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License

BASEMENT SOFTWARE LICENSE

between

ETH

Rämistrasse 101

8092 Zürich

Represented by Prof. Dr. Robert Boes

VAW

(Licensor)

and

Licensee

1. Definition of the Software

The Software system BASEMENT is composed of the executable (binary) file BASEMENT
and its documentation files (System Manuals), together herein after referred to as “Software”.
Not included is the source code.

Its purpose is the simulation of water flow, sediment and pollutant transport and according
interaction in consideration of movable boundaries and morphological changes.

2. License of ETH

ETH hereby grants a single, non-exclusive, world-wide, royalty-free license to use Software
to the licensee subject to all the terms and conditions of this Agreement.

3. The scope of the license

a. Use

The licensee may use the Software:

• according to the intended purpose of the Software as defined in provision 1

• by the licensee and his employees

• for commercial and non-commercial purposes

The generation of essential temporary backups is allowed.

b. Reproduction / Modification

Neither reproduction (other than plain backup copies) nor modification is permitted with
the following exceptions:

Decoding according to article 21 URG [Bundesgesetz über das Urheberrecht, SR 231.1)

If the licensee intends to access the program with other interoperative programs according
to article 21 URG, he is to contact licensor explaining his requirement.
If the licensor neither provides according support for the interoperative programs nor makes

v2.8.2 VAW - ETH Zurich 5
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the necessary source code available within 30 days, licensee is entitled, after reminding the
licensor once, to obtain the information for the above mentioned intentions by source code
generation through decompilation.

c. Adaptation

On his own risk, the licensee has the right to parameterize the Software or to access the
Software with interoperable programs within the aforementioned scope of the licence.

d. Distribution of Software to sub licensees

Licensee may transfer this Software in its original form to sub licensees. Sub licensees have
to agree to all terms and conditions of this Agreement. It is prohibited to impose any
further restrictions on the sub licensees’ exercise of the rights granted herein.

No fees may be charged for use, reproduction, modification or distribution of this Software,
neither in unmodified nor incorporated forms, with the exception of a fee for the physical
act of transferring a copy or for an additional warranty protection.

4. Obligations of licensee

a. Copyright Notice

Software as well as interactively generated output must conspicuously and appropriately
quote the following copyright notices:

Copyright by ETH Zurich / Laboratory of Hydraulics, Glaciology and Hydrology (VAW),
2006-2018

5. Intellectual property and other rights

The licensee obtains all rights granted in this Agreement and retains all rights to results
from the use of the Software.

Ownership, intellectual property rights and all other rights in and to the Software shall
remain with ETH (licensor).

6. Installation, maintenance, support, upgrades or new releases

a. Installation

The licensee may download the Software from the web page http://www.basement.ethz.ch
or access it from the distributed CD.

b. Maintenance, support, upgrades or new releases

ETH doesn’t have any obligation of maintenance, support, upgrades or new releases, and
disclaims all costs associated with service, repair or correction.

7. Warranty

ETH does not make any warranty concerning the:

• warranty of merchantability, satisfactory quality and fitness for a particular purpose

• warranty of accuracy of results, of the quality and performance of the Software;

• warranty of noninfringement of intellectual property rights of third parties.

6 VAW - ETH Zurich v2.8.2
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8. Liability

ETH disclaims all liabilities. ETH shall not have any liability for any direct or indirect
damage except for the provisions of the applicable law (article 100 OR [Schweizerisches
Obligationenrecht]).

9. Termination

This Agreement may be terminated by ETH at any time, in case of a fundamental breach
of the provisions of this Agreement by the licensee.

10. No transfer of rights and duties

Rights and duties derived from this Agreement shall not be transferred to third parties
without the written acceptance of the licensor. In particular, the Software cannot be sold,
licensed or rented out to third parties by the licensee.

11. No implied grant of rights

The parties shall not infer from this Agreement any other rights, including licenses, than
those that are explicitly stated herein.

12. Severability

If any provisions of this Agreement will become invalid or unenforceable, such invalidity or
enforceability shall not affect the other provisions of Agreement. These shall remain in full
force and effect, provided that the basic intent of the parties is preserved. The parties will
in good faith negotiate substitute provisions to replace invalid or unenforceable provisions
which reflect the original intentions of the parties as closely as possible and maintain the
economic balance between the parties.

13. Applicable law

This Agreement as well as any and all matters arising out of it shall exclusively be governed
by and interpreted in accordance with the laws of , excluding its principles of conflict of
laws.

14. Jurisdiction

If any dispute, controversy or difference arises between the Parties in connection with this
Agreement, the parties shall first attempt to settle it amicably.
Should settlement not be achieved, the Courts of Zurich-City shall have exclusive jurisdiction.
This provision shall only apply to licenses between ETH and foreign licensees

By using this software you indicate your acceptance.

(License version: 2018-05-31)

v2.8.2 VAW - ETH Zurich 7
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THIRD PARTY SOFTWARE

BASEMENT uses third party software. For instance, the BASEMENT executable directly
links the following external libraries:

• CGNS

• HDF5

• Qt5 (non-cluster version only)

• Qwt (non-cluster version only)

• Shapelib

• TecIO

• VTK (non-cluster version only)

The libraries (and their dependencies) are included in the BASEMENT distribution if they
are not provided by the operating system.

Please refer to ThirdPartySoftwareLicenses.txt in the distribution and/or the operating
system documentation for the third party software licenses and copyright notices. The
external libraries for Windows 10 have been built using vcpkg version 2020.07 (HDF5 was
compiled without szip).
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1

Mathematical Models

1.1 Governing Flow Equations

1.1.1 Saint-Venant Equations

1.1.1.1 Introduction

The BASEchain module is based on the Saint Venant Equations (SVE) for unsteady one
dimensional flow. The validity of these equations implies the following conditions and
assumptions:

• Hydrostatic distribution of pressure: this is fulfilled if the streamline curvatures are
small and the vertical accelerations are negligible

• Uniform velocity over the cross section and horizontal water surface across the section

• Small slope of the channel bottom, so that the cosine of the angle of the bottom with
the horizontal can be assumed to be 1

• Steady-state resistance laws are applicable for unsteady flow.

The flow conditions at a channel cross section can be defined by two flow variables.
Therefore, two of the three conservation laws are needed to analyze a flow situation. If the
flow variables are not continuous, these must be the mass and the momentum conservation
laws (Cunge et al., 1980).

1.1.1.2 Conservative Form of SVE

1.1.1.2.1 Mass Conservation

For the control volume illustrated in Figure 1.1, the conservation of mass is formulated
assuming the mass density ρ is constant (incompressible flow). This leads basically to a

9
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Figure 1.1 Definition Sketch

conservation of Volume. The temporal change in Volume equals the difference between
inflowing and outflowing Volume (eq. 1.1).

d

dt

x2∫

x1

A dx+Qout −Qin − ql(x2 − x1) = 0 (1.1)

where:

A [m2] wetted cross section area
Q [m3/s] discharge
ql [m2/s] lateral discharge per meter of length (specific discharge)
V [m3] volume
x [m] distance
t [s] time

Applying Leibnitz’s rule and integrating with the mean value theorem

d

dt

x2∫

x1

A dx =

x2∫

x1

∂A

∂t
dx =

∂A

∂t
(x2 − x1)

and then dividing by (x2 - x1) and making use of
Qout −Qin

(x2 − x1)
=

∂Q

∂x
, we obtain the

differential form of the continuity equation:

∂A

∂t
+
∂Q

∂x
− ql = 0 (1.2)

1.1.1.2.2 Momentum Conservation

Newton’s second law of motion says: The change in momentum equals to the Sum of all
external Forces. The momentum is defined as

p = mu

dp

dt
= ma =

∑

F

10 VAW - ETH Zurich v2.8.2
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where:

p [kg m/s] momentum
m [kg] mass
u [m/s] velocity
a [m/s2] acceleration
F [N ] force

Making use of the Reynolds transport theorem (Chaudhry, 1993) and referring to the
control volume in Figure 1.1 one obtains a conservative formulation for the left part of the
momentum equation

dp

dt
=
∑

F =
d

dt

x2∫

x1

uρA dx+ u2ρA2u2 − u1ρA1u1 − uxρql(x2 − x1) (1.3)

where:

ux [m/s] velocity in x direction (direction of flow) of lateral sources
ρ [kg/m3] mass density

Further simplification is achieved by applying Leibnitz’s rule and writing Q = Au and
Q/A = u resulting in:

∑

F =

x2∫

x1

ρ
∂Q

∂t
dx+ ρ

Q2

A

∣
∣
∣
∣
out

− ρ
Q2

A

∣
∣
∣
∣
in

− uxρql(x2 − x1) (1.4)

Applying the mean value theorem

x2∫

x1

ρ
∂Q

∂t
dx =

∂Q

∂t
(x2 − x1)ρ

and dividing both sides by ρ(x2 − x1) and by using

(

Q2

A

∣
∣
∣
∣
out

− Q2

A

∣
∣
∣
∣
in

)

1

(x2 − x1)
=

∂

∂x

(

Q2

A

)

leads to the following formulation:

∑

F

ρ(x2 − x1)
=
∂Q

∂t
+

∂

∂x

(

Q2

A

)

− qlux (1.5)

For the determination of
∑

F all external forces acting on the control volume have to be
considered. These are:

• the pressure force upstream and downstream of the control volume: F1 = −ρgA1h1

and F2 = ρgA2h2 (hydrostatic pressure is p = ρgh , the force is then F = pA)

• the weight of water (gravitational force) in x-direction: F3 = ρg

x2∫

x1

ASB dx

• and the frictional force: F4 = ρg

x2∫

x1

ASf dx

v2.8.2 VAW - ETH Zurich 11
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where

SB [−] bottom slope
Sf [−] friction slope
g [m/s2] gravity

All these forces are now put into the sum of eq. 1.5. For the pressure forces, we get directly
a differential form as

∑

F

ρ(x2 − x1)
=
ρgA2h2 − ρgA1h1

ρ(x2 − x1)
= g

∂

∂x
(Ah)

For the gravitational force and the friction force, the mean value theorem is applied:

x2∫

x1

A(SB − Sf ) dx = A(SB − Sf )(x2 − x1)

This results in the following momentum equation:

∂Q

∂t
+

∂

∂x

(

Q2

A

)

− qlux = −g ∂
∂x

(Ah) + gA(SB − Sf ) (1.6)

There is still an unknown h on the right hand side which should possibly be eliminated.
Based upon geometrical considerations and using the Leibniz rule, the pressure Term can
be expressed as the following not obvious relation. This can be proven mathematically
even under the consideration that changes in the channel width are not negligible.

− g
∂

∂x
(Ah) = −gA∂h

∂x
(1.7)

Now, the unknown water depth h can be eliminated using the transformation

h = zS − zB and
∂h

∂x
=
∂zS

∂x
− ∂zB

∂x
=
∂zS

∂x
+ SB

Inserting this into eq. 1.7, resp. eq. 1.6 leads to a formulation of the momentum equation
where we have a term with the gradient of the water surface elevation zS combining the
pressure forces and the gravitational force. Note that the bottom slope SB vanished.

