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Automatic object detection to analyze the geometry of gravel grains – a free
stand-alone tool
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ABSTRACT: An automated procedure to estimate the grain size distribution of a gravel bed by analyzing
its digital top-view photograph is presented. The MATLAB-based methodology allows for improved element
separation compared with other approaches, including a Graphical User Interface for additional semi-automatic
control and optional correction of the detected elements. First comparisons of grading curves obtained by
automatic object detection, in-situ line sampling and laboratory sieving indicate a good agreement concerning
the essential geometric parameters. The temporal effort for the automatic object detection is only a fraction of
the time required using common methods. A further benefit is that additional parameters are provided for each
grain as well, namely axis ratio, area, perimeter, center coordinates, and the horizontal grain orientation. Free
access is given to the newly developed license-free stand-alone tool including the compiled code.

1 INTRODUCTION

The knowledge on the build-up of a river bed is essen-
tial for understanding and prediction of fluvial pro-
cesses. For non-cohesive bed material, especially the
grading curve and its characteristic grain sizes provide
decisive parameters for modeling hydraulics and sedi-
ment transport. For instance, dm is a fraction-weighted
mean diameter and d90 gives the mass-percentile at
90% sieve throughput. However, the grain size distri-
bution is important for additional aspects as well, e.g.
to classify aquatic habitats or to evaluate geological
deposits.

Common laboratory sieving requires a demanding
effort on technique and personnel to classify sedi-
ments, while the whole process of digging, transport
and sieving is time-consuming and cost-intensive.
Alternatively, numerous in-situ methods were devel-
oped to gain grading curves, e.g. based on inventorying
single grains by means of a grid (Wolman, 1954) or
along a line (Fehr, 1987). Yet these methods are time-
consuming as well, often insufficient in accuracy and
hardly applied for a completely wetted bed.

Several automatic approaches were developed in
recent years to analyze areal digital information from
digital photography or laser scanning with a focus
to achieve only one single characteristic grain size
parameter. Successful procedures originate from Car-
bonneau et al. (2004, texture analysis of air-borne
photographs), Heritage and Milan (2009, texture
analysis of terrestrial laser-scanning), or Buscombe
et al. (2010, frequency analysis of digital micro-
photographs).

Beyond this, techniques to detect and measure
single grain areas in digital photographs allow for

classifying the grain sizes at the uppermost layer of
a gravel bed. Weichert et al. (2004) used a simple
grayscale threshold approach to determine a binary
image where single grain elements are separated from
interstices. Graham et al. (2005a, 2005b) applied a
double threshold approach based on identifying first
the interstices by a grayscale threshold and then com-
bining them with possible interstices determined with
a bottom-hat filter (compare §2.1 and §2.2). The final
separation of the grain elements results from a simple
watershed algorithm (§2.4).

The work of Graham and co-workers is a signifi-
cant step in the automation of grain size classification.
However, there are several possibilities to optimize
their procedure by: (a) preprocessing, omitting crude
image filters; (b) detection of interstices by expanding
the exclusive use of two image filters to the appli-
cation of further filters; (c) improving the watershed
algorithm, as it leads to over-segmentation and cannot
be switched off; (d) handle of single grain elements
within a post-processing by a Graphical User Interface
(GUI); (e) statements concerning the non-detected
fines. Prognosis approaches to estimate a grading
curve of the subsurface layer lack (e.g. Fehr 1987); and
(f) deriving a volumetric grading curve as obtained by
classical sieving from a number per area grading curve
as gained by object detection. Consequently, the pos-
sibility to transfer the results to classical approaches
in hydraulics or sediment transport is limited.

Below an optimized object detection approach is
developed that is inspired by the method of Gra-
ham and co-workers. First, the procedure to detect the
interstices between the single grain elements within a
grayscale image is described. Then, the grain areas
are measured. In doing so, Graham’s procedure is
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Figure 1. Double grayscale threshold (as cutout from
Fig. 7). (a) Initial grayscale image, (b) Possible extended
grayscale interstices estimated via 90% of Otsu’s thresh-
old. Different gray shading relates to individual objects
in 8-connected neighborhood, (c) black: Definite grayscale
interstices, determined via 50% of Otsu’s threshold; gray:
Confirmed extended grayscale interstices.

optimized in relation to items (a) to (d). Concerning
items (e) and (f), the present GUI allows for analyz-
ing the results from object detection following Fehr’s
(1987) approach to transfer surface information into
a grain size distribution of the surface and subsurface
material. The applied algorithms for image processing
are implemented in MATLAB toolboxes (MATLAB,
2012).

