume
that d(t) is time-varying and (Lebesgue) measurable. Con-
sequently, we wish to track the solution of

minimize Φ̃(u, t) := Φ(h(u) + d(t)) . (25)

Without modifying the controller we get the (non-
autonomous) closed-loop system

u̇ = −∇uΦ̃(u, t)T (26)

= −∇h(u)T∇Φ(y)T y = h(u) + d(t) (27)

which is a running algorithm to solve (25).
Assume that Φ̃ is β-strongly convex for every t and con-

sequently has a unique global minimizer u?(t) for every t.
Further, assume that ‖u?(t) − u?(t′)‖ ≤ `‖t − t′‖ for all
t, t′. In other words, the unique optimizer is `-Lipschitz.

The quantity ` can sometimes be bounded from prob-
lem parameters (Subotić et al., 2020). For instance, if it
is known that d is `d-Lipschitz in t and Φ is β′-strongly
convex, then, the estimate ` ≤ β′`d holds.

Exploiting strong convexity and Cauchy-Schwarz in-
equality, the distance between u(t) of (26) and u?(t) can
be shown to differentiable for almost all t and satisfy

d
dt

1
2‖u(t)− u?(t)‖2
≤ 〈u̇(t), u(t)− u?(t)〉+ `‖u(t)− u?(t)‖
≤ −β‖u(t)− u?(t)‖2 + `‖u(t)− u?(t)‖ .

Consequently, ‖u(t) − u?(t)‖ is decreasing as long as
‖u(t) − u?(t)‖ > `/β. It follows from standard invariance
arguments that, as t→∞, u(t) will be `/β-close to u?(t).
A similar statement holds for the discrete-time case. �
Example 3.6. To illustrate a continuous-time predictive al-
gorithm, consider the same setup as in Example 3.5 and
assume, in addition, that Φ is twice continuously differen-
tiable and the time derivative ḋ(t) is available (e.g., can be
estimated using finite differences). Then, we may consider
the control law

u̇ = −∇h(u)T∇uΦ(y)T −∇h(u)T∇2
yyΦ(y)ḋ(t)

y = h(u) + d(t)

which reduces to

u̇ = −∇uΦ̃(u, t)T − d
dt (∇uΦ̃)T (u, t) .

One may consider the time-varying Lyapunov function
W (u, t) := 1

2‖∇uΦ̃(u, t)‖2. It holds that
d
dtW (u(t), t) = ∇uW (u(t), t)u̇(t) +∇tW (u(t), t)

= ‖∇uΦ̃(u(t), t)‖2 < 0 .

for all t and all u(t) 6= u?(t). This fact can be used to
guarantee zero tracking error as t→∞. �
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4. Online Feedback-Based Optimization

We now turn to the key idea and main topic of this
article—the implementation of optimization algorithms in
closed loop with physical systems. The unconstrained
feedback gradient flow from Example 1.1 in the introduc-
tion will serve as a prototypical example for this approach.
However, our ultimate objective is to devise feedback con-
trollers to robustly steer a dynamic plant (1) to an oper-
ating condition that solves the more general constrained
nonlinear optimization problem (4). For this purpose, we
use the optimization dynamics and mechanisms presented
in Section 3 as blueprints for the design of nonlinear inte-
gral multi-input-multi-output controllers.

Early designs for this type of feedback-based optimiza-
tion can be traced back to Brunner et al. (2012); Jokic
et al. (2009). Both works consider steering a dynamical
plant towards the solution of a constrained convex opti-
mization problem and resort to saddle-point formulations
to enforce constraints. While Jokic et al. (2009) proposes
controllers using so-called “complementarity integrators”,
Brunner et al. (2012) considers a smooth saddle-point flow
variation and applies backstepping to design the feedback
controller. Hence, compared to the general problem (4),
Brunner et al. (2012); Jokic et al. (2009) study a simple
convex optimization problem in the output variable y only,
i.e., without constraints and cost on u.

Generally speaking, almost any optimization algorithm
in the form of a dynamical system can be defined as open
systems and interconnected with physical systems, but not
every such control design makes sense in the real world.
Notably, physical realizations need to be robust, they are
constrained by the computational and communication in-
frastructure, and they are limited by the availability of
accurate model data and physical measurements.

In the following subsections, after reviewing existing
literature, we therefore present the proposed feedback-
based optimization approach by focusing on two robust-
ness aspects: First, we survey approaches to guarantee
closed-loop stability. Second, we review the possibilities
to robustly enforce constraints in closed-loop optimiza-
tion, showing how the “abstract” algorithmic mechanisms
in Section 3 can be mapped to the specific nature of con-
straints.

In this section, we also provide three application ex-
amples that illustrate specific problem domains where
feedback-based optimization has been considered to de-
sign and retrofit complex high-dimensional control sys-
tems. The following two of these examples concern the
historical problems of congestion avoidance in communica-
tion networks and frequency regulation in AC power grids.
At the end of the section, we further study the timely ap-
plication of optimal reserve dispatch in electricity grids
in the presence of intermittent renewable power infeed. In
contrast to the previous examples, this last application ex-
hausts the generality of (4), combines the main ideas from
this article, and is amenable to further variations and ex-

tensions.

Example 4.1 (Network Congestion Control). Arguably one
of the largest man-made distributed feedback systems is
formed by the congestion management mechanisms at the
heart of the Internet (Low et al., 2002). These proto-
cols manage the allocation of link capacities to individual
connections in highly dynamic environments, for heteroge-
neous agents, and subject to real-world imperfections such
as delays, among others (Paganini et al., 2005; Tang et al.,
2007; Vinnicombe, 2002; Wen & Arcak, 2004). Determin-
istic, continuous-time flow models have been particularly
successful in explaining these protocols, by providing an
optimization-based perspective in terms of network util-
ity maximization (Kelly et al., 1998; Low, 2017; Low &
Lapsley, 1999; Shakkottai & Srikant, 2007), and enabling
improved designs (Wei et al., 2006, 2013; Zargham et al.,
2013).

Given a communication network, let a set of N sources
share M links. The set of links used by each to communi-
cate to its destination are collected in the routing matrix
R ∈ RN×M in the sense that Rij = 1 if link j is used by
source i and Rij = 0 otherwise. Each link j in the network
has an associated congestion measure µj (also referred to
as price) which may describe queuing delays or packet loss
probabilities. Each link j has a finite capacity cj . Each
source i has a controllable source rate xi, e.g., in the form
of its window size. The different source rates define a vec-
tor of aggregate flows for each line given by y = Rx where
each row of R corresponds to a link. Conversely, sources
are assumed to have access to their respective aggregate
price p = RTµ. In practice, each source can estimate the
total price over its own path by measuring delays, estimat-
ing the packet loss probability, or detecting the presence
of specific “congestion markers” on its packets.

The simplest model to describe the link dynamics is
given by the projected gradient flow

µ̇j = ΠRM≥0
[yj − cj ](µj) (28)

where

ΠRM≥0
[yj − cj ](µj) =

{
yj − cj µj = 0 and yj > cj ,

0 otherwise.