∂Q

∂t
+

∂

∂x

(

Q2

A

)

+ gA
∂zS

∂x
+ gASf − qlux = 0 (1.8)

If only the cross sectional area where the water actually flows (and therefore contributes to
the momentum balance) shall be used, and by introducing a factor β accounting for the
velocity distribution in the cross section (Cunge et al. (1980)), eq. 1.9 is obtained:

∂Q

∂t
+

∂

∂x

(

β
Q2

Ared

)

+ gAred
∂zS

∂x
+ gAredSf − qlux = 0 (1.9)

12 VAW - ETH Zurich v2.8.2
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where Ared [m2] is the reduced area, i.e. the part of the cross section area where water
flows.

If Strickler values are used to define the friction

β =

A
∑

i

k2
stri

h
7/3
i bi

(
∑

i

kstrih
5/3
i bi

)2 (1.10)

If the equivalent roughness height is used

β =

A
∑

i

k2
si
h2

i bi

(
∑

i

ksih
3/2
i bi

)2 (1.11)

1.1.1.3 Source Terms

With the given formulation of the flow equation there are 4 source terms:

For the continuity equation:

• The lateral in- or outflow ql

For the momentum equation:

• The bed slope

W = gA
∂zS

∂x
(1.12)

• The bottom friction:
Fr = gAredSf (1.13)

• The influence of lateral in- or outflow:

qlux (1.14)

However, in BASEchain, the influence of the lateral inflow on the momentum equation
is neglected. Exceptions are the sideweir, coupling_sideweir and bottom outflow source
terms, where the influence of the lateral outflow on the momentum equation can be taken
into account.

1.1.1.4 Closure Conditions

1.1.1.4.1 Determination of Friction Slope

The relation between the friction slope Sf and the bottom shear stress is:

v2.8.2 VAW - ETH Zurich 13
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τB

ρ
= gRSf (1.15)

As the unit of τB/ρ is the square of a velocity, a shear stress velocity can be defined as:

u∗ =
√
τB

ρ
(1.16)

The velocity in the channel is proportional to the shear flow velocity and thus:

u = cf

√

gRSf (1.17)

where cf is the dimensionless Chézy coefficient. It is defined as cf = C/
√
g , where C is

the Chézy coefficient [m1/2/s].

If u is replaced by Q/A:

Q

A
= cf

√

gRSf (1.18)

results, with

Sf =
Q|Q|
gA2c2

fR
(1.19)

Introducing the conveyance K :

K =
Q
√
Sf

= Acf

√

Rg (1.20)

Sf =
Q|Q|
K2

(1.21)

The dimensionless friction coefficient cf can be determined based on a power-law approach
using Manning-Strickler friction coefficient kstr or based on log-law approach using
equivalent sand roughness ks of Nikuradse.

Power Friction Law

The power friction law according to Manning-Strickler is widely used in practice. Therfore
channel roughness is defined using Strickler’s kstr or Manning’s n. For conversion a simple
relation holds:

kstr =
1

n

The dimensionless friction coefficient cf is calculated as

cf =
kstrR

1/6

√
g

(1.22)

14 VAW - ETH Zurich v2.8.2
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Logarithmic Friction Laws

The following approaches are implemented to determine the coefficient cf :

Chézy:

cf = 5.75 log
(

12
R

ks

)

(1.23)

Yalin:

cf =
1

κ
ln
(

11
R

ks

)

(1.24)

Bezzola:

This approach uses the roughness sublayer yR as relevant roughness height. Usually for
rivers yR ≈ 1.0d90 is a good approximation. This approach takes small relative roughness
heights into account Bezzola (2002).

cf = 2.5
√

1 − yR

R
ln
(

10.9
R

yR

)

, for
R

yR
> 2

cf = 1.25

√

R

yR
ln
(

10.9
R

yR

)

, for
R

yR
≤ 2

cf = 1.5, for
R

yR
< 0.5

(1.25)

Darcy-Weissbach:

cf =

√

8

f
with f =

0.24

log
(

12R

ks

) (1.26)

In the case where friction is determined based on the bed composition of the mobile bed,
friction can be determined based on the local characteristic grain size d90:

kstr =
factor

6
√
d90

default value of factor = 21.1 (1.27)

or

ks = factor · d90 default value of factor = 3 (1.28)

The default values of the factors above correspond to a natural river bed with well graded
bed material and exposed coarse components.

1.1.1.5 Boundary Conditions

At the upper and lower end of the channel it is necessary to know the influence of the
region outside on the flow within the computational domain. The influenced area depends

v2.8.2 VAW - ETH Zurich 15
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on the propagation velocity of a perturbation. The propagation velocity in standing water
is

c =
√

gh (1.29)

If a one dimensional flow is considered this propagation takes place in two directions:
upstream (−c) and downstream (+c). These velocities must then be added to the flow
velocities in the channel, giving the upstream (C−) and downstream (C+) characteristics:

C− =
dx

dt
= u− c (1.30)

C+ =
dx

dt
= u+ c (1.31)

With these functions it is possible to determine which region is influenced by a perturbation
and which region influences a given point after a given time.

In particular it can be said that if c < u the information will not be able to spread in
upstream direction, thus the condition in a point cannot influence any upstream point, and
a point cannot receive any information from downstream. This is the case for a supercritical
flow.

In contrast, if c > u, which is the case for sub-critical flow, the information spreads in both
directions, upstream and downstream. This fact substantiates the necessity and usefulness
of information at the boundaries. As there are two equations to solve, two variables are
needed for the solution.

If the flow conditions are sub-critical, the flow is influenced from downstream. Thus at
the inflow boundary one condition can be taken from the flow region itself and only one
additional boundary condition is needed. At the outflow boundary, the flow is influenced
from outside and so one boundary condition is needed.

If the flow is supercritical, no information arrives from downstream. Therefore, two
boundary conditions are needed at the inflow end. In contrast, as it cannot influence the
flow within the computational domain, it is not useful to have a boundary condition at the
downstream end.

Table 1.1 Number of needed boundary conditions

Flow type Inflow Outflow

Sub critical flow (Fr < 1) 1 1
Supercritical flow (Fr > 1) 2 0

At the inflow boundary the given value is usually Q. If the flow is supercritical the second
variable A is determined by a flow resistance law (slope is needed!).

At the outflow boundary there are several possibilities to provide the necessary information
at the boundary:

• determine an out flowing discharge by a weir or a gate;

• set the water surface elevation as a function of time;

16 VAW - ETH Zurich v2.8.2
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• set the water surface elevation as a function of the discharge (rating curve).

1.1.2 Shallow Water Equations

1.1.2.1 Introduction

Mathematical models of the so-called shallow water type govern a wide variety of physical
phenomena. For reasons of simplicity, the shallow water equations will from here on be
abbreviated as SWE. An important class of problems of practical interest involves water
flows with a free surface under the influence of gravity. It includes:

• Tides in oceans

• Flood waves in rivers

• Dam break waves

The validity of the SWE implies the following conditions and assumptions:

• Hydrostatic distribution of pressure: this is fulfilled if the vertical accelerations are
negligible.

• Small slope of the channel bottom, so that the cosine of the angle between the bottom
and the horizontal can be assumed to be 1.

• Steady-state resistance laws are applicable for unsteady flow.

A key assumption made in derivation of the approximate shallow water theory concerns
the first aspect, the hydrostatic pressure distribution. Supposing that the vertical velocity
acceleration of water particles is negligible, a hydrostatic pressure distribution can be
assumed. This eventually allows for integration over the flow depth, which results in
a non-linear initial value problem, namely the shallow water equations. They form a
time-dependent two-dimensional system of non-linear partial differential equations of
hyperbolic type.

There are two approaches for the derivation of shallow water equations:

• Integrating the three-dimensional system of Navier-Stokes equations over flow depth

• Direct approach by considering a three-dimensional control volume

In the following the derivation of the depth integrated mass and momentum conservation
equations from the Reynolds-averaged 3-D Navier-Stokes equation is briefly presented.
Following boundary conditions are imposed:

1. At the top of water surface:

Kinematic boundary condition (this condition describes that no flow across the water
surface can take place):

ws =
∂zS

∂t
+ us

∂zS

∂x
+ vs

∂zS

∂y
(1.32)
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Dynamic boundary condition:

τ = (τSx, τSy) and P = Patm (1.33)

2. At the bottom of water body:

Kinematic boundary condition (this condition describes that no flow through the bed
surface can take place):

wB = uB
∂zB

∂x
+ vB

∂zB

∂y
(1.34)

Derivation of mass conservation

The derivation makes use of Leibniz’s integration rule, which is used here to remove the
partial derivatives from the integral. It can be written generally as

zS(x,y)∫

zB(x,y)

∂f(x, y, z)

∂x
dz =

∂

∂x

zS(x,y)∫

zB(x,y)

f(x, y, z) dz + f(x, y, zB)
∂zB

∂x
− f(x, y, zS)

∂zS

∂x

The 3-D Reynolds-averaged mass conservation equation is integrated over the flow depth
from the bed bottom zB to the water surface zS .

zS∫

zB

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]

dz = 0 (1.35)

Applying Leibniz’s rule on the first term, the velocity gradient in x-direction, leads to

zS∫

zB

∂u

∂x
dz =

∂

∂x

zS∫

zB

u dz + uB
∂zB

∂x
− vs

∂zS

∂x

whereas uB, uS and vB, vS are the velocities at the bottom and at the surface in x- and y-
directions respectively. The second term of eq. 1.35 is treated analogous.

The third term can be evaluated exactly by applying the fundamental theorem of calculus.
It results in the difference of the vertical velocity at the surface and the bottom:

zS∫

zB

∂w

∂z
dz = wS − wB

Assembling these terms, one can identify and eliminate the kinematic boundary conditions
as stated above.

∂

∂x

zS∫

zB

u dz +
∂

∂y

zS∫

zB

v dz + uB
∂zB

∂x
+ vB

∂zB

∂y
− wB

︸ ︷︷ ︸

= 0

−uS
∂zS

∂x
− vS

∂zS

∂y
+ wS

︸ ︷︷ ︸

=
∂zS

∂t
=
∂h

∂t

= 0
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Evaluating the integrals over the depth as

zS∫

zB

u dz = uh

finally leads to the depth integrated formulation of mass conservation:

∂h

∂t
+
∂(uh)

∂x
+
∂(uh)

∂y
= 0

Derivation of momentum conservation

The Reynolds-averaged 3-D momentum equation in x-direction of the Navier-Stokes
equation is integrated over the depth

zS∫

zB

[

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z

]

dz =

zS∫

zB

[

−1

ρ

∂p

∂x
+

1

ρ

∂τxx

∂x
+

1

ρ

∂τxy

∂y
+

1

ρ

∂τxz

∂y

]

dz (1.36)

whereas the momentum equation in y-direction can be treated in an analogous manner.