2 OBJECT DETECTION

2.1 Step 1: Interstice detection by double grayscale
threshold

Within the first step interstices are detected using a
double grayscale threshold approach (Fig. 1a-c).

A top view photograph of a granular bed is con-
verted to a grayscale image (Fig. 1a) to apply Otsu’s
gray-thresh function (MATLAB, 2012). This method
minimizes the intra-class variance of the pixels. Single
threshold values in an 8 × 8 px2 block structure were
determined.To avoid sharp edges, the resulting thresh-
old matrix is smoothed afterwards by a median-filter
in a neighborhood of 16 × 16 px2. Possible interstices
are determined in a binary image of the grayscale
photograph with a threshold level of 90% of Otsu’s

Figure 2. Bottom-hat operations. (a) possible interstices
estimated by binary image of bottom-hat filtered grayscale
image. Different gray shading relates to individual object
determined in a 4-connected neighborhood, (b) black: inter-
stices confirmed by extended grayscale interstices; gray:
confirmed definite grayscale interstices.

smoothed threshold matrix. To suppress intra-granular
noise a small median-filter of 3 × 3 px2or 5 × 5 px2

can be applied optionally to the photograph. Individual
interstice areas are object-detected in an 8-connected
neighborhood (Fig. 1b). These areas are feature-AND
operated by smaller ‘islands’ of definite interstices
in a binary image with a threshold level of 50% of
Otsu’s threshold matrix, i.e. possible interstices are
confirmed if they are connected to definite interstices
(Fig. 1c).

The result of step 1 is one matrix with defi-
nite grayscale interstices (black areas, Fig. 1c), and
another matrix with confirmed extended grayscale
interstices (gray areas, Fig. 1c). The latter is used
within feature-AND operations in the next steps.

2.2 Step 2: Interstice detection by morphological
bottom-hat transform

The second step applies a bottom-hat transformation
technique to determine further interstices. A mor-
phological bottom-hat filtering (MATLAB, 2012) is
performed on the grayscale image (Fig. 1a) by a flat,
disk-shaped structuring element of radius 1 px. The
suppression of intra-granular noise radii up to 3 px is
possible; a small median-filter of 3 × 3 px2or 5 × 5 px2

can be pre-applied alternatively to the grayscale photo-
graph. The values of the resulting matrix are converted
from numerical to logical data. Then, possible inter-
stice areas are object-detected in a 4-connected neigh-
borhood (Fig. 2a). These areas become feature-AND
operated (Fig. 2b): Possible interstices are confirmed if
they are connected by ≥5% of their area to confirmed
extended interstices from step 1 (Fig. 1c).

At the end of step 2 the confirmed interstices from
the first two steps are smoothed by a morphological
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Figure 3. Canny edges: each gray shading relates to an indi-
vidual edge as determined in a 4-connected neighborhood.

closing, i.e. dilation followed by erosion, performed
by a flat, disk-shaped structuring element. Typically,
the smallest possible radius of 1 px gives sufficient
results for the next steps.

2.3 Step 3: Interstice detection by edge detection
methods

The third step uses information of two gradient filter
techniques, the Canny (Fig. 3) and the Sobel meth-
ods (MATLAB, 2012). However, other edge detection
methods are applicable as well.

The Canny method finds edges by looking for local
maxima of the derivative of a Gaussian filter of the
grayscale photograph. The method uses two thresh-
olds, to detect strong and weak edges, and includes
the weak edges in the output only if they are con-
nected to strong edges. This method is therefore less
likely than other gradient filter to be misled by noise,
and more likely to detect true weak edges. Possible
interstice areas are object-detected in a 4-connected
neighborhood (Fig. 3). These areas become feature-
AND operated with the results from step 2 (Fig. 2b).
At optimum conditions ≥25% of their area must be
congruent to confirmed extended interstices, and their
area must be >2 px. However, slight changes of these
values indicate only a slight effect onto the following
processes.

The Sobel method simply finds edges using the
Sobel approximation to the derivative of the grayscale
image of the granular bed. The Sobel edges are used
to feature-AND operate the Canny edges in the same
way and based on the same criteria as for the confirmed
extended interstices.

At the end of step 3 the confirmed interstices are
smoothed by morphological operations.

2.4 Step 4: Separation by watershed transform

Within the fourth step the focus changes from detec-
tion of interstices to separation of single grain areas.
This is done by the combination of Canny edges
object-detected in an 8-connected neighborhood and
by watershed bridges (Fig. 4). In the following, six
parameters are chosen to steer the watershed sepa-
ration process. The optimum ranges were found by
empiricism, as presented below.