In other words, the price increases when the link is over-
loaded (and package loss occurs) and decreases whenever
it is not overloaded, but the price never drops below zero.
Source controllers can often be modeled as ẋi =

−∇Φi(xi)−pi, where Φi(xi) is a specific type of cost func-
tion, reverse-engineered and depending on the particular
protocol. Namely, sources adapt their rate to minimize a
given cost function (equivalently, maximize their utility)
corrected by the aggregate price.

Hence, congestion control mechanisms interconnect
source controllers and link dynamics into a feedback loop
as illustrated in Figure 9, where Φ(x) :=

∑
i Φi(xi). Im-

portantly, each controller is fully distributed and requires
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Figure 9: Simple network utility maximization

only locally available information. Written more com-
pactly, the closed-loop dynamics are defined as

ẋ = −∇Φ(x)−RTµ µ̇ = ΠRM≥0
[Rx− c](µ) .

This system defines a projected saddle-point flow, as in
Example 3.4, whose trajectories converge to a solution of

minimize Φ(x) subject to Rx ≤ c , (29)

whenever Φ is strictly convex.
From a control and optimization perspective, source

controllers and link dynamics form a closed feedback loop
that implicitly tracks the solution of the underlying utility
maximization problem (Wang & Elia, 2011).

From the viewpoint of closed-loop optimization advo-
cated in this article, one can argue that the links imple-
ment the dual dynamics that have to be complemented by
controllers that form the primal dynamics. Together they
optimize (29). �
Example 4.2 (Optimal Frequency Control). Recent years
have seen renewed interest in the control of power sys-
tems because of the new challenges associated with an in-
creasingly dominating number of power electronic devices
connected to the electricity grid and the growth of highly
intermittent infeed from new renewable energy sources.

Frequency control in AC grids is one control task that
has been revisited in this context. In this example, we
illustrate how recent work has framed this challenge as a
closed-loop optimization problem in order to improve upon
classical frequency control schemes.

The reader is referred to Molzahn et al. (2017) for a
recent survey on this topic and to Chen et al. (2020);
Simpson-Porco (2021); Zhao et al. (2016) and references
therein for latest results. The ensuing model is based on
Li et al. (2016).

In contrast to the optimal reserve dispatch problem out-
lined in Section 1.2, we assume a lossless AC power trans-
mission network with a set N of buses and a set M of
transmission lines. We consider the power system around
an operating point and all quantities are to be interpreted
as deviations from their nominal values.

The frequency deviation ωj at every bus j is governed
by the swing equation

ω̇j = 1
Mj

(
pMj −Djωj − pL

j −
∑

k:j→k
pjk

)
(30)

where Mj is the inertia of the generator and Dj is the
damping constant at bus j. The mechanical power output
of the generator and the power consumed at bus j are
denoted by pM

j and pL
j , respectively. The power flowing

out of bus j towards an adjacent bus k is written as pjk.
The notation j → k indicates a transmission line between
buses j and k, i.e., (j, k) ∈M.

For every j → k, line flow dynamics are linearized and
modeled as

ṗjk = bjk(ωj − ωk) (31)

where bjk is the line susceptance. Note that transmission
lines are undirected, and, throughout, the constraint pjk =
−pkj holds for every line implicitly.

At steady state and nominal frequency ωj = 0, the swing
equation (30) expresses the power balance at each node,
and (31) yields the so-called DC-flow approximation of
the AC power flow equations (5b–c) (assuming nominal
voltages, lossless lines, and small angle differences).

The mechanical power output pM
j is described by a sim-

plified governor-turbine control model of the form

ṗMj = − 1
Tj

(
pM
j − pC

j + 1
Rj
ωj

)
(32)

where pC
j is a power adjustment signal and Tj and Rj are

constants. In particular, Rj is understood as a generator’s
participation factor in primary frequency control.

The power adjustment itself is evaluated using the so-
called area control error (ACE) which combines frequency
and line flow deviations. More specifically, we have

ṗCj = −Kj

(
Bjωj +

∑
k:j→k

pjk

)
. (33)

with Bj and Kj being constant control parameters.
The role of this type of automatic generation control (or

secondary frequency control) is to react to changes in pL
j ,

driving frequency deviation to zero, and to make sure that
deviations in pL

j are compensated by the local generator
through adjustments of pM

j . Consequently, at steady state,
the deviations Pij of the line flows from their nominal val-
ues are zero.2

Although not immediately obvious, the system (30–33)
realizes a (partial) saddle-point flow, as introduced in Sec-
tion 3.3. To see this, we consider the optimization problem

minimize
∑

j∈N

(
βj
2

(
pM
j

)2
+

Dj
2 ω

2
j

)
subject to
∀j∈N

0 = pM
j − pL

j

0 = pM
j −Djωj − pL

j −
∑

k:j→k
pjk .

(34)

2In this example, the area control error is evaluated and regulated
on a per-bus basis. In more general settings, multiple buses belong
to the same area, and therefore secondary frequency control regu-
lates the aggregate power balance in each area and the power flows
between areas.
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where βj is a positive parameter to be determined. The so-
lution of this problem guarantees power balance and exact
frequency regulation. We can write out the corresponding
(unprojected) primal-dual saddle-point flow from Exam-
ple 3.3 as

p
ri

m
a
l


ω̇j = −εωj (Djωj −Djλj)

ṗMj = −εPMi (βjp
M
j − µj − λj)

ṗjk = −εpjk(λj − λk)

d
u
a
l

µ̇j = εµj (p
M
j − pL

j )

λ̇j = ελj

(
pM
j −Djωj − pL

j −
∑
k:j→k pjk

) (35)

for all j, k ∈ N and j → k, and where we use separate
positive gains ε(·) for every variable.

By taking the limit εωj → ∞, we can replace the
corresponding ODE with the algebraic expression 0 =
Dj(ωj−λj) and thus substitute ωj = λj . This results in a
so-called partial saddle-point flow. In this special case, the
ωj can hence be interpreted as a primal or dual variable.

We further apply a transformation to µj by defining
pC
j := Kj

(
Mjωj − 1

εµj
µj

)
. Consequently, we have

ṗCj = Kj

(
Mjω̇j − 1

εµj
µ̇j

)
= Kj

(
Mjω̇j − (pM

j − pL
j )
)
.

Combining these insights, we can rewrite the partial
saddle-point flow derived from (35) as

p
ri

m
a
l

{
ṗMj = −εPMi (βjp

M
j − µj − ωj)

ṗij = −εPij (ωk − ωj)

p
ri

m
a
l

o
r

d
u
a
l

{
ω̇j = ελj

(
pM
j −Djωj − pL

j −
∑

k:j→k
pjk

)

d
u
a
l

{
ṗCj = −Kj

(
Djωj +

∑
k:j→k

pjk

)
.