The first term, the time derivative of the x-velocity, is transformed with Leibniz’s rule and
integrated over the depth.

zS∫

zB

∂u

∂t
dz =

∂

∂t

zS∫

zB

u dz + uB
∂zB

∂t
− uS

∂zS

∂t
=
∂uh

∂t
+ uB

∂zB

∂t
− uS

∂zS

∂t

The Leibniz rule is also applied on the advective terms as follows:

zS∫

zB

∂u2

∂x
dz =

∂

∂x

zS∫

zB

u2 dz + u2
B

∂zB

∂x
− u2

S

∂zS

∂x
,

zS∫

zB

∂uv

∂y
dz =

∂

∂y

zS∫

zB

uv dz + uBvB
∂zB

∂y
−

uSvS
∂zS

∂y

And the fundamental theorem of calculus allows the evaluation of the fourth term on the
left hand side.

zS∫

zB

∂uw

∂z
dz = uSwS − uBwB

All terms of the left hand side of eq. 1.36 now can be assembled, and again, the kinematic
boundary conditions are identified and can be eliminated. The left hand side is reduced to
three remaining terms.
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uh+
∂

∂x

zS∫

zB

u2 dz +
∂

∂y

zS∫

zB

uv dz + uB

(
∂zB

∂t
+ uB

∂zB

∂x
+ vB

∂zB

∂x
− wB

)

︸ ︷︷ ︸

= 0

−

uS

(
∂zS

∂t
+ us

∂zS

∂x
+ vS

∂zS

∂y
+ wS

)

︸ ︷︷ ︸

= 0

With the assumption of a hydrostatic pressure distribution, the pressure term on the right
hand side can be evaluated. Furthermore, the water surface elevation is replaced by the
bottom elevation and the depth.

1

ρ

zS∫

zB

∂p

∂x
dz = gh

∂zS

∂x
= gh

(
∂zB

∂x
+
∂h

∂x

)

The depth integration of the first two shear stresses of the right hand side yields the depth
integrated viscous and turbulent stresses, which require additional closure conditions to be
evaluated.

1

ρ

zS∫

zB

∂τxx

∂x
dz +

1

ρ

zS∫

zB

∂τyx

∂y
dz =

1

ρ

∂τxxh

∂x
+

1

ρ

∂τxyh

∂y

The third shear stress term can be integrated over the depth and introduces the bottom
and surface shear stresses at the domain boundaries, which again need additional closure
conditions. The surface shear stresses τBx, e.g. due to wind flow over the water surface,
are neglected from here on.

1

ρ

zS∫

zB

∂τzx

∂z
dz =

1

ρ
(τSx − τBx)

Putting the terms together one obtains

∂uh

∂t
+

∂

∂x

zS∫

zB

u2 dz +
∂

∂y

zS∫

zB

uv dz + gh
∂h

∂x
= −gh∂zB

∂x
− 1

ρ
τBx +

1

ρ

∂τxxh

∂x
+

1

ρ

∂τxyh

∂y

The depth integrals of the advective terms still need to be solved. By dividing the
velocities in a mean velocity u and a deviation from the mean u′, similar to the Reynolds
averaging procedure, the advective terms can be evaluated as follows. The depth integration
introduces new dispersion terms, which describe the effects of the non-uniformity of the
velocity distribution.

u = u+ u′ ⇒ ∂

∂x

zS∫

zB

u2 dz =
∂u2h

∂x
+
∂u′u′h

∂x
=
∂u2h

∂x
+

1

ρ

∂Dxxh

∂x

In the end, after dividing the equations by the water depth, the depth integrated
x-momentum equation of the SWE is obtained in the following formulation:
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= −g∂zB

∂x
− 1

ρh
τBx +

1

ρh

∂[h(τxx +Dxx)]

∂x
+

1

ρh

∂[h(τxy +Dyx)]

∂y

Shallow Water Equations

Conclusive, as shown before, the complete set of SWE is derived in the form:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0 (1.37)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂h

∂x
= −g∂zB

∂x
− 1

ρh
τBx +

1

ρh

∂[h(τxx +Dxx)]

∂x
+

1

ρh

∂[h(τxy +Dyx)]

∂y
(1.38)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂h

∂y
= −g∂zB

∂y
− 1

ρh
τBy +

1

ρh

∂[h(τyx +Dyx)]

∂x
+

1

ρh

∂[h(τyy +Dyy)]

∂y
(1.39)

where:

h [m] water depth
g [m/s2] gravity acceleration
P [Pa] pressure
u [m/s] depth averaged velocity in x direction
uS [m/s] velocity in x direction at water surface
uB [m/s] velocity in x direction at bottom (usually equal zero)
v [m/s] depth averaged velocity in y direction
vS [m/s] velocity in y direction at water surface
vB [m/s] velocity in y direction at bottom (usually equal zero)
wS [m/s] velocity in z direction at water surface
wB [m/s] velocity in z direction at bottom (usually equal zero)
zB [m] bottom elevation
zS [m] water surface elevation
τSx, τSy [N/m2] surface shear stress in x- and y direction (here neglected)
τBx, τBy [N/m2] bed shear stress in x- and y direction
τxx, τxy, τyx, τyy [N/m2] depth averaged viscous and turbulent stresses
Dxx, Dxy, Dyx, Dyy [N/m2] momentum dispersion terms

For brevity, the over bars indicating depth averaged values will be dropped from here on.

1.1.2.2 Closure Conditions

1.1.2.2.1 Turbulence

The turbulent and viscous shear stresses can be quantified in accordance with the Boussinesq
eddy viscosity concept, which can be expressed as
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τxx = 2ρv
∂u

∂x
, τyy = 2ρv

∂v

∂y
, τxy = ρv

(
∂u

∂y
+
∂v

∂x

)

(1.40)

If the flow is dominated by the friction forces, the total viscosity is the sum of the eddy
viscosity (quantity due to turbulence modelling) and molecular viscosity (kinematic viscosity
of the fluid): v = vt + vm.

Turbulent eddy viscosity may be dynamically calculated as vt = κu∗h/6 with the friction
velocity u∗ =

√

τB/ρ.

The molecular viscosity is a physical property of the fluid and is constant due to the
assumption of an isothermal fluid.

1.1.2.2.2 Bed Shear Stress

The bed shear stresses are related to the depth–averaged velocities by the quadratic friction
law

τBx = ρ
|u|u
c2

f

; τBy = ρ
|u|v
c2

f
(1.41)

in which |u| =
√
u2 + v2 is the magnitude of the velocity vector. The friction coefficient cf

can be determined by any friction law.

1.1.2.2.3 Momentum Dispersion

The momentum dispersion terms account for the dispersion of momentum transport due
to the vertical non-uniformity of flow velocities.

At the moment the momentum dispersion terms are not explicitly modelled here. Usually,
in straight channels, these dispersive effects can be accounted for by adapting the turbulent
viscosity in the determination of the turbulent stresses (Wu, 2007).

1.1.2.3 Conservative Form of SWE

Various forms of SWE can be distinguished with their primitive variables. The proper choice
of these variables and the corresponding set of equations plays an extremely important role
in numerical modelling. It is well known that the conservative form is preferred over the
non-conservative one if strong changes or discontinuities in a solution are to be expected.
In flooding and dam break problems, this is usually the case.

Bechteler et al. (1993) showed that the equation sets in conservative form, with (h, uh, vh)
as independent and primitive variables produce best results. The conservative form can be
derived by multiplying the continuity equation with u and v and adding to momentum
equations in x and y direction respectively. This set of equations can be written in the
following form:

U t + ∇(F ,G) + S = 0 (1.42)

where U,F (U), G(U) and S are the vectors of conserved variables, fluxes in the x and y
directions and sources respectively, given by:
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U =






h
uh
νh




 (1.43)

F =









uh

u2h+
1

2
gh2 − νh

∂u

∂x

uνh− νh
∂u

∂y









; G =









νh

uνh− νh
∂ν

∂x

ν2h+
1

2
gh2 − νh

∂ν

∂y









(1.44)

S =






0
gh(Sfx − SBx)
gh(Sfy − SBy)




 (1.45)

where ν is the total viscosity.

1.1.2.4 Source Terms

The eq. 1.45 has two source terms: the bed shear stress (τB/ρ = ghSf ) and the bed slope
term (ghSB). The viscous stresses in the flux of eq. 1.44 are also treated as flux term.

The bed shear stress is the most important physical parameter besides water depth and
velocity field of a hydro- and morphodynamic model. It causes the turbulence and is
responsible for sediment transport and has a non-linear effect of retarding the flow. When
the effect of turbulence grows, the effect of molecular viscosity becomes relatively smaller,
while viscous boundary layer near a solid boundary becomes thinner and may even appear
not to exist. It means that the bed stress (friction) is equal to the bed turbulent stress.

However, bed stress is usually estimated by using an empirical or semi-empirical formula
since the vertical distribution of velocity cannot be readily obtained.

In the one dimensional system of equations the term bed stress can be expressed as gRSf ,
where Sf denotes the energy slope. Assuming that the frictional force in a two dimensional
unsteady open flow can be estimated by referring to the formulas for one dimensional flows
in open channel it can be written:

Sf =
u|u|
gc2

fR
(1.46)

where u = velocity; cf = friction coefficient; R = hydraulic radius. It can be easily seen
that the above formula can be approximately generalized to the two dimensional system.
In one-dimensional flows it is not distinguished between bottom and lateral (side wall)
friction, while in two dimensional flows it is often taken a unit width channel (R = h). For
the two dimensional system the eq. 1.46 has the following forms

Sfx =
u

√
u2 + v2

gc2
fR

; Sfy =
v
√
u2 + v2

gc2
fR

(1.47)

The coefficient cf can be calculated by different empirical approaches as in the one
dimensional system, e.g. using the Manning or Strickler coefficients. See Section 1.1.1.4 for
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further details on the determination of the friction coefficient cf . If the friction value is
calculated from the bed composition, the d90 diameter of the mixture is determined. In
case of single grain simulations the d90 diameter is estimated by d90 = 3 · dmean.

The bed stress terms need additional closures equation (see Section 1.1.2.2.2) to be
determined. Bed slope terms represent the gravity forces

SB,x = −∂zB/∂x ; SB,y = −∂zB/∂y (1.48)

The viscous fluxes are treated as source terms (The superscript ‘d’ refers to the diffusion)

Sd =
∂F d

∂x
+
∂Gd

∂y

where the diffusive fluxes read

F d =












0

νh
∂u

∂x

νh
∂ν

∂x












,

Gd =












0

νh
∂u

∂y

νh
∂ν

∂y












The total viscosity ν is the sum of the kinematic viscosity and turbulent eddy viscosity.
The kinematic viscosity is a physical property of the fluid and is set to a constant value.

The turbulent eddy viscosity can either be set to a constant value or calculated dynamically
as Turbulent eddy viscosity may be dynamically calculated as νt = κu∗h/6 with the friction
velocity u∗ =

√

τB/ρ.