Figure 4. Watershed separation (a) initial binary image,
(b) image-operated Canny bridges, confirmed by watershed
bridges, (c) final separation, including Canny and watershed
bridges.

To start the separation, the inverted binary outcome
matrix of the previous step is operated by object-
detection techniques in a 4-connected neighborhood to
get the grain areas that were separated so far, thereby
excluding elements with <25 px.The result is an initial
binary image for the watershed operations (Fig. 4a).
To determine single watershed regions, the H-minima
transform is computed from the Euclidean distance
transform of the initial binary image (MATLAB 2012).
Watershed bridges now are found by the morphologi-
cal difference between the initial binary image and the
binary image of the watershed regions. To success-
fully separate the different grain regions a two-step
separation procedure was applied as follows:

In the first separation step, the Canny edges of
the initial binary image are feature-AND operated by
watershed bridges of the same image matrix (Fig. 4b).
The watershed bridges are dilated by a structuring
disk-shaped element of radius 4 px to improve the pro-
cedure. Areas of Canny edges are confirmed if they
are completely masked by the watershed bridges and
if their interrelated orientation angle differs by <10◦.
Further, the ratio of length to breadth of the edges has
to be >2 and their area has to be >3 px.

In the second separation step, watershed bridges are
determined for the binary image of actual outcome
from step 1. To suppress over-segmentation of larger
grains, watershed bridges are confirmed if their area
is >40 px.
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Figure 5. Final result of object detection procedure. Straight
lines (colorprint: red) represent a-axis and b-axis of ellipses
fitted to object areas using normalized second central
moments of determined object areas.

The outcome of step 4 is a binary image with
fully-confirmed single grain elements successfully
separated by their interstices.

2.5 Step 5: Final operations

Step 5 is needed for final operations with the goal to
obtain the region properties of each grains top view
area. Smaller grains that were excluded in step 4 are
included again. However, experience indicated so far,
that grains areas < ∼20 px are hardly to detect at all, as
confirmed by Graham et al. (2005b), who found a limit
of 23 px. Boundary grains that are not fully included
within the analyzed frame are blanked out, to avoid
a misleading statistical analysis of the characteristic
diameter. Optionally, a morphological smoothing of
the detected grain elements is applied.

In the final step the areas are replaced with ellipses
of the same normalized second central moments. Fig. 5
shows the axis of the replaced ellipses. The straight
lines show the a-axis and b-axis, respectively. Addi-
tional parameters can be provided for each grain as
well, e.g. the ratio a/b, area, perimeter, center coordi-
nates, and the grain orientation in the horizontal plane.
These can be used to further analyze the characteristics
of the bed material with respect to bed roughness, or
armoring processes, for instance.

3 TRANSFER TO A QUASI-SIEVE ANALYSIS

3.1 Line-sampling analysis

The line-sampling method is a user-friendly in-situ
sampling method to analyze a gravel surface and to
determine grain size distributions of the surface and
subsurface bed material. Complex utilities are not
needed. In short, the method is described as follows
(Fehr, 1987): With a string or a measuring tape a line is
spanned over an (at least almost) dry gravel bed. The
b-axes of all grains are measured that are in contact to
the line and that are larger than a threshold value of
typically 10 mm (Fig. 6).

The sampling data are classified into fractions
already in the sampling log. To ensure the represen-
tativeness of the analysis, at least 150 grains should

Figure 6. Line-sampling: Sketch, top-view. For subsequent
analysis, b-axis of gray-shaded stones are measured if they
contact the line.

be counted, while at least 30 grains of them should
belong to medium grain-size fractions. The transfer
calculation of a line-sampling of a surface layer to
an equivalent grading curve of the subsurface layer
comprises two steps; only then a comparison between
line-sampling and volume-sampling is possible:

Within the first step, the distribution as ‘number
along a line’ is transferred to a distribution as ‘mass
fraction per total mass’, i.e. a quasi-sieve throughput,
by

with �pi = (weight of fraction i)/(weight of entire
sample,�qi = (number of stones in fraction i)/(number
of stones in entire probe), dmi = characteristic (mean)
grain-diameter of fraction i, n = number of fractions.