(36)

By carefully choosing the remaining gains ε(·) and βj (e.g.,
εPij := bij or ωλj = 1

Mj
) as well as, under Bj = Dj , (36)

is equal to (30–33). The choice of Bj = Dj is fragile, since
it means that the controller (33) requires an accurate esti-
mate of the damping Dj at every bus. However, numerical
experiments in Li et al. (2016) show that (30–33) is sta-
ble even if Bj = Dj does not hold exactly. A different
choice of Bj will be used in Example 4.4 where we revisit
the same frequency control problem and apply a timescale
separation approach for the design of feedback-based op-
timization schemes.

Starting from this observation that automatic genera-
tion control can be interpreted from a closed-loop opti-
mization perspective, various works have proposed opti-
mal frequency control schemes that allow for more gen-
eral objective functions than in (34), relax the constraint
pM
j = pL

j , or incorporate additional constraints on genera-
tion and transmission capacity. �

Examples 4.1 and 4.2 are instances of feedback-based op-
timization schemes that implement optimization dynamics
as the closed-loop behavior. Particularly, both examples
implement the (projected; partial) saddle-point flows dis-
cussed in Section 3.3. What sets these two examples apart
from Example 1.1, is the fact that the plant dynamics are
themselves part of the optimization algorithm and do not
need to be assumed fast-decaying. While this construc-
tion is elegant, its theoretical convergence guarantee is di-
rectly tied to the plant model, e.g., the link congestion dy-
namics (28), the turbine-governor (32), the line dynamics
(31). More realistic and complex models will not result in
equally clean formulations as convex-concave saddle-point
flows.

For this reason, rather than relying on the special plant
structure and specific models, we present in the following
section alternative and more general approaches to certify
closed-loop stability of optimization algorithms intercon-
nected with general (nonlinear) plants. Example 4.4 will
revisit the frequency control problem Example 4.2 from
this alternative perspective.

4.1. Review of Existing Works
The general topic of feedback-based optimization, as

outlined so far, has recently generated substantial results
which we review in the following. Most of these works have
been developed with power systems applications in mind.
However, we limit ourselves to a discussion of the control-
theoretic aspects and do not dwell on specific applications
(e.g., optimal frequency control) and topics treated else-
where in this article.

The common denominator of the papers discussed in the
following is the fact that they treat special cases of opti-
mization problem (4), i.e., the minimization of a cost func-
tions subject to the steady-state input-output behavior of
a physical plant, input constraints, and a set of engineering
constraints (usually on the plant outputs).

Table 1 attempts to compare these different problem
setups, but does not make any statement about solution
methods or technical contributions. While most papers in
Table 1 propose new control schemes, others investigate
particular properties (e.g., closed-loop stability or robust-
ness) of existing methods. Also, for papers that study dif-
ferent problem setups, the most general and challenging
properties are reported in Table 1.

The properties reported in Table 1 primarily illustrate
the various dimensions of problem complexity in (4): A
convex problem implies that the system needs to be steered
to a (unique) global minimizer, whereas for non-convex
problems convergence is generally only to one of multiple
local minima. Input constraints u ∈ U are hard physi-
cal limits enforced by saturation (see Section 4.3.1) and
require projection operations as part of the system dy-
namics (yielding non-smooth dynamics in continuous-time
setups). Similarly, unilateral (i.e., inequality) constraints
are often more demanding than equality constraints to en-
force, because their nature leads to non-smoothness (es-
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pecially in continuous-time models). Finally, if the con-
trolled plant is not algebraic, closed-loop stability is not
inherently guaranteed (see Section 4.2).

The control designs for solving convex problems are,
to a large degree, based on saddle-point flow algorithms
(Section 3.3). For instance, Chang et al. (2019); Tang
et al. (2018a) implement a double projection saddle-point
flow (see Example 3.4), Colombino et al. (2019a) is based
on the proximal augmented Lagrangian method (Dhingra
et al., 2019), and Bernstein et al. (2019) implements a
saddle-point flow with regularization in the dual variables.
These saddle-point flows with dual augmentation have also
been applied in Dall’Anese & Simonetto (2018); Tang et al.
(2018b) to non-convex problems, although the convergence
conditions are involved.

More suited for non-convex constrained problems are
projected gradient methods because of their general global
convergence properties (see Theorem 1). Variations of
these schemes have been studied in Gan & Low (2016);
Häberle et al. (2021); Hauswirth et al. (2016, 2020b,c,d,e).
In the same class of descent methods, a quasi-Newton
method has been proposed Tang et al. (2017), although
constraints cannot be easily enforced by projection and,
instead, a penalty/barrier function is required (see Exam-
ple 3.2).

The control architectures in Lawrence et al. (2018,
2020); Nelson & Mallada (2018); Picallo et al. (2020);
Simpson-Porco (2020); Zhang et al. (2018) are more dif-
ficult to categorize since they also include the design of
estimators or stabilizing controllers.

The issue of closed-loop stability (i.e., when intercon-
nected with a dynamic plant) has so far been studied
only for continuous-time models. Works on discrete-time
feedback-based algorithms have so far always assumed a
algebraic plant that is fully characterized by its steady-
state input-output map.

Among the papers that have considered dynamic plants,
most have assumed linear time-invariant plants. Notable
exceptions are Hauswirth et al. (2020b); Simpson-Porco
(2020) (although the closed-loop optimization example in
the latter features only an LTI plant).

Finally, time-varying problems are studied in Bern-
stein et al. (2019); Colombino et al. (2019a); Tang et al.
(2018a,b, 2017) which also provide bounds on the track-
ing performance under various assumptions (see also Sec-
tion 3.5). Furthermore, Bernstein et al. (2019) also models
the effect of measurement noise.

4.2. Closed-Loop Stability

Example 1.2 in the introduction has illustrated that a
simple gradient-based controller interconnected with a dy-
namical system is not necessarily stable, unless the control
gain ε is small enough (Figure 2). In other words,sufficient
timescale separation between the fast plant behavior and
the slow optimization dynamics is generally required. As
discussed in Section 2.1, extremum seeking also relies on

this type of argument, with the difference that ES dynam-
ics evolve on three timescales.

For control design, it is convenient to reduce fast tran-
sient dynamics to their algebraic steady-state map. We
have explicitly applied this design step in Examples 1.1,
2.1, and 4.1 and will do so implicitly in the rest of the
article. In this section, however, we will investigate the
problems of timescale separation and closed-loop stability
in detail and survey works that have tackled this issue.

We identify and present two main research streams:
First, we discuss stability results inspired by singular per-
turbation analysis which formalize and quantify stability
in terms of timescale separation. This approach is very
general and applicable to nonlinear (but asymptotically
stable) plant dynamics and non-convex optimization dy-
namics, but potentially very conservative. A second line
of research taps into robust control and provides compu-
tational stability certificates in the form of linear matrix
inequalities. While these stability guarantees are less con-
servative they apply only to linear time-invariant plants
and convex optimization dynamics.