1.1.2.5 Boundary Conditions

SWE provide a model to describe dynamic fluid processes of various natural phenomena and
find therefore widespread application in science and engineering. Solving SWE needs the
appropriate boundary conditions like any other partial differential equations. In particular,
the issue of which kind of boundary conditions are allowed is still not completely understood
(Agoshkov et al., 1994). However several sets of boundary conditions of physical interest
that are admissible from the mathematical viewpoint will be discussed here.

The physical boundaries can be divided into two sets: one closed (Γc), the other open (Γo)
(Figure 1.2). The former generally expresses that no mass can flow through the boundary.
The latter is an imaginary fluid-fluid boundary and includes two different inflow and outflow
types.
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Figure 1.2 Computational Domain and Boundaries

1.1.2.5.1 Closed Boundary

The following relations are often described on the closed boundary, say Γc :

ρu · n = 0
∂u

∂n
= 0 (1.49)

where

n [m] the normal (directed outward) unit vector on Γc

u [m/s] velocity vector = (u, v)

1.1.2.5.2 Open Boundary

The number of boundaries of a partial differential equations system depends on the type
of the system. From the mathematical point of view, the SWE establish a quasi-linear
hyperbolic differential equations system. If the temporal derivatives vanish, the system is
elliptical for Fr ≤ 1.0 and hyperbolical for Fr ≥ 1.0 , where Fr is Froude number.

On the open boundary (Γo) the two types inflow and outflow can be respectively
distinguished as follows:

Γin = (x ∈ Γo; u · n < 0) (1.50)

Γout = (x ∈ Γo; u · n > 0) (1.51)

Based on the behaviour of the system of equations, the theoretical number of open boundary
conditions is listed in Table 1.2 (Agoshkov et al., 1994) (Beffa, 1994):

Table 1.2 The Correct Number of Boundary Conditions in SWE

Flow type Inflow Outflow

Sub critical flow (Fr < 1) 2 1
Supercritical flow (Fr > 1) 3 0
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However in practical application of boundary conditions, the number of the implemented
conditions is often higher or lower than the theoretical criteria (Nujić, 1998).

1.2 Sediment and Pollutant Transport

1.2.1 Fundamentals of Sediment Motion

1.2.1.1 Threshold Condition for Sediment Transport

1.2.1.1.1 Determination of the Critical Shear Stress

The critical shear stress τBcr = θcr(ρs − ρ)gdg is the threshold for incipient motion of
grain class g where the critical Shields parameter θcr is a function of the shear Reynolds
number Re∗ (Shields, 1936). The critical Shields parameter θcr can be set to a constant
value, e.g. Meyer-Peter and Müller (1948) proposed a constant Shields parameter of 0.047
for fully turbulent flow (Re∗ > 103). Furthermore, θcr can be dynamically determined
from a transformed Shields diagram as a function of the dimensionless grain diameter D∗

(θcr = f(D∗)) (Figure 1.3).

An approximation of the original Shields diagram was proposed by van Rijn (1984a):

θcr = 0.24(D∗)−1 for 1 ≤ D∗ ≤ 4
θcr = 0.14(D∗)−0.64 for 4 < D∗ ≤ 10
θcr = 0.04(D∗)−0.1 for 10 < D∗ ≤ 20
θcr = 0.013(D∗)0.29 for 20 < D∗ ≤ 150
θcr = 0.055 for D∗ > 150

(1.52)

where the dimensionless grain diameter D∗ is defined as

D∗ =
(

(ρs − ρ)g

ρv2

)1/3

d (1.53)

Another explicit formulation of the Shields curve was proposed by Yalin and Silva (2001):

θcr = 0.13D∗−0.392 exp(−0.015D∗) + 0.045 (1 − exp(−0.068D∗)) (1.54)

1.2.1.1.2 Influence of Local Slope on Incipient Motion

The investigations on incipient motion by Shields were made for almost horizontal bed. In
the case of sloped bed in flow direction or transverse to it, the stability of grains can either
be reduced or increased due to gravity. One approach to consider the effects of local slopes
on the threshold for incipient motion is to correct the critical shear stresses for incipient
motion. Here kβ and kγ are correction factors for slope in flow direction and in transversal
direction and τBcr,Shields is the critical shear stress for almost horizontal bed as derived by
Shields. The corrected critical shear stress then is determined as

τBcr = kβkγτBcr,Shields (1.55)
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Figure 1.3 Transformed Shields diagram to determine critical Shields parameter

The correction factors are calculated as suggested by van Rijn (1989):

kβ =







sin(γ − β)

sinγ
if slope < 0

sin(γ + β)

sinγ
if slope > 0

kγ =

{

cosδ

√

1 − tan2δ

tan2γ

(1.56)

where β is the angle between the horizontal and the bed in flow direction, δ is the slope
angle transversal to the flow direction and γ is the angle of repose of the sediment material.

Furthermore, Chen et al. (2010) proposed a correction k = kβkγ as follows

k =
τBcr

τBcr,Shields
=

1

tan γ

(

cos2

(
π

2
− β

)

− 1 +
1

(1 + tan2 β + tan2 γ)
+

tan2 γ

(1 + tan2 β + tan2 γ)

)0.5

+

cos
(
π

2
− β

)

(1.57)

1.2.1.2 Influence of Bed Forms on Bottom Shear Stress

In presence of bed forms, like ripples, sand dunes or gravel banks, additional friction losses
can occur due to complex flow conditions around these bed forms and the formation of
turbulent eddies. In such cases the dimensionless bottom shear stress θ determined from
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the present flow conditions can differ from the effective dimensionless bottom shear stress
θ′, which is relevant for the transport of the sediment particles. It is usually assumed that
the determination of the effective shear stress should be based upon the grain friction losses
only and should exclude additional form losses, to prevent too large sediment transport
rates. Therefore a reduction factor µ is introduced for the determination of the effective
bottom shear stress θ′ from the bottom shear stress θ as

µ =
τ ′

B

τB
=
θ′

θ
with

{

µ = 1.0 (no bed forms)
µ < 1.0 (bed forms)

(1.58)

This reduction factor (also called “ripple factor”) can be given a constant value if the bed
forms are distributed uniformly over the simulation domain. After Jäggi this factor should
be set between 0.8 and 0.85. If there are no bed forms present one can consider that θ′ = θ,
i.e. µ=1.0. Generally can be said, the larger the form resistance, the smaller becomes the
reduction factor µ.

Another approach is to calculate the reduction factor by introducing a reduced energy
slope J ′, compared to the energy slope J , due to the presence of the bed forms as done by
Meyer-Peter and Müller. This approach is in particular suitable if ripples are present at
the river bed and finally leads to the following estimation of the reduction factor.

µ =
(
kstr

k′

str

)3/2

(1.59)

Here, k′

str corresponds to the definition of the Strickler coefficient for experiments with
Nikuradse-roughness (Jäggi, 1995) and can be calculated from the grain sizes using the d90
diameter as detailed in section Section 1.1.1.4. kstr is the calibrated Strickler coefficient
used in the hydraulic calculations which includes the form friction effects.

1.2.1.3 Bed Armouring

In morphological simulations with fractional sediment transport the forming or destroying
of bed armouring layers can be simulated by modelling sorting effects without special
features.

But there are also some types of protection layers which need a special treatment, like
e.g. grass layers or geotextiles. Furthermore, for single grain simulations the bed material
sorting effects cannot be captured and therefore a special treatment is needed if effects of
bed armouring shall be considered.

The effects of such a protection layer can be considered using two methods:

• A critical shear stress τcr,start of the protection layer can be specified, which must
be exceeded at least once before erosion of the substrate can take place. This
method is suited for simulations with one or multiple grain classes. Start of erosion:
τB > τcr,start

• Another approach is to define the d90 grain diameter of the bed armouring layer.
The dimensionless critical shear stress θcr,armour of this bed armour is then estimated
as
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θcr,armour = θcr

(
d90

d

)2/3

where d90 is the specified d90 grain diameter of the bed armour and d and θcr are the
diameter and critical shear stress of the substrate. But be aware that in case the bed
armour is eroded once, it cannot be built up again using this approach in single grain
computations.

If sediment has accumulated above the protection layer, the armouring condition is not
applied until this sediment is totally eroded.

1.2.1.4 Settling Velocities of Particles

The settling velocity w of sediment particles is an important parameter to determine which
particles are transported as bed load or as suspended load. Many different empirical or
semi-empirical relations for the determination of settling velocities in dependence of the
grain diameter have been suggested in literature.

Approach of van Rijn

The sink rate can be determined against the grain diameter after van Rijn (1984b).

w =
(s− 1)gd2

18ν
for 0.001 < d ≤ 0.1 mm (1.60)

w =
10ν

d





√

1 +
0.01(s− 1)gd3

ν3
− 1



 for 0.1 < d ≤ 1 mm (1.61)

w = 1.1
√

(s− 1)gd for d ≥ 1 mm (1.62)

d is the diameter of the grain, ν is the kinematic viscosity and s = ρS/ρ the specific density.

Approach of Wu and Wang

A newer approach for the computation of the sink velocity is the one of Wu et al. (2000):

w =
Mν

Nd





√

1

4
+
(

4N

3M2
(D∗)3

)1/n

− 1

2





n

(1.63)

where:

M = 53.5e−0.65Sp

N = 5.65e−2.5Sp

n = 0.7 + 0.9Sp

Sp is the Corey shape factor, with a value for natural sediments of about 0.7 (0.3 - 0.9).

Approach of Zhang

The Zhang formula (Zhang, 1961) is based on many laboratory data and was developed for
naturally worn sediment particles. It can be used in a wide range of sediment sizes in the
laminar as well turbulent settling region (Wu, 2007).
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w =

√
(

13.95
ν

d

)2

+ 1.09(s− 1)gd− 13.95
ν

d
(1.64)

1.2.1.5 Bed load Propagation Velocity

The propagation velocity of sediment material is an important parameter to characterize the
bed load transport in rivers. In some numerical approaches for morphological simulations
this velocity is a useful input parameter.

Several empirical investigations have been made to measure the velocity of bed load material
in experimental flumes. One recent approach for the determination of the propagation
velocity is the semi-empirical equation based on probability considerations by Zhilin Sun
and John Donahue (Sun and Donahue, 2000) as

uB = 7.5(
√
θ′ − C0

√

θcr)
√

(s− 1)gd (1.65)

where θ′ is the dimensionless effective bottom shear stress and θcr is the critical Shields
parameter for incipient motion for a grain of diameter d. Furthermore, C0 is a coefficient
less than 1 and s is specific density of the bedload material. As can be seen, the propagation
velocity will increase if the difference of the actual shear stress and the criticial shear stress
enlarges as well as in the case of larger grain diameters.