As grains <10 mm are neglected within the sam-
pling process, the cumulative frequency for the fines
has to be corrected in a second step. Derived from an
extensive data set, Fehr (1987) demonstrated that 20–
30% of the subsurface layer volume in gravel bed rivers
is <10 mm in diameter. Thus, pi has to be corrected
toward piC via

For a more precise depiction of the a priori estimation
of a fraction of 25% fines, Fehr (1987) suggests an
approximation by a Fuller distribution. Optionally, a
flexible adaption to the fix estimated fraction of 25%
fines is made by determining the overlap area of grad-
ing curve and the Fuller curve by a least-squares fit of
their inclination.

3.2 Digital image analysis

Fig. 7 shows an example of a top-view photograph of
a granular bed with 755 detected single grain areas
according to the object detection involving steps 1–5,
complemented by the lines to apply a line-sampling
according to Fehr’s (1987) method. The distance
between the lines was a priori estimated to repre-
sent the characteristic mean grain diameter a (here:
100 px). All the objects in connection with the 17 lines
in the x- and z-directions are analyzed following Fehr’s
method, leading finally to a grading curve and the char-
acteristic grain diameters. Note that the pre-processing
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Figure 7. Detected and GUI-operated single grain areas within top-view photograph, scaling: 0.6022 mm/px. Light
(colorprint: cyan) raster: lines apply to Fehr’s (1987) method. Rectangular black box: cutout of Figs. 1–5. Further legend:
see Fig. 5.

(image import, scaling, parameter selection and object
detection) as well as the post-processing (cosmetic
merging, departing, and exclusion of grains) resulting
in Fig. 7 is handled by a GUI. Furthermore, the inter-
mediate and final results can optionally be exported
to common formats of Excel, comma-separated val-
ues or simple ASCII-text as well as in common image
formats.

Fig. 8 shows the estimated grading curve of the sub-
surface material as a typical result of the detected and
GUI-operated single grain areas from Fig. 7, compared
with the results of an original in-situ line sampling and
a classical sieve analysis conducted for the bed mate-
rial at the same location. Overall, the grading curves
match reasonably well. Apart from d30, the resulting
dm and d90 differ only by <5% in the current example.
A systematic analysis concerning the reliability of the
present method as well as their limits of application is
currently in preparation.

4 SUMMARY AND OUTLOOK

Inspired by approaches developed e.g. by Weichert
et al. (2004) or Graham (2005a, 2005b) an automated
non-destructive and contactless procedure is presented
to estimate the grain size distributions of a granu-
lar river bed and its subsurface layer. The core of the
methodology involves MATLAB-based object detec-
tion techniques applied to analyze digital top-view
photographs of gravel layer surfaces. Compared with
the approach of Graham and co-workers the present
results are more accurate especially in the separation
of the different area elements referring to top view
areas of single grains. Each detected grain area is
replaced with ellipses of the same normalized second
central moments. Following Fehr’s approach the line
sampling is used to transfer the statistics of the b-axes
into a quasi-grain size distribution in mass fraction, a
result typically given by a common laboratory sieve
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Figure 8. Typical grading curve for subsurface material
resulting from Fig. 7 (see next page) in comparison with
results from common analysis methods gained at same
location.

analysis. The grain size distribution of the subsurface
layer is approached via an empirical estimation of the
percentage of non-detected finer grains. First com-
parisons of distributions obtained by automatic object
detection, in-situ line sampling analysis and labora-
tory sieving indicate good agreement concerning the
essential geometric parameters. The temporal effort
for an analysis by automatic object detection is only
at a fraction of the time needed for the standard meth-
ods.An additional benefit is that additional parameters
are provided for each grain as well, namely the ratio
of minor axis/major axis, the area, perimeter, center
coordinates, and the grain orientation in the horizontal
plane.These parameters are required to further analyze
the characteristics of the bed material with respect to
bed roughness, or armoring processes. Free access is
given to the newly developed MATLAB-independent
stand-alone tool based on the compiled code embed-
ded in a GUI with pre-processing and post-processing
options.

Currently the methodology is tested for their appli-
cability to analyze subaqueous photographs taken in a
dived, water-evacuated bell at the bed of river Rhine.
A further purpose of this project is to measure river
beds via images taken by divers or diving robotics. A
successful proof would constitute an essential step in
analyzing subaqueous granular beds.

Furthermore, derivatives of the above mentioned
object detection techniques have been applied (a) to
locate the water surface and bed from a side view
image of a laboratory sectional model of a breaching
dike (experimental setup: Schmocker & Hager, 2009),

and (b) to identify and measure the diameter of an air
entraining tube build by an intake vortex within PIV-
images (experimental setup: Möller et. al, 2012). To
sum up, techniques of automated object detection give
an outstanding but unfortunately too rarely used tool
for data acquisition, far beyond yielding at analyzing
grain sizes.
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