Remark 4.1. Exploiting passivity is sometimes a third pos-
sibility to certify closed-loop stability (Khalil, 2002, Chap.
6). This approach requires that the control loop can be
identified as a feedback interconnection of passive systems,
which is not always possible. Saddle-point flows (discussed
in Section 3.3) are one class of systems that are amenable
to passivity arguments to study stability and robustness
(Simpson-Porco, 2016; van der Schaft, 2011). These ideas
have been applied for the congestion avoidance in commu-
nication networks (Example 4.1) in Wen & Arcak (2004)
and (Low, 2017, Chap. 4). Similarly, passivity has been
exploited in power systems applications (like Example 4.2)
in Stegink et al. (2017); Trip et al. (2019). �

4.2.1. Singular Perturbation Analysis
For the purpose of providing explicit bounds on ε,

Hauswirth et al. (2020b); Menta et al. (2018) pursue
a singular perturbation approach and arrive at easy-to-
compute sufficient conditions for closed-loop stability. In
particular, Hauswirth et al. (2020b) considers general non-
linear (but stable) plant dynamics and investigates a va-
riety of optimization dynamics for convex and non-convex
problems including (projected) gradient, saddle-point, and
momentum methods. Using similar techniques, Simpson-
Porco (2020) provides stability guarantees for general low-
gain integral controllers that satisfy an infinitesimal con-
traction property, but with a discussion of feedback-based
optimization limited to LTI plant dynamics. The follow-
ing example illustrates the main idea behind these stability
conditions.

Example 4.3. We wish to characterize the stability of the
feedback loop introduced in Example 1.1. In particular, we
want formulate conditions on the gain ε in Figure 1 that
guarantee closed-loop stability. For this purpose we pass
to the singular perturbation decomposition into reduced
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convex
problem

input
constraints

output
constraints

continuous- or
discrete-time plant model

Gan & Low (2016) no yes none/soft DT nonlin. algebraic
Hauswirth et al. (2016) no yes none/soft CT (non-smooth) nonlin. algebraic
Tang et al. (2017) no yes none/soft DT nonlin. algebraic
Hauswirth et al. (2017) no yes none/soft DT nonlin. algebraic
Mazzi et al. (2018) no yes unilateral DT nonlin. algebraic
Dall’Anese & Simonetto (2018) no yes unilateral DT nonlin. algebraic
Hauswirth et al. (2018) no yes none/soft CT (non-smooth) nonlin. algebraic
Tang et al. (2018b) no yes unilateral DT nonlin. algebraic
Tang et al. (2018a) no yes unilateral DT/CT (non-smooth) nonlin. algebraic
Nelson & Mallada (2018) yes no none/soft CT (smooth) LTI
Lawrence et al. (2018) yes no lin. equality CT (smooth) LTI
Menta et al. (2018) yes no lin. equality CT (smooth) LTI
Zhang et al. (2018) yes no unilateral CT (non-smooth) LTI
Colombino et al. (2019b) no yes none/soft DT nonlin. algebraic
Bernstein et al. (2019) yes yes unilateral DT nonlin. algebraic
Chang et al. (2019) yes yes unilateral CT (non-smooth) lin. algebraic
Colombino et al. (2019a) yes no linear eq. CT (smooth) LTI
Lawrence et al. (2020) yes no linear eq. CT (smooth) LTI
Picallo et al. (2020) no yes none/soft DT nonlin. algebraic
Hauswirth et al. (2020e) yes yes none/soft CT (non-smooth) nonlin. dynamic
Hauswirth et al. (2020c) no yes unilateral CT (non-smooth) nonlin. dynamic
Hauswirth et al. (2020b) no yes unilateral CT (non-smooth) nonlin. dynamic
Simpson-Porco (2020) yes no lin. equality CT (smooth) nonlin. dynamic
Häberle et al. (2021) no yes unilateral DT nonlin. algebraic

Table 1: Comparison of problem setups; Convexity refers to whether the problem one wishes to solve in closed loop is convex and thus exhibits
a unique global optimum. Input constraints refer to the presence of constraints u ∈ U on the control input. Output constraints refer to the
presence of constraints (u, y) ∈ X in (4). None/soft means that output constraints are either not considered or approximately enforced by
penalty or barrier functions. Continuous-time models can be either smooth or non-smooth (e.g. by including projections like discussed in
Section 3.2). Finally, the physical plant may be assumed to be algebraic (in which case the closed-loop stability is not an issue), an LTI
system (which results in a linear input-output map h), or governed by nonlinear but stable dynamics.

ε ĥ(u) ζ̇ = f(ζ, u)

∇h(u)T∇Φ(y)T ĥ(u)

∫

g(ζ)

u

+ − ++

+
d

reduced dynamics boundary layer dynamics

+

ζ − ĥ(u)

Figure 10: Feedback-based gradient flow from Figure 1 rearranged
and decomposed into reduced and boundary-layer error dynamics

and boundary-layer error dynamics illustrated in Figure 10
(Khalil, 2002; Kokotovic et al., 1999). In particular, ĥ is
defined such that f(ĥ(u), u) = 0 for all u.

The resulting reduced dynamics correspond exactly to
the simplified model what we have already used in the
design of the optimizing controller, where the plant is re-
places by its algebraic steady-state map. The boundary-
layer error dynamics z := ζ− ĥ(u) evolve as ż = f(ζ, u) for
any fixed u. If these error dynamics are exponentially sta-
ble (and other technical assumptions are satisfied), stan-
dard converse results guarantee the existence of a Lya-
punov function W and parameters γ, ω > 0 such that, for

any fixed u, it holds that

Ẇ (ζ − ĥ(u)) ≤ −γ‖ζ − ĥ(u)‖2

‖∇uW (ζ − ĥ(u))‖ ≤ ω‖ζ − ĥ(u)‖ .
(37)

A class of Lyapunov function candidates to certify sta-
bility of the closed system in Figure 10 is given by

Vδ(u, ζ) = δΦ̃(u) + (1− δ)W (ζ − ĥ(u))

where δ ∈ (0, 1) is a convex combination parameter.
Let L be the Lipschitz constant of ∇Φ̂. Hauswirth et al.

(2020b) have shown that for all

ε < ε? :=
γ

ωL
(38)

the parameter δ can be chosen such that Vδ is non-
increasing and thus a LaSalle invariance argument guar-
antees (asymptotic) stability. �
Remark 4.2. Recall from Example 3.2 that constraints
can be incorporated into an optimization problem through
penalty or barrier functions. The bound (38) on ε in Ex-
ample 4.3 indicates that there is a natural limitation to
this constraint enforcement mechanism. Notably, penalty
functions cannot be made arbitrarily steep, thus increas-
ing L, without at the same time reducing ε by the same
fraction. For the same reason log-barrier functions which
do not have a Lipschitz gradient have to be applied with
great care, as closed-loop stability cannot be guaranteed
with these singular perturbation bounds on ε. �
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The timescale separation argument inspired by singu-
lar perturbation analysis, as presented in Example 4.3,
works under very general conditions. In particular, for
the case of a gradient flow convexity of Φ is not generally
required. The type of stability proof can also be estab-
lished for various optimization algorithms interconnected
with exponentially stable plants. Examples include but
are not limited to Newton flows, projected gradient flows,
and saddle-point flows encountered in the previous section.
These conditions can be very conservative, but they are
qualitatively tight. Namely, non-examples in Hauswirth
et al. (2020b) show how subgradient flows and continuous-
time accelerated gradient flows interconnected with dy-
namical plants are not generally stable. These setups are
not amenable to the same type of timescale separation ar-
gument as above because important assumptions such as
uniform asymptotic stability of the reduced dynamics are
not satisfied (Poveda & Li, 2019).
Example 4.4. Reconsider the frequency control problem
from Example 4.2. We have seen that the simplified model
of automatic generation control in AC power grids given
by (30–33) can be reformulated as a partial saddle-point
flow. However, this interpretation works only under the
proposed modeling assumptions on line flows, swing dy-
namics, and the turbine-governor.