1.2.2 Suspended Sediment and Pollutant Transport

1.2.2.1 One Dimensional Advection-Diffusion-Equation

For a channel with irregular cross section area A (Figure 1.1) the following
advection-diffusion equation for to the number of pollutant species or grain size
classes ng holds:

∂(ACg)

∂t
+
∂(QCg)

∂x
− ∂

∂x

(

AΓ
∂Cg

∂x

)

− Sg − Slg = 0 for g = 1, ..., ng (1.66)

Introducing the continuity equation
∂A

∂t
+
∂Q

∂x
= 0 in eq. 1.66 one becomes:

A
∂(Cg)

∂t
+Q

∂(Cg)

∂x
− ∂

∂x

(

AΓ
∂Cg

∂x

)

− Sg − Slg = 0 for g = 1, ..., ng (1.67)

1.2.2.2 Two Dimensional Advection-Diffusion-Equation

According to the number of pollutant species or grain size classes, ng advection-diffusion
equations for transport of the suspended material are provided as follows:

∂

∂t
Cgh+

∂

∂x

(

Cgq − hΓ
∂Cg

∂x

)

− ∂

∂y

(

Cgr − hΓ
∂Cg

∂y

)

− Sg − Slg = 0 for g = 1, ..., ng

(1.68)
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where Cg is the concentration of each grain size class and Γ is the eddy diffusivity.

1.2.2.3 Source Terms

For both suspended sediment and pollutant transport there can be a local sediment or
pollutant source: Slg given by a volume.

For suspended sediment transport an additional source term Sg representing the exchange
with the bed has to be considered. This term appears also in the bed load equations if
they are applied in combination with suspended load.

This term is calculated by the difference between the deposition rate qd and the suspension
(entry) rate qek

.

Sg = qeg − qdg (1.69)

The deposition rate is expressed as convection flux of the sink rate:

qdg = wgCdg (1.70)

wg is the sink rate of grain class g and Cdg its concentration near the bed. According to a
suggestion of Bennett and Nordin (1977), the suspension entry is formulated in line with
the deposition rate employing empirical relations:

qeg = wgβgCeg (1.71)

The outcome of this is:

Sg = wg(βgCeg − Cdg ) (1.72)

The sink rate wg can be determined against the grain diameter after one of the relations
given in Section 1.2.1.4

The reference concentration for the suspension entry can be calculated as follows after van
Rijn (1984b):

Ceg = 0.015
dg

a

T 1.5
g

(D∗)0.3
g

(1.73)

where:

Tg is the dimensionless characteristic number for the bottom shear stress of grain class g.
a is the reference height above the mean bed bottom.
D∗

g is the dimensionless diameter of grain class g.

Another approach is the one of Zyserman and Fredsøe (1994):

Ceg =
0.331(θ′ − 0.045)1.75

1 + 0.72(θ′ − 0.045)1.75
(1.74)

with the dimensionless effective bottom shear stress
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θ′ = u2
∗
/[(s− 1)gd] (1.75)

The reference concentration for the deposition rate is calculated after Lin (1984):

Cdg =
(

3.25 + 0.55 ln
(
wg

κu∗

))

Cg (1.76)

where:

Cg is the mean concentration over depth of suspended particles of grain class g,
u∗ is the shear velocity,
κ the Von Karmann constant.

Another approach is the one of Minh Duc (1998):

αc =
(h− δ)

h∫

δ

(
h− z

z

δ

h− δ

)ω/κU∗

dz

The erosion and deposition rates can also be computed using critical shear stresses, as does
Xu (1998).

qd =







ωsCa

(

1 − τ

τc,S

)

τ < τc,S

0 τ ≥ τc,S

τc,S =
ρs − ρ

ρs

ghωsCk

TkU

Tk is a calibration parameter which has been suggested to take a value of 0.0018 by Westrich
and Juraschek (1985). The reference concentration Ca can be determined after van Rijn
(1984b) (eq. 1.73) or Zyserman and Fredsøe (1994) (eq. 1.74). Alternatively, Ca can be set
to the actual depth-averaged concentration Ck.

qe =







M

(

τ

τc,E
− 1

)n

τ > τc,E

0 τ ≤ τc,E

With τc,E = ρu2
∗cr. M and n are calibration parameters.

1.2.3 Bed Load Transport

1.2.3.1 One Dimensional Bed Load Transport

1.2.3.1.1 Component of the Bed Load Flux

The bed load flux for the one-dimensional case consists of one single component for each
grain size, namely the specific bed load flux in stream wise direction qBg .
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1.2.3.1.2 Evaluation of Bed Load Transport due to Stream Forces

In the one-dimensional case, the total specific bed load flux due to stream forces is evaluated
as follows:

qBg = βgqB(ξg) (1.77)

Details about the transport laws for evaluation of qB with or without the consideration of
the hiding factor ξg can be found in Section 1.2.3.4.

1.2.3.1.3 Gravitational Slope Collapse in Longitudinal Direction

Gravitational induced failures in longitudinal direction are significant aspects concerning
erosion and transport modelling. This process may play an important role e.g. for delta
formation in estuaries. Such slope failure processes take place mostly discontinuous and
can deliver significant contributions to the total sum of transported material.

The modes of slope failures can differ largely (falls, topples, slides, etc.) and depend on the
soil material, the degree of soil compaction and the pore pressures within the soil matrix.
Here, a simplified, geometric approach is applied to be able to consider some aspects of
this purely gravitational induced transport.

This approach is based on the idea that a slope betweem two cross-sections is flattened if
its angle α becomes steeper than a given critical slope angle γcrit .

qBg ,xgrav =

{

0 if (α ≤ γcrit)
f(α, γcrit) if (α > γcrit)

(1.78)

The sliding material is moved from the cross-section with higher elevation to the lower
situated cross-section. Only one critical slope angle can be defined in this one-dimensional
approach.

1.2.3.1.4 Bed Material Sorting

For each fraction g a mass conservation equation can be written, the so called “bed-material
sorting equation”:

(1 − p)
∂

∂t
(βg · hm) +

∂qBg

∂x
+ sg − sfg − slBg = 0 for g = 1, ..., ng (1.79)

where p = porosity of bed material (assumed to be constant), qBg = total bed load flux per
unit width, sfg = specific flux through the bottom of the active layer due to its movement
and slBg = source term per unit width to specify a local input or output of material
(e.g. rock fall, dredging). The term sg describes the exchange per unit width between the
sediment and the suspended material (see Section 1.2.2.3).

1.2.3.1.5 Global Mass Conservation

Finally, the global bed material conservation equation is obtained by adding up the masses
of all sediment material layers between the bed surface and a reference level for all fractions
(Exner-equation) directly resulting in the elevation change of the actual bed level:
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(1 − p)
∂zB

∂t
+

ng
∑

g=1

(
∂qBg

∂x
+ sg − slBg

)

= 0 (1.80)

1.2.3.2 Two Dimensional Bed Load Transport

1.2.3.2.1 Components of the Bed Load Flux

The specific bed load flux in x direction is composed of three parts (an analogous relation
exists in y direction):

qBg ,x = qBg ,xx + qBg ,xlateral + qBg ,xgrav (1.81)

where (quantities per unit width) qBg ,xx = bed load transport due to flow in x direction,
qBg ,xlateral = lateral transport in x-direction (due to bed load transport in y direction on
sloped bed), qBg ,xcurv = transport due to curvature effect in x-direction, and qBg ,xgrav =
pure gravity induced transport (e.g. due to collapse of a side slope).

1.2.3.2.2 Evaluation of Equilibrium Bed Load Transport

In the two-dimensional case, bed load transport is evaluated as follows

qBg ,xx = βgqB(ξg) · ex (1.82)

The specific bed load discharge qBg of the gth grain class has to be evaluated by a
suitable transport law. Approaches for the bed load discharge qBg (ξg) with or without the
consideration of a hiding factor ξg are discussed in Section 1.2.3.4.

1.2.3.2.3 Bed Load Direction due to Lateral Bed Slope

Empirical bed load formulas were originally derived for situations where bed slope equals
flow direction. However, in case of lateral bed slope with respect to flow direction, bed
load direction differs from flow direction due to gravitational influence on the bed material,
e.g. moving sediment particle on riverbank. Therefore, bed load direction is corrected for
lateral bed slope based on the following approach (e.g. see Ikeda (1982); Talmon et al.
(1995)):

tanϕb = −Nl

(
τ ′

Bcr,g

τ ′

B

)γ

~s · ~nq (1.83)

where: ϕb = bed load direction with respect to the flow vector ~q , Nl = lateral transport
factor (1.2 ≤ Nl ≤ 2.4), γ = lateral transport exponent (default γ = 0.5), ~s = bed slope
(positive uphill, negative downhill), ~nq = is the unit vector perpendicular to ~q pointing
in downhill direction (~s · ~nq < 0) , τ ′

B = dimensionless bed shear stress, and τ ′

Bcr,g
=

dimensionless critical shear stress of the individual grain class.
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Figure 1.4 Effect of spiral motion in river bend on bed shear stress τb with deviation
angle from main flow direction ϕb, adapted from Blanckaert (2011)

1.2.3.2.4 Bed Load Direction due to Curvature Effect

Due to the presence of geometrical curvatures in rivers, the bed load direction may deviate
from the depth averaged flow direction. Due to the three dimensional spiral flow motion,
the bed load direction tends to point towards the inner side of the curve (Figure 1.4). This
curvature effect is taken into account according to an approach proposed by Engelund
(1974) , where the deviation angle ϕb (positive counterclockwise and vice versa) from the
main flow direction is determined as

tanϕb = N∗

h

R
(1.84)

where h denotes the water depth, N∗ denotes a curvature factor, and R denotes the radius
of the river bend (positive for curvature in counterclockwise direction and vice versa).

Note that the curvature factor N∗ mainly depends on bed roughness. Therefore, N∗ ≈ 7
for natural streams (Engelund, 1974), and values up N∗ ≈ 11 for laboratory channels
(Rozovskii, 1957).

1.2.3.2.5 Gravitational Bank Collapse

Gravitational induced riverbank or sidewall failures are significant aspects concerning
erosion and transport modelling. Such processes may play an important role in many
situations, such as meandering streams, river widenings or failures of erodible embankment
structures due to overtopping waters. Such slope failure processes take place mostly
discontinuous and can deliver significant contributions to the total sum of transported
material.

The modes of slope failures can differ largely (falls, topples, slides, etc.) and depend on the
soil material, the degree of soil compaction and the pore pressures within the soil matrix.
Here, a simplified, geometric approach is applied to be able to consider some aspects of
this purely gravitational induced transport.

This approach is based on the idea that a slope is flattened if its angle α becomes steeper
than a given critical slope angle γcrit .
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Figure 1.5 Definition sketch of overall control volume (red) of bed material sorting
equation

qBg ,xgrav =

{

0 if (α ≤ γcrit)
f(α, γcrit) if (α > γcrit)

(1.85)

The sliding material is moved from the sediment element with higher elevation to the lower
situated element. Three characteristic critical slope angles are defined in this approach to
have some flexibility in modelling the complex geotechnical aspects. The critical angles
can be characterized as:

• critical angle for dry or partially saturated bank material which may greatly exceed
the material’s angle of repose (up to nearly vertical walls) due to negative pore
pressures,

• critical angle for fully saturated and over flown material which is in the range of the
material’s angle of repose and

• a critical angle for deposited, not-compacted material.

A more physically based geotechnical approach, which takes into account more geotechnical
considerations, is planned to be implemented in the future.

1.2.3.2.6 Bed Material Sorting

The change of volume of a grain class g is balanced over the bed load control volume Vg

and the underneath layer volume Vsubg , as it is illustrated in Figure 1.5.

Depending on the bedload in- and outflows, the composition of the grain fractions in the
bedload control volume can change. Futhermore three source terms are distinguished:

• External sediment sources or sinks can be specified (Slg).

• An exchange of sediment with the water column can take place (Sg).

• The movement of the bedload control volume bottom ZF can lead to changes of the
grain compositions within the bedload control volume and the underneath soil layer
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(Sfg). (This is a special kind of source term, because it does not change the overall
grain volume within the control volume indicated in Figure 1.5. It is not related with
a physical movement of particles.)

For each grain class g a mass conservation equation can be written, the so called
“bed-material sorting equation”, which is used to determine the grain fractions βg at the
new time level

∂V

∂t
= (1 − p)








∂(βg · hm)

∂t
︸ ︷︷ ︸

change of grain volume in bedload control volume

+
∂(βsubg · (zF − zsub))

∂t
︸ ︷︷ ︸

change of grain volume in layer 1=sfg








= −∂qBg ,x

∂x
− ∂qBg ,y

∂y
︸ ︷︷ ︸

fluxes over boundary

−sg + slBg
︸ ︷︷ ︸

source terms

Rearranging this sorting equation leads to following formulation which is used from here on

(1 − p)
∂

∂t
(βg · hm) +

∂qBg ,x

∂x
+
∂qBg ,y

∂y
+ sg − sfg − slBg = 0 for g = 1, ..., ng

(1.86)

where hm = thickness of bedload control volume, p = porosity of bed material (assumed
to be constant), (qBg ,x, qBg ,y) = components of total bed load flux per unit width, sfg =
flux through the bottom of the bedload control volume due to its movement and slBg =
source term to specify a local input or output of material (e.g. rock fall, dredging).

1.2.3.2.7 Global Mass Conservation

The global bed material conservation equation, which is often called Exner-equation, is
obtained by adding up the masses of all sediment material layers between the bed surface
and a reference level. This is done for all grain fractions and directly results in the elevation
change of the actual bed level zB:

(1 − p)
∂zB

∂t
+

ng
∑

g=1

(
∂qBg ,x

∂x
+
∂qBg ,y

∂y
+ sg − slBg

)

= 0 (1.87)

1.2.3.3 Sublayer Source Term

The bottom elevation of the bed load control volume zF is identical to the top level of the
underneath layer. If zF moves up, sediment flows into this underneath layer and leads to
changes in its grain compositions. The exchange of sediment particles between the bed
load control volume and the underlying layer is expressed by the source term:

sfg = −(1 − p)
∂

∂t
((zF − zsub)βsubg ) (1.88)
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1.2.3.4 Closures for Bed Load Transport

In the following a variety of bed load transport formulas are listed which are implemented
to calculate the transport capacity. For practical purposes usually a calibration of the used
formula is needed and several parameters can be adjusted by the user.

1.2.3.4.1 Meyer-Peter and Müller (MPM & MPM-Multi)

The bed load transport formula of Meyer-Peter and Müller (Meyer-Peter and Müller, 1948)
can be written as follows:

qBg = α
√

(s− 1)gd3
g (θg − θcr,g)m (1.89)

Herein, α denotes the bed load factor (orginally α = 8), m the bed load exponent (orginally
m = 1.5), qBg is the specific bed load transport rate of grain class g, θg is the effective
dimensionless shear stress for grain class g, θcr,g is the critical dimensionless shear stress
for grain class g , dg is the diameter of the grain class g, s = ρs/ρ and g stands for the
gravitational acceleration. Note that by adjusting α to 4.93 and m to 1.6, the bed load
formula can be adapted accoring to Wong and Parker (2006).

Meyer-Peter and Müller observed in their experiments that the fist grains moved already
for θcr = 0.03. But as their experiments took place with steady conditions they used a
value for which already 50% of the grains where moving. They proposed the value of 0.047.

However for very unsteady conditions one should use values for which the grains really
start to move (Fäh, 1997) like the values given by the shields diagram.

The formula of Meyer-Peter and Müller is applicable in particular for coarse sand and
gravel with grain diameters above 1 mm (Malcherek, 2001).

The original bed load transport formula is intended for single grain simulations. But an
extension of the MPM-Formula for fractional transport is implemented in the program and
called MPM-Multi. It uses the hiding function ξg proposed by Ashida and Michiue (1971):

ξg =

{

[log (19)/ log (19dg/dm)]2 dg/dm ≥ 0.4
0.843dm/dg dg/dm < 0.4

(1.90)

dg is the grain size diameter of grain class g and dm the mean diameter of the grain mixture.
The dimensionless critical shear stress of grain class becomes:

θcr,g = θcr,refξg, (1.91)

where θcr,ref usually is assigned to a fix value (e.g. θcr,ref = 0.047) or the critical Shields
paramter of the mean grain size.

1.2.3.4.2 Ashida and Michiue

The bed load formula for non-uniform sediments according to Ashida and Michiue (Ashida
and Michiue, 1971) reads

qBg = 17
√

(s− 1)gd3
g (θg − ξgθcr,ref )(

√

θg −
√

ξgθcr,ref ) (1.92)
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where qBg is the specific bed load transport rate of grain class g, θg is the dimensionless
shear stress for grain class g, θcr,ref is the reference critical dimensionless shear stress
(Ashida and Michiue (1971) proposed θcr,ref = 0.05), dg is the diameter of the grain class
g, s = ρs/ρ, g is the gravitational acceleration, and ξg is the hiding function according to
eq. 1.90.

1.2.3.4.3 Parker

Parker extended his empirical substrate-based bed load relation for gravel mixtures (G.
Parker, 1990, Parker et al. (1982)), which was developed solely with reference to field data
and suitable for near equilibrium mobile bed conditions, into a surfaced-based relation.
The new relation is proper for non-equilibrium processes.

Based on the fact that the rough equality of bed load and substrate size distribution is
attained by means of selective transport of surface material and the surface material is the
source for bed load, Parker has developed the new relation based on the surface material.
An important assumption in deriving the new relation is suspension cut-off size. Parker
supposes that during flow conditions at which significant amounts of gravel are moved, it
is commonly (but not universally) found that the sand moves essentially in suspension (1
to 6 mm). There for Parker has excluded sand from his analysis. In his free access Excel
file, he has explicitly emphasised that the formula is valid only for the size larger than 2
mm. Regarding to the Oak Creek data, the original relation predicted 13% of the bed load
as sand. For consistency it has to be corrected for the exclusion of sand and finer material.

W ∗

si = 0.00218G[ξsωφsg0] ; W ∗

si =
Rgqbi

(τB/ρ)3/2Fi
(1.93)

where:

ξs =

(

di

dg

)
−0.0951

; φ50 =
τ∗

sg

τ∗

rsg0

; τ∗

sg =
τB

ρRgdg
; τ∗

rsg0 = 0.0386

ω = 1 +
σ

σ0(φsg0)
[ω0(φsg0) − 1] ; σ =

∑

Fi

[
ln (di/dg)

ln (2)

]2

; dg = e
∑

Fi ln (di)

ξs is a “reduced” hiding function and differs from the one of Einstein. The Einstein hiding
factor adjusts the mobility of each grain di in a mixture relative to the value that would
be realized if the bed were covered with uniform material of size di. The new function
adjusts the mobility of each grain di relative to the d50 or dg , where dg denotes the surface
geometric mean size.

Although the above formulation does not contain a critical shear stress, the reference shear
stress τ∗

rsg0 makes up for it, in that transport rates are exceedingly small for τ∗

sg < τ∗

rsg0.
Regarding to the fact that parker’s relation is based on field data and field data are often
in case of low flow rates, the relation calculates low bed load rates (Marti, 2006).

If this transport formula is used in combination with a local slope correction of the reference
shear stress (see Section 1.2.1.1.2) attention must be paid that τ∗

rsg0 may not become too
small or even zero. Since this value is in the denominator of the transport formula, such
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situations may lead to numerical instabilities. To avoid these problems a minimum value is
enforced:

τ∗

rsg0 = min(τ∗,min
rsg0 , τ∗

rsg0)

1.2.3.4.4 Wilcock and Crowe

Wilcock and Crowe developed a sediment transport model for sand/gravel mixtures
(Wilcock, 2003), similar to Parker’s model (G. Parker, 1990), and it was developed with
a large experimental results dataset. It reference fractional transport rates to the size
distribution of the bed surface, rather than the subsurface, making the model explicit
and capable of predicting transient conditions. The hiding function incorporated in the
model resolves discrepancies obvserved among earlier hiding functions implemented in
other transport models, such as the Oak Creek and the Cambridge ones (A.J. Parker G.;
Sutherland, 1990). Wilcock and Crowe model (Wilcock, 2003) uses the full grain size
distribution of the bed surface, including sand, incorporating a non-linear effect of sand
content on gravel transport rate.

W ∗

si = G (φi) ; W ∗

si =
Rgqbi

(τB/ρ)3/2Fi
(1.94)

where:

G (φi) =







0.002φ7.5
i φi < 1.35

14

(

1 − 0.894

φ0.5
i

)4.5

φi ≥ 1.35

and:

φi =
τ∗

sg

τ∗

ssrg

di

dg

−b

; τ∗

ssrg =
τB

ρRgdg

τ∗

ssrg = 0.021 + 0.015exp(−20Fs) ; b =
0.67

1 + exp(1.5 − di

dg
)

The non-linear effect of sand content Fs on gravel transport is taken into account in τ∗

ssrg.
Wilcock and Crowe (Wilcock, 2003) have shown that increasing sand content in the bed
active layer of a gravel-bed stream increases the surface gravel mobility. This effect is
captured in their relationship between τ∗

ssrg (a surrogate for a critical Shields number) and
the fraction sand in the active layer Fs. Note that τ∗

ssrg decreases as Fs increases, causing
an increase of φi and in turn of the fraction bedload qbi.

1.2.3.4.5 Hunziker (MPM-H)

Hunziker (1995) proposed a bed load formula for fractional bed load transport of graded
sediment:

qBg = 5βg[ξg(θ′

dms − θcdms)]3/2
√

(s− 1)gd3
ms (1.95)
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where θ′

dms denotes the Shields parameter of the mean grain size of the surface bed material
dms according to eq. 1.96, ξg denotes the hiding function applied on the excess shear stress
(θ′

dms − θcdms).