Alternatively, automatic generation control can also be
formulated as the interconnection of a plant with fast-
decaying dynamics interconnected with a simple gradient
controller as in Example 1.1. For this purpose, we identify
the input-output steady-state map h(u) of the system dy-
namics (30–32) with u = PC being the input and d = PL

a disturbance.
Note from (31) that at steady state all frequencies are

the same, i.e., ωi = ωj for all i, j ∈ N . Furthermore, we
have from (32) that PM

j = PC
j − 1

Rj
ωj . Consequently, at

steady state, it holds for all j ∈ N

0 = pC
j − (Dj + 1

Rj
)ω − pL

j −
∑

k:j→k
pjk , (39)

where ω is the unique system frequency.
Next, we define the ACE gain Bj := Dj+

1
Rj

(as opposed
to Bj = Dj in Example 4.2), and we choose the ACE to
be the output of the system. This allows us to define the
(almost trivial) input-output map h for every j ∈ N as

yj = Bjω +
∑
k:j→k

pjk = pC
j − pL

j = uj − dj =: hj(u) .

Hence, we can almost directly refer back to Example 1.1
to minimize Φ(y) := 1

2‖y‖2 using the gradient controller

u̇j = −εi
[
∇h(u)T∇Φ(y)

]
j

= −ε(pC
j − pL

j )

= −ε
(
Bjω +

∑
k:j→k

pjk

)
and thus recover the ACE-controller (33) with εi = Ki.
The only difference to Example 1.1 is the fact that εi is

different for every component rather than a global con-
trol. This detail is well-motivated since the different ε can
be interpreted simply as a constant metric applied to the
gradient flow; see Example 3.1.

In contrast to Example 4.2, the timescale separation ap-
proach to frequency control does not make any assumption
on the underlying dynamical systems. As long as these
dynamic transients decay quickly and (39) is satisfied at
steady state, the frequency deviation (and other quanti-
ties) can be controlled and driven to their nominal values
or an economically efficient operating condition.

One of the limitations compared to Example 4.2 is the
fact that, from a theoretical viewpoint, closed-loop stabil-
ity is guaranteed only for a small enough gains εi = Ki.
The partial saddle-point reformulation found in Exam-
ple 4.2 is globally convergent for any positive control gains,
albeit only under the given modeling assumptions. �

4.2.2. LMI Stability Certificates
Alternatively, closed-loop stability can be certified by

applying tools from robust control, namely linear matrix
inequalities. Recent results on integral quadratic con-
straints and their use for the analysis of optimization al-
gorithms (Fazlyab et al., 2017; Lessard et al., 2016) have
proven very useful for this purpose and have been applied
in Colombino et al. (2019a); Nelson & Mallada (2018).
In particular, Nelson & Mallada (2018) studies the joint
design of stabilizing control, estimator and optimization
dynamics. Similarly, Lawrence et al. (2018, 2020) consid-
ers an output regulation framework and reduce the control
design to a stabilization problem.

Limiting the applicability of these techniques from ro-
bust control is the fact that plant dynamics are generally
required to be LTI, and objective functions need to be
(strongly) convex. Moreover, these LMI-based conditions
are in the form of computational stability certificates and
do not directly translate into control design procedures or
tuning recommendations.

The following example presents a LMI-IQC based sta-
bility test for the feedback-based gradient flow.
Example 4.5. Consider the same setup as in Example 1.1,
and, in addition, assume that Φ is m-strongly convex and
has a L-Lipschitz gradient. Further, assume that

ζ̇ = f(ζ, u) = Ax+Bu y = g(ζ) + d = Cζ + d (40)

is an LTI system. Assuming that A is invertible, the
steady-state input-output map is given by h(u) = Hu with
H = −CA−1B. Furthermore, (3) has a unique equilibrium
(ζ?, u?) such that ∇Φ̃(u?) = 0 and 0 = Aζ? +Bu?.

The closed-loop system (3) can be written in a standard
robust control setup as an interconnection of a nonlinearity
with an LTI system. This is shown in Figure 11, where

z :=

[
ζ
u

]
A :=

[
A B
0 0

]
B :=

[
0 0
0 −HT

]
y :=

[
y
u

]
C :=

[
0 I
C 0

]
D :=

[
I
0

]
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ż = Az + Bu
y = Cz + Dw

∆ε

y
u

w

Figure 11: Feedback-based gradient flow from Figure 1 rewritten as
a feedback interconnection of an LTI system with a nonlinearity ∆

and

u = ∆ε(y) =

[
0

ε∇Φ(y)

]
. (41)

Crucially, ∆ε(·) satisfies the IQC defined by[
y − y?

u− u?

]T [−2ε2mLI ε(L+m)I
ε(L+m)I −2I

]
︸ ︷︷ ︸

Ξε

[
y − y?

u− u?

]
≥ 0 (42)

for all (y, u) such that y = ∆(y) (Lessard et al., 2016,
Lemma 6). Equivalently, we have[

z− z?

u− u?

]T
CTΞεC

[
z− z?

u− u?

]
≥ 0 (43)

for all (z,u) such that u = ∆(Cz).
Next, consider a Lyapunov function of the form V (z) =

(z−z?)TP(z−z?) where P � 0 remains to be determined.
The time derivative of V along system trajectories can be
written as a quadratic form

V̇ (z) =

[
z− z?

u− u?

]T [
ATP + PA PB

BTP 0

] [
z− z?

u− u?

]
. (44)

Combining (43) and (44), it follows that V̇ (z) < 0 for
z 6= z? (and thus the closed-loop is stable) if the LMI[

ATP + PA PB
BTP 0

]
≺ −CTΞεC (45)

holds for some P � 0. �

4.3. Constraint Enforcement in Closed Loop
The capacity and various possibilities to robustly enforce

complicated constraints despite model uncertainty is one of
the distinguishing features of feedback-based optimization.

In Section 3 we have seen different mechanisms used in
continuous-time optimization algorithms to deal with con-
straints. Section 3.4 summarizes these options and high-
lighted how they can be combined. But so far, we have
encountered only saddle-point flows as means to enforce
constraints in closed loop in Examples 4.1 and 4.2.