θ′

dms =
τ ′

b

ρw (s− 1) dms
(1.96)

Note that due to the correction of the excess shear stress (θ′

dms − θcdms), the transport
formula is based on the concept of “equal mobility”, i.e. all grain classes start to move at
same flow condition. The critical Shields parameter θcdms of the mean grain size diameter
is determined according to

θcdms = θce

(
dmo

dms

)0.33

(1.97)

where θce denotes the critical Shields parameter for incipient motion for uniform bed
material. Two sediment layers are distinguished: the upper mixing layer which is in
interaction with the flow and a subsurface layer below. Here, dms denotes the mean grain
size diameter of surface bed material and dmo denotes the mean grain size diameter of
subsurface bed material. This relation (dms/dmo) can be approximated as a function of
the Shields parameter of the mean grain size of the surface bed material as

dms

dmo
= 0.0163θ′−1.45

dms + 0.6 (1.98)

Finally, the hiding function is determined as

ξg =
(
dg

dms

)
−α

(1.99)

where α is an empirical parameter depending on the Shields parameter (see also Hunziker
and Jaeggi (2002)) according to eq. 1.100, which is limited to a range between −0.4 and
2.0.

α = 0.011θ′−1.5
dms − 0.3 (1.100)

1.2.3.4.6 Rickenmann

Experiments for bed load transport in gravel beds were performed at VAW ETH Zurich for
bed slopes of 0.0004-0.023 by Meyer-Peter and Müller (1948) and for bed slopes of 0.03-0.2
by Smart and Jaeggi (1983) and by Rickenmann (1990). Rickenmann (1991) developed
the following bed load transport formula for the entire slope range using 252 of these
experiments.

ΦB = 3.1
(
d90

d30

)0.2

θ′0.5(θ′ − θcr)Fr1.1(s− 1)−0.5 (1.101)

qB = ΦB((s− 1)gd3
m)0.5 (1.102)
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θ′ is the dimensionless shear stress, θcr the dimensionless shear stress at the beginning of
bed load transport, s = ρs/ρ the sediment density coefficient, Fr the Froude number and
dm the mean grain size.

1.2.3.4.7 Smart and Jäggi (for single grain and multiple grain classes)

Experiments for bed load transport in gravel beds were performed at VAW ETH Zurich for
bed slopes of 0.0004-0.023 by Meyer-Peter and Müller (1948) and for bed slopes of 0.03-0.2
by Smart and Jaeggi (1983) and by Rickenmann (1990). Smart and Jäggi developed a bed
load transport formula for steep channels using their own experimental results and the
results of Meyer-Peter and Müller.

qB =
4

s− 1

(
d90

d30

)0.2

J0.6Ru(J − Jcr) (1.103)

where s is the sediment density coefficient (s = ρs/ρ), R is the hydraulic radius, u is
the velocity, J is the slope and Jcr is the critical slope for the initiation of the bed load
transport, which is calculated as

Jcr =
θcr(s− 1)dm

R
(1.104)

where θcr is the critical shields parameter (for the initiation of motion) and dm is the mean
grain size. In order to account for the gravitational influence of the local bed slope Smart
and Jaeggi (1983) proposed the following reduction of the critical shields parameter:

θcr = θcr,Ref (cos(arctan J))
(

1 − J

tanψ

)

(1.105)

where J is the local bed slope, ψ the angle of repose and θcr,Ref the critical reference
shields parameter for the medium grain size defined by the user (Smart and Jaeggi (1983)
propose a value of 0.05).

The Smart & Jäggi transport formula is extended to multiple grain classes by applying the
original equation to the individual grain classes according to the following approach:

qB,g =
4

s− 1

(
d90

d30

)0.2

J0.6Ru(J − Jcr,g) (1.106)

Compared to the original eq. 1.103 the transport rate for each grain class qB,i is calculated
with the critical slope Jcr,g for the initiation of motion of the grain class i according to

Jcr,g =
θcr,g(s− 1)di

R

where θcr,g is the critical shields parameter for grain class g, dg is the diameter of the grain
class g.

With the term α = (d90/d30)0.2 the original equation intends to account for the influence of
the grain class distribution. According to Smart and Jaeggi (1983) this term is in the range
of 1.06 ≤ α ≤ 1.53. If this term is to be neglected Smart and Jaeggi (1983) recommend
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substituting α = 1.05. The influence of the grain class distribution is considered in the
hiding and exposure approach according to Ashida and Michue (Ashida and Michiue, 1971;
Parker, 2008) in eq. 1.107 and eq. 1.108.

ζg =







0.85
(
dg

dm

)
−1

for
dg

dm
≤ 0.4







log (19)

log
(

19
dg

dm

)







2

for
dg

dm
> 0.4

(1.107)

θcr,g = ζgθcr (1.108)

The critical shields parameter θcr is calculated according to eq. 1.105.

1.2.3.4.8 Wu

Wu et al. (2000) developed a transport formula for graded bed materials based on a new
approach for the hiding and exposure mechanism of non-uniform transport. The hiding
and exposure factor is assumed to be a function of the hidden and exposed probabilities,
which are stochastically related to the size and gradation of bed materials. Based on this
concept, formulas to calculate the critical shear stress of incipient motion and the fractional
bed-load transport have been established. Different laboratory and field data sets were
used for these derivations.

The probabilities of grains dg hidden and exposed by grains di is obtained from

phidg =
ng
∑

i=1

βi
di

dg + di
, pexpg =

ng
∑

i=1

βi
dg

dg + di
(1.109)

The critical dimensionless shields parameter for each grain class g can be calculated with
the hiding and exposure factor ηg and the shields parameter of the mean grain size θcrm as

θcrg = θcrm

(

pexpg

phidg

)m

︸ ︷︷ ︸

ηg

(1.110)

The transport capacity now can be determined with Wu’s formula in dimensionless form as

ΦBg = 0.0053

[

θ′

θcrg

− 1

]2.2

(1.111)

Finally the bed load transport rates calculates for each grain fraction as

qbg = βg

√

(s− 1)gd3
g ΦBg (1.112)

As results of their data analysis the authors recommend to set m = −0.6 and θcrm = 0.03
to obtain best results.
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If this transport formula is used in combination with a local slope correction of the critical
shear stress (see Section 1.2.1.1.2) attention must be paid that θcrg may not become too
small or even zero. Since this critical dimensionless shear stress is in the denominator of
the transport formula, such situations may lead to numerical instabilities. To avoid these
problems a minimum value for θcrg is enforced.

θcrg = min(θmin
cr , θcrg )

1.2.3.4.9 Van Rijn

van Rijn (1984a) developed a bed load formula for grain sizes between 0.2 and 2 mm
according to eq. 1.113.

qB = 0.053
√

(s− 1)g
d1.5

50 T
2.1

D0.3
∗

(1.113)

Here D∗ is the dimensionless grain diameter according to eq. 1.53 and T is the
non-dimensional excess bed shear stress or the transport stage number, defined as

T = (u∗/u∗cr)2 − 1 (1.114)

where u∗ is the effective bed shear velocity determined as

u∗ = u
√
g/C ′

h (1.115)

with C ′

h = 18 log (4h/d90).

u∗cr is the critical bed shear velocity, u is the mean flow velocity, h is the water depth, d50

and d90 are characteristic grain diameters of the bed material.

1.2.3.4.10 Engelund and Hansen

Engelund and Hansen (1972) proposed a bed load transport formula for uniform bed
material

qB = 0.05
√

(s− 1)g c2
fθ

2.5d1.5
f (1.116)

where df denotes the mean fall diameter of the bed material and θ the Shields parameter.
Note that this rather simple bed load formula does not consider critical Shields parameter.

1.2.3.4.11 Power Law

The power law bed load formula is a very simple approach. Therfore, no critical shear
stress is taken into account and bed load transport only depends on the flow velocity u.

qb = aub (1.117)

Coefficient a and exponent b are used as calibration parameter.
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1.2.3.5 Abrasion in 1D

The reduction of the grain diameters by mechanical stress can be described by the approach
of Sternberg (1875). It postulates, that the mass loss dM of a grain, which is transported
over a distance of dx, is proportional to the achieved work M · g · dx. If the equation
(−dM = c · M · dx) is integrated over the distance from x0 to x (where the mass of the
grain at x0 is M0) one obtains the relation for the reduction of the mass of the grain:

M(x) = M0e
−c(x−x0) (1.118)

The abrasion coefficient of Sternberg c is determined empirically.

1.2.3.6 Sediment Boundary Conditions

The necessity of hydraulic boundary conditions for SWE and Saint-Venant equation were
explained in Section 1.1.1.5 and Section 1.1.2.5 respectively. In case of bed load transport,
boundary conditions are also needed to solve the bed load transport formula and calculate
the transport capacity. Boundary conditions are defined upstream and downstream of the
channel (i.e. at the inflow and outflow cross section). If no boundary condition is defined,
a wall is assumed at the boundary and sediment transport will not occur.

1.2.3.6.1 Upstream boundary condition

The bed load input type is given by the upstream boundary condition. Three types of
upstream boundary condition are available:

• sediment_discharge: based on a sediment hydrograph describing the bed load inflow
at an upstream boundary in time.

• transport_capacity: based on a given mixture, the sediment inflow is calculated for
every element by calculating the equilibrium transport capacity. In this case, it is
required that the sediment inflow is defined on edges and an inflow hydrograph (set
as hydraulic boundary condition) has to be defined.

• IOUp: this upstream boundary condition grants a constant bed level at the inflow.
The same amount of sediment leaving the first computational cell in flow direction
enters the cell from the upstream bound.

1.2.3.6.2 Downstream boundary condition

The IODown is the only downstream boundary condition available for sediment transport.
It corresponds to the definition of IOup, where all sediment entering the last computational
cell will leave the cell over the downstream boundary.

1.2.4 Enforced Bed Movement

In case the effect of bed movements on hydraulic variables want to be investigated, we
can enforce grid nodes to move vertically with time. The movements are user defined,
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thus they are not coupled to any morphological calculations. These changes in the nodal
elevation can be regarded as enforced erosion or aggradation.

The elevation update of the moving nodes is done right after the calculation of the hydraulic
variables. The water depth and flow velocities are not touched, i.e. no change in the mass
or impulse balance. Moving node(s) simply leads to a changed water surface in the next
time step.

wforced
S,t+1 = zforced

B,t + ht (1.119)

1.2.5 Random Bed Perturbation

Random bed perturbation can be applied to the bed topography during morphological
simulations. Therefore, bed elevation is perturbed by

zt
b = zt−1

b + ε (1.120)

where zt−1
b denotes the bed elevation from the previous time step and ε is the perturbation

offset. Bed perturbation is applied on all cells using randomly −ε, +ε, or zero.

1.3 Sub-surface flow

1.3.1 Introduction

Seepage analysis is an important part of geotechnical engineering and is, for example,
required for design and stability evaluations of earth embankment structures. Solving the
Richard’s equation accounts for the flow in the saturated zone as well as in the unsaturated
zone and allows for an accurate modelling of water infiltration into the soil.

Empirical constitutive models consisting of a retention curve and a relative hydraulic
conductivity function allow for approximating the multi-phase flow in the unsaturated zone
with a single partial differential equation. Thereby the assumption is made that the air
phase is always continuous and at atmospheric pressure, which is often said to be accurate
enough for most practical applications (Lam et al., 1987).