In this subsection, we will explore other possibilities
to enforce constraints based on the algorithms discussed
in Section 3. In particular, we will discuss on one hand

the option to exploit saturation to enforce constraints on
plant inputs without major computational effort. On the
other hand, we review strategies to handle general engi-
neering constraints on outputs (and inputs). For this latter
problem, we will refer back to the projected gradient and
saddle-point flows in Section 3 which can both be adapted
for this purpose.

At the end of this subsection, we will hence be able to
present fully-fledged feedback-based optimization designs
to tackle the optimal reserve dispatch problem formulated
in the introduction in Section 1.2.

4.3.1. Input Saturation via Projection and Anti-Windup
Physical plants are generally subject to limited actua-

tor capabilities, simply due to the fact that any realistic
system is bound by the laws of physics and can handle
only signals of finite power. Such actuation limits can of-
ten be modeled as input saturation of control signal. At a
physical level, such saturation is, for example, the result of
mechanical constraints, or it can be observed in electric cir-
cuits involving diodes and other semi-conducting devices.
From a systems perspective, low-level controllers that pro-
tect devices and subsystems from operating outside of a
safe zone of operating conditions can also be modeled as
saturation.

In an optimization context, these actuation limits trans-
late into constraints on the control inputs. In (4) these
constraints are collected by the expression u ∈ U .

The nature of these constraints implies that they can-
not be violated at any point in time. Considering the con-
straint enforcement possibilities from Section 3.4, it makes
sense to model saturation as a projection onto the set of
feasible inputs with the key property that the projection is
naturally “evaluated” and applied by the physical system.

This property creates the possibility to outsource the
handling of these constraints from the controller to the
plant and thus reduce computational requirements and the
need for exact modeling of these constraints, which can be
time-varying and/or unknown.

For discrete-time feedback-based optimization schemes
such as those in Bernstein et al. (2019); Dall’Anese & Si-
monetto (2018); Gan & Low (2016), this model-free con-
straint handling by saturation is relatively straightforward,
under the assumption that the saturated control signal is
measured and available within one sampling interval. In
this case, it is possible to simply add the control increment
to the measured saturated control signal of the preceding
sampling interval.

For continuous-time methods, as in Chang et al. (2019);
Hauswirth et al. (2016), exploiting input saturation is
trickier because a continuous-time integrator in cascade
with a saturation element will generally lead to integra-
tor windup. For this reason Hauswirth et al. (2020c,d,e)
study the use of anti-windup compensators for feedback-
based optimization and rigorously show how these control
designs can be used to smoothly and robustly approxi-
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mate continuous-time projected gradient flows like (13).
The following example illustrates this idea.

Example 4.6. Consider the same setup as in Example 1.1.
Namely, we want to drive a plant (with fast decaying dy-
namics and steady-state map y = h(u) + d) to an optimal
steady state minimizing the cost function Φ̃(u).

In addition, we assume that the plant is subject to input
saturation that acts like a projection onto a non-empty
set U of admissible inputs. For simplicity, assume that
U is convex. In order to mitigate the effects of integrator
windup, a simple anti-windup scheme with a tuneable gain
1
K is in place as illustrated in Figure 12.

PU

ε
ζ̇ = f(ζ, u)

y′ = g(ζ)

−∇h(u)T∇Φ(y)T

∫
1
K

u u := PU (u)

y

−
+−

d

u̇ ≈ ΠU
[
−∇h(u)T∇Φ(y)T

]
(u)

Figure 12: Anti-windup system (46) which approximates a projected
gradient flow (49) as K → 0+

A state-space representation of this system is given,
analogously to (3), by

plant


u = PU (u)

ζ̇ = f(ζ, u)

y = g(ζ) + d

controller
{
u̇ = −ε∇h(u)T∇Φ(y)T − 1

K (u− u) .

(46)

Assuming, as before, that the plant dynamics can be
approximated by the algebraic map y = h(u) +d and with
Φ̃(u) = Φ(h(u) + d), the system (46) reduces to

u̇ = −ε∇Φ̃(PU (u))T − 1
K (u− PU (u)) . (47)

The key aspect in (47) is the fact that ∇Φ̃ is evaluated
at PU (u) rather than at u. In Hauswirth et al. (2020d) it
was shown that trajectories u(t) of (47) converge in the
sense that PU (u(t)) converges to the set of KKT points of
the optimization problem

minimize Φ̃(u) subject to u ∈ U . (48)

In particular, if (48) is convex, then convergence of
PU (u(t)) is to the global minimizer.

Importantly, this means that upon convergence, the
plant in Figure 12 is at an optimal steady state even

though the (unsaturated) control u is not optimal (only
the saturated control PU (u) is optimal).

Furthermore, Hauswirth et al. (2020c,e) have shown that
(47) approximates the projected gradient flow

u̇ = ΠU
[
−∇h(u)T∇Φ(y)T

]
(u) (49)

as K → 0+. This insight extends to other anti-windup
schemes which can be shown to approximate more general
projected dynamical systems. �

4.3.2. Engineering Constraints via Dualization and Ap-
proximate Projections

We now turn to mechanisms that allow us to enforce
more general constraints, and in particular those that ap-
ply to plant outputs. In our general problem (4) these
constraints are denoted by (u, y) ∈ X .

In the following, we focus on two approaches. First,
we illustrate how augmented and projected saddle-point
flows, as in Example 3.4, can be implemented as feedback
controllers. This approach is particularly suited for solv-
ing convex problems in closed loop and distributed over a
network (assuming the problem exhibits a suitable sparsity
structure). For non-convex problems, these algorithms can
still be applied, but theoretical global convergence guar-
antees are not generally available.

As a second possibility to enforce engineering con-
straints, we discuss a special discretization of projected
gradient flows that can be implemented as a feedback con-
troller and comes with strong global convergence guaran-
tees, even for non-convex setups. However, it is less easily
amenable to a distributed implementation and, instead, re-
quires the solution of a simple quadratic program at every
iteration.

Projected Saddle-Flows as Feedback Controllers. Consider
the optimal steady-state problem (4). Assume that the
disturbance d is fixed and that the engineering constraints
(u, y) ∈ X can be expressed as X := {(u, y) | g(y, u) ≤ 0},
where g : Rn → Rm denotes a continuously differentiable
constraint function. After eliminating y from (4), we are
left with the reduced problem

minimize Φ̂(u) := Φ(u, h(u, d)) (50a)
subject to u ∈ U (50b)

u ∈ X̂ := {u | ĝ(u) ≤ 0} (50c)

with ĝ(u) := g(u, h(u)).
This problem can be tackled with a projected saddle-

point flow with a primal augmentation term φ(u) =
ρ
2‖max{ĝ(u), 0}‖2 as presented in Example 3.4. Namely,
we have

u̇ = ΠU
[
−∇Φ̂(u)T −∇ĝ(u)T (µ+ ρmax{ĝ(u), 0})

]
(u)

(51a)

µ̇ = ΠRm≥0

[
ĝ(u)

]
(µ) . (51b)
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Recall from Example 3.4 that, in the special case where
(50) is convex, trajectories of (51) converge to a global
minimizer. In particular thanks to the primal augmenta-
tion, as in (23). The primal augmentation term reduces
oscillations, especially with non-strictly convex objective
functions. If the problem is non-convex, a dual augmen-
tation term, as in (24), can be added to guarantee global
convergence at the expense of changing equilibrium points
away from the true KKT points of (50).

We wish to realize (51) as the closed-loop dynamics of a
feedback loop incorporating the physical plant. To achieve
this, we replace any evaluation of h(u, d) with the plant
output y. This yields the controller

u̇ = ΠQ
U [−εQ(u)Hd(u)G(u, y)] (u) (52a)

µ̇ = ΠRm≥0

[
g(u, y)

]
(µ) (52b)

where Hd(u) :=
[
I ∇uh(u, d)T

]
and

G(u, y) :=
[
∇uΦ(u,y)T−∇ug(u,y)T (µ+ρmax{g(u,y),0})
∇yΦ(u,y)T−∇yg(u,y)T (µ+ρmax{g(u,y),0})

]
.

We have also included in (52) a variable metric Q(u) on the
primal variables. This degree of freedom will be exploited
in the forthcoming Examples 4.7 and 4.8.

The subscript for Hd indicates the dependence on the
disturbance d whereas G(u, y) can be evaluated indepen-
dently of d (given the measurement of y). In practice,
however, it is often not necessary to estimate d to compute
Hd(u). Instead, one can build an estimate Ĥ of Hd(u) by
using y and u, i.e., Ĥ(u, y) ≈ Hd(u).

Furthermore, if the plant (1) is an asymptotically stable
LTI system subject to constant disturbances

ξ̇ = Aξ +Bu+ d1 y = Cξ +Du+ d2 , (53)

then the steady-state sensitivity matrix ∇uh(u, d) =
−CA−1B + D is constant and independent of d, which
renders its estimation much easier.

Note, however, that those existing work in Table 1
that propose primal-dual algorithms have all assumed
that plants are algebraic. Thus, closed-loop stability of
primal-dual saddle-point flows interconnected with dy-
namic plants has not yet been studied (with the exception
of Hauswirth et al. 2020b where preliminary results are
developed for a simplified setup).

Despite a lack of theoretical convergence guarantees for
non-convex problems and closed-loop stability certificates,
primal-dual saddle-point algorithms (and their projected,
proximal, and augmented variations) have enjoyed great
popularity. In particular, saddle-point flows often lend
themselves to a distributed implementation. Examples 4.1
and 4.2 are prime examples. In the context of (52), a
distributed implementation is possible if ∇uh has a fixed
sparsity pattern, the cost function is separable, and the
constraints u ∈ U and g(u, y) ≤ 0 are appropriately local-
ized. In this case, the computation of a given component
ui requires only the quantity µj + ρmax{gj(u, y), 0} to be
communicated from all neighboring nodes j.

Figure 13: Grid diagram of adapted 30-bus power systems test case
used in Examples 4.7 and 4.8.

The feedback controller (52) can be directly applied to
the optimal reserve dispatch problem in Section 1.2 as the
following numerical example illustrates.

Example 4.7. Consider the optimal reserve dispatch prob-
lem formulated in Section 1.2. Namely, we wish to steer a
power system to an operating state that solves the ACOPF
problem (5) and track its (time-varying) solution as con-
sumption and generation availability varies. To achieve
this, we implement a feedback controller according to (52)
to implement a projected and primal augmented saddle-
point flow as explained above.

As a numerical testbed, we use a modified version of
the IEEE 30-bus power systems test case adopted from
Hauswirth (2020); Hauswirth et al. (2017) and illustrated
in Figure 13. In particular, in addition to three generators
and three synchronous condensers, a wind and solar plant
provide intermittent generation capacity. Their respective
profiles of available generation capacity are illustrated in
Figure 14. One of the conventional generators suffers an
outage at 4:00 upon which its generation capacity is set
to zero for the remainder of the simulation. The goal is
hence to optimally use these renewable resources without
violating engineering constraints such as voltage limits and
thermal line ratings.

We implement (52) as a discretized controller using
a simple explicit Euler discretization with a step size
corresponding to 1 minute intervals between control ac-
tions. The physical system is simulated without dynam-
ics, and an off-the-shelf AC power flow solver (Zimmerman
et al., 2011) is used to compute a solution to the ACPF
equations (5b–c) and thus evaluate the input-output map
h(u, d). We further compute ∇uh(u, d) based on input
and output measurements and the power flow model in
(5) (rather than an explicit estimate of d). Finally, we
choose Q(u) := Hd(u)THd(u) as a metric. This choice of
“implicit” metric has proven to increase numerical stability
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Figure 14: Load and available generation profiles for the modified
30-bus test case in Examples 4.7 and 4.8 over a 24h horizon.

in the face of an ill-conditioned input-output map. For a
more detailed discussion and motivation see Chapter 14 in
Hauswirth (2020).

The left panel in Figure 15 illustrates the (almost per-
fect) performance achieved by this feedback-based op-
timization approach in terms of cost compared to the
a-posteriori sequential solution of the ACOPF problem
(which is based on omniscient and perfect information).

More importantly, however, the left panel in Figure 16
shows that, over the entire simulation horizon, constraint
violations are very minor and only temporary. The con-
troller achieves this by jointly managing active and reac-
tive power infeed to manage voltage magnitudes and line
currents. In particular, both solar and wind generation
have to be curtailed to prevent line overloads.

The controller (52) used in this example is similar to
the designs proposed in Bernstein et al. (2019); Dall’Anese
& Simonetto (2018); Tang et al. (2018a,b). However, the
controller does not come with the same theoretical conver-
gence and tracking guarantees because we have not incor-
porated a dual regularization which can be used to enforce
convergence for non-convex optimization problems. Nev-
ertheless, the controller performs well. �

Linearized Output Projections. As a second possibility
to solve (4) in closed loop (and thus tackle the reserve
dispatch problem from Section 1.2), we highlight the
method proposed in Häberle et al. (2021) and extended
in Hauswirth (2020).

We have seen how projected (and augmented) saddle-
point flows can be easily turned into feedback controllers.
The key mechanism for enforcing the engineering con-
straints (u, y) ∈ X thereby lies in integrating the con-
straint violation g(u, y) that is based on plant output mea-
surements. In Example 4.7 we have noted the ease of de-
riving a discrete controller by simply applying an explicit
Euler discretization.

Now, instead, we present a discrete controller that ap-
proximates the projected gradient flow

u̇ = ΠU∩X̂ [−∇Φ̂(u)](u) . (54)

The trajectories of (54) are guaranteed to converge to
the KKT points of the reduced problem (50), even under

non-convexity (but under technical assumptions similar to
those in Theorem 1).

We have previously seen in Section 4.3.1 that input con-
straints u ∈ U are often enforced by input saturation (pos-
sibly requiring an anti-windup compensator to avoid in-
tegrator windup). The challenge in (54) lies in the fact
that also the engineering constraints X need to be enforced
“by projection” and in feedback using measurements of the
plant output, rather than using a model-based evaluation
of h(u, d).

To address this problem, rather than pondering on the
continuous-time dynamics (54), we directly consider a
discrete-time controller of the form

u+ = u+ αΣα(u, y) , (55)

where α > 0 is a fixed step-size, y = h(u, d) is the measured
system output, and Σα(u, y) is defined as the solution of

minimize
w∈Rp

‖w +Q(u)H(u, d)T∇Φ(u, y)T ‖2Q(u) (56a)

subject to u+ αw ≤ U (56b)
g(u+ αw, y + α∇uh(u, d)w) ≤ 0 , (56c)

where, as before, Hd(u)T :=
[
Ip ∇uh(u, d)T

]
and Q(u)

is a metric that assigns to every u ∈ U a positive definite
matrix.

The feedback law (55) approximates a projected gradi-
ent descent, by computing a descent direction w that is
feasible with respect to U (see (56b)) and approximately
feasible (up to first order) with respect to X (see (56c). In
particular, it can be rigorously shown that (55) approxi-
mates (54) as α→ 0+ (Hauswirth, 2020).

Any equilibrium point of (55) is feasible and a KKT
point of (4). Global convergence of (55) to KKT points
of (4) is guaranteed under weak technical assumptions
and without convexity, and for a small enough step size
α (Häberle et al., 2021).

Note that, computing Σα(u, y) requires the solution of
a quadratic program. However, in comparison to RTI
schemes discussed in Section 2.3, the computational effort
does not scale with a prediction horizon and no explicit
model of the plant dynamics is required. Instead, it is
enough to estimate ∇uh(u, d). On the other hand, in gen-
eral, (55) does not lend itself to a natural distributed im-
plementation. Although, depending on the problem struc-
ture, one can solve (56) distributedly at every iteration.
Example 4.8. We reconsider the numerical test case from
Example 4.7, but apply the feedback control strategy (55)
instead of (52). Again, we choose a sampling period
(corresponding to the step size α) of 1 minute. As be-
fore we approximate ∇uh(u, d) based on input and output
measurements and the power flow model, and we choose
Q(u) := Hd(u)THd(u) as the metric.

The right-hand side panels in Figures 15 and 16 show
how this linearized output projection method achieves sim-
ilar performance to the discretized projected saddle-point
flow controller (52).
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Figure 15: Cost realized by feedback-based optimization in comparison to a-posteriori ACOPF solutions using perfect information. Left: cost
achieved by the projected augmented saddle-point flow (52); right: cost achieved by the linearized output projection method (55).

In fact, the constraint satisfaction is even superior. The
enforcement of output constraints such as line flow limits is
even more direct. Whereas for the saddle-point transient
constraint violation is generally unavoidable to achieve
convergence to non-zero dual variables at an equilibrium,
the linearized output projection method predicts (and
avoids) constraint violations based on first-order model in-
formation. This effect is illustrated in Figure 17 where the
enforcement of a line flow constraint from the previous
simulations are compared. It is readily noticeable that the
augmented projected saddle-point flow exhibits transient
constraint violation and only asymptotically satisfies the
constraint. This observation corresponds to the mecha-
nism illustrated in Figure 8d. In contrast, the linearized
output projection exhibits almost no transient constraint
violation and this close in behavior to the projected gra-
dient flow it approximates (see also Figure 8e). �

5. Conclusions and Outlook

In this article, we have surveyed various approaches for
solving optimization problems in closed loop with a phys-
ical system. As a particular focus, we have presented off-
the-shelf numerical optimization algorithms as dynamical
systems and the conceptually simple idea of directly in-
terconnecting these algorithms with asymptotically stable
plants with well-defined input-output behavior.

Solving optimization problems online and with feedback,
rather than offline and in open loop, leads to greater ro-
bustness against uncertain problem data, reduces required
model information as well as computational effort, because
the physical system inherently enforces certain constraints.
The design of such controllers is aided by the recent redis-
covery of and interest in the dynamical systems perspec-
tive of optimization algorithms. However, in contrast to
the analysis of existing algorithms with tools from dynami-
cal systems theory, deploying these algorithms as feedback
controllers raises novel and unique challenges such as the
study of closed-loop stability and robustness. Feedback-
based optimization calls for smart control designs that
meaningfully exploit physical properties of a system such
as its steady-state response and saturation effects. We
have particularly delved into robustness and constraint
satisfaction.

5.1. Ongoing and Future Research Avenues
Even though feedback-based optimization has been an

active research area for some time, many questions remain
unanswered. Hence, to complete this article, we propose
some worthwhile avenues for future inquiry.

Robustness against Model Uncertainty and Online Sensi-
tivity Estimation

As already illustrated in Example 1.1, the feedback-
based optimization approach advocated for in this article
does not rely on a precise modeling of the plant. However,
except in special cases, the controllers require an estimate
of ∇h, the steady-state input-output sensitivities. This
Jacobian matrix is constant if the plant is LTI. In more
realistic settings, however, ∇h is often state- and time-
dependent.

The results in Colombino et al. (2019b) indicate that
feedback-based optimization is highly robust against in-
accurate sensitivity estimates. Nevertheless, it is highly
desirable learn and online adapt these input-output sensi-
tivities using measured data rather than relying on first-
principle modeling.

General Equilibrium Seeking in Closed Loop
In this article, we have focused on solving optimization

problems and thus steering a physical plant to a state that
solves the corresponding KKT conditions. Instead of op-
timality conditions, it is also possible to design controllers
that seek out states that satisfy more general equilibrium
conditions, such as solving variational inequalities or gen-
eralized equalities. It thus becomes possible, for example,
to design feedback-controllers in a non-cooperative set-
ting that allow players to converge to a Nash equilibrium
(De Persis & Monshizadeh, 2019).

Time-Varying Non-Convex Optimization
As discussed in Section 3.5, the study of time-varying

optimization problems has so far focused on convex prob-
lems (often with strongly convex objective). This offers
the convenience of a unique global optimizer that forms a
well-defined trajectory along time and can be tracked by
appropriate controllers and algorithms.

Solving non-convex problems, such as the optimal re-
serve dispatch problem from Section 1.2, in closed loop
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Figure 16: State trajectories realized by feedback-based optimization. Left: trajectories of the projected augmented saddle-point flow (52);
right: trajectories the linearized output projection method (55). See Figure 17 for a discussion of the inset A.
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Figure 17: Comparison of line flow limit violation and enforcement
(Detail A in Figure 16); Left: projected saddle-point flow; Right:
linearized output projection;

poses a much more challenging problem. Stationary non-
convex problems are generally hard to solve due to the
existence of multiple local minimizers. Time-varying non-
convex problems pose additional problems since the pos-
sible appearance and disappearance of minimizers make it
generally impossible to continuously track a single global
minimizer. Nevertheless, it is a practical necessity to
understand how feedback-based optimization performs in
non-convex settings and to develop controllers that can
cope with such pathologies. Recent papers exploring this
direction include Ding et al. (2019); Lin et al. (2020).
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