1.3.2 Governing equations

The Richard’s equation is a non-linear partial differential equation, which can be formulated
in form of an advection-diffusion equation. The soil moisture content θ [-] in the equation
is defined as the effective water saturation θ = (θ0 − θR)/(θS − θR) , with θ0 = water
content, θR = residual water content and θS = saturated water content (=porosity). The
other main variable is the pore pressure of the water within the embankment body which
is described in a pressure head formulation as h = p/(ρg) [L].

The 3-D Richard’s equation is applied in a moisture formulation for θ as primary variable
as
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∂θ

∂t
− ∇(K∇z) − ∇(Dθ) = Q

D = K
∂h

∂θ

(1.121)

It is implemented also in a mixed moisture and pressure head formulation for θ and h as

∂θ

∂t
− ∇(K∇z) − ∇(D∇h) = Q

D = K

(1.122)

where D is a diffusivity and K is the soil conductivity which is calculated as K = kr(θ)kf ,
being the product of the dimensionless relative conductivity kr [-] and the hydraulic soil
conductivity kf [L/T].

These formulations of the Richard’s equation are made dimensionless for the computations
using the cell size ∆x as length scale and ∆x/∆t as velocity scale, leading to a “mesh
speed” of c=1 in the model.

1.3.3 Constitutive relationships

Empirical closures for the retention curve h = f(θ) and the relative permeability function
kr = f(θ) are required to close Richard’s equation. The retention function in soil sciences
describes how much water is retained in the soil by the capillary pressure and can be seen as a
description of the pore distributions of the soil. The relative conductivity function describes
the water mobility within the unsaturated zone depending on the moisture contents. It
equals 1.0 in the saturated zone and reduces to smaller values in the unsaturated zone,
mainly due to longer flow paths. Two different empirical relationships are employed here,
the approach after Brooks and Corey (1964) and Mualem (1976) (BCM) and a modified
version of the van Genuchten (1980) and Mualem model (VGM).

For the BCM model the following relations are used

h(θ) = hsθ
−1/λ

kr = (h/hS)−(4λ+2)

∂h

∂θ
= −hS

λ
θ−1/λ−1

(1.123)

with λ [-] being a soil parameter.

For the modified VGM model the functions and derivate are as follows
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h(θ) =
−1

α

[

−κ

(
β

θ

)]1/n

kr =
√
θ

(
1 − κ

mθ/β

1 − κ
m1/β

)2

∂h

∂θ
=

1 −m

βmα

θ−1/m−1

β
− κ

(
β

θ

)
−m

(1.124)

with κ(x) = 1 − x1/m and m = 1 − 1/n. The empirical constants α [1/L] and n [-] describe
the soil properties. The modified Version of the VGM model is used instead of the original
VGM model in order to prevent infinite slopes ∂h/∂θ at the transition to the saturated
zone.

Following Ginzburg, the primary variable θ is used for the unsaturated zone as well as for
the saturated zone. Therefore the retention curve h(θ) , which is defined for the unsaturated
zone only, is extrapolated linearly into the saturated zone as

h(θ) = (θ − 1)
∂h

∂θ

∣
∣
∣
∣
θ=1

+ hS θ ≥ 1 − 0 (1.125)

with ∂h/∂θ being the gradient of the retention curve at the transition to the saturated
zone (θ = 1.0) and hS [L] being the air entry pressure head, at which air can enter the
pores when the soil is drained (= measure of the largest pore sizes).

This approach has the advantage that no special treatment and no change of variables
regarding the saturated/unsaturated zones are necessary. However, it leads to an artificial
compressibility error in unsteady simulations. This error is neglected here, but can be
mitigated in principle using sub-iterations (Ginzburg et al., 2004).

1.4 Morphodynamics and Vegetation

1.4.1 Introduction

Vegetation, as main biotic component of riverine environments, has a key role on shaping
river morphology at a wide range of spatial and temporal scales. Above-ground biomass
(plant canopy) affects the flow field altering turbulence structure and hydraulic roughness,
while below-ground biomass (plant roots) modify sediment properties increasing the soil
cohesion. Morphodynamic processes in turn affect vegetation survival mainly by causing
burial and uprooting.

The hydrological regimes plays also an important role on the spatial distribution of
vegetation by controlling seed dispersal and ensuring water and nutrients for plant growth.
In riparian systems, the water table level usually represents the main source of water
determining, in combination with the fluvial disturbance, a strong control on plant species
distribution and composition on the elevation gradient. As a result, each species is
characterized by a specific range of elevations in which its optimal conditions are met. The
timescale at which vegetation reaches its equilibrium value may vary across environments
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Figure 1.6 Schematic illustration of the time frame concept used in the vegetation
module.

and among species, allowing for the co-existence of vegetation patterns with different
biomass densities.

1.4.2 Mathematical model

The mathematical model accounting for the main feedback between river morphodynamics
and vegetation and implemented in BASEMENT has been developed by a joint research
between the Laboratory of Hydraulics, Hydrology and Glaciology (VAW) at ETH Zurich
and the Department of Civil, Environmental and Mechanical Engineering at University of
Trento (Italy). Model and results are presented in Bertoldi et al. (2014). This approach is
built upon three main cornerstones that describe:

• the vegetation biomass dynamics depending on species-specific parameters;

• the feedback mechanisms between river morphodynamic processes and vegetation;

• the mean water table level (groundwater) computed by adopting a simple spatial
interpolation method.

1.4.3 Vegetation dynamics

In Figure 1.6, the blue line represents the water discharge through time and the dotted
brown line corresponds to the discharge at which the Shields parameter θ reaches its critical
value θcr, needed for the onset of sediment transport. Vegetation growth (∂B

∂t > 0) is
enabled only during the time frame Tv, where θ ≤ θcr, while is inhibited during Tm, in
which sediment transport takes place (θ > θcr). During Tm, if uprooting occurs, vegetation
biomass is assumed to instantaneously decrease to B = 0, otherwise it does not change
until the beginning of subsequent vegetation growth phase (Tv).

Vegetation is described with a dimensionless biomass density B in which both above-ground
and below-ground are lumped. Within each computational cell a value of B is defined with
respect to a reference dimensional value Bmax [kg m−2], representing its maximum carrying
capacity. Following Marani et al, we can define an equilibrium biomass Beq, normalized by
its maximum, as
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Beq =
1

exp[λ1(z − z0)] + exp[−λ2(z − z0)]
(1.126)

in which z is the bed elevation, the parameters λ1 and λ2 define the rate at which vegetation
fitness diminishes away from it maximum, while z0 represents the optimal elevation above
the mean water table level zw. If λ1 = λ2, Beq represents a bell-shaped function with
its maximum at the elevation zw + z0, such as Beq(zw + z0) = Bmax. Adopting different
values of the parameters λ1, λ2 and z0 correspond to modeling different species or type of
vegetation that are adapted to grow in specific range of elevations. For instance, specialized
vegetation would have higher values of λ1,2, while species with greater tolerance to drought
can be characterized by higher value of z0 (more distant to the mean water level zw).

Vegetation growth is governed by a logistic differential equation (non-linear ordinary
differential equation)

dB

dt
= σB(t)

[

1 − B(t)

Beq(z)

]

(1.127)

where σ represents the vegetation grow rate [s−1]. The timescale of vegetation growth
is significantly higher when compared to the morphological timescale. The time needed
for a riparian species to reach its maximum expansion (i.e. B = Bmax), under optimal
conditions, ranges from years to decades, while the timescale at which bed level changes
occur, for example during a flood event, ranges from hours to days. In addition, rivers
often experience only a few events that causes riverbed changes during the year. To allow
for computationally feasible simulations while including all those timescales, vegetation
dynamics and morphodynamic processes have been decoupled. Vegetation growth is enabled
during the time frame (Tv) in which morphological changes do not occur (e.g. during low
flow period), whereas it is inhibited during high flows, where sediment transport and
morphodynamic processes take place (time frame Tm, see Figure 1.6). Since during Tv

riverbed does not change, we can significantly reduce computational time by decreasing Tv

and increasing the grow rate of vegetation (σ), without affecting hydro-morphodynamic
processes.

From a computational point of view, eq. 1.127 is integrated by using a classical Euler method
with an integration timestep that equals the timestep computed for morphodynamics.

1.4.4 Feedback

1.4.4.1 Vegetation effects on hydro-morphodynamics

Vegetation increases the hydraulic roughness depending on the abundance and type. By
adopting the Manning-Strickler approach for calculation of the friction factor cf , we assume

Ks = Ks,g + (Ks,g −Ks,v)
B

Bmax
(1.128)

where Ks [m1/3 s−1] is the Strickler coefficient and Ks,g and Ks,v refer to the values
attributed to the grain and the vegetation, respectively. Ks,v is a lumped variable
encompassing a variety of plant characteristics (e.g. stiffness, bending ability, crown
area and leaves density) and different plant life stages.
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The modifications of the flow field have a profound effect on sediment transport as well.
In vegetated flows the friction factor incorporates not only the friction located at the
bottom of the river but also the drag generated by the vegetation. Therefore we assume
that the shear stresses τg, responsible for sediment transport, decreases as a function
of the grain-related roughness Ks,g. Although this approach can be generalized to any
transport formula, the model only accounts for the Meyer-Peter and Müller formula (no
other formulas are allowed with vegetation module activated). In term of dimensionless
shear stress θ (Shield parameter), it can be derived as

θ

θ′
=
(
Ks,g

Ks,v

)2

(1.129)

where θ′ represents the effective dimensionless shear stress applied at the bottom of the
river. Notably, this strategy is similar to the correction factor applied to limit sediment
transport in case of bed forms with the Meyer-Peter and Müller formula.

The presence of vegetation also changes the sediment properties, increasing the sediment
cohesion and reinforcing the soil matrix. This results in a reduction of the sediment mobility
and a consequent modification of the threshold for the onset of sediment transport (in case
of bed load). Similarly to the added roughness by the vegetation, this can be modeled as

θcr = θcr,g + (θcr,v − θcr,g)
B

Bmax
(1.130)

in which θcr represents the critical value of the Shields number that has to be exceeded
to have sediment transport. θcr,v is the value attributed in presence of vegetation, while
θcr,g is the typical value for gravel. This effect is usually considered to be dependent on
the below-ground vegetation biomass, i.e. plant roots, and its characteristics. Here, we
assume that the biomass density B is representative of the overall plant biomass, with no
distinction between above-ground (plant canopy) and below-ground biomass.

1.4.4.2 Hydro-morphodynamic effects on vegetation

Hydro-morphological processes have a significant impact of vegetation distribution
determining plant removal by uprooting, which occurs when the resistance provided by the
plant roots equals the pull-out forces on the canopy. Recent studies suggest that plants are
able to increase their resistance to uprooting by growing large root systems. Therefore,
we assume that vegetation, during morphological phases (Tm), can be uprooted by flow
erosion when the bed level changes ∆z exceed a threshold value zupr. The latter represents
a lumped estimation of the rooting depth.

1.4.5 Range of the parameters used in previous works

Model parameters used in previous publications (Bertoldi et al. (2014), Li and Millar
(2011), Zen et al. (2016)) are reported in Table 1.3.

Table 1.3 Vegetation Parameters

Parameter Range [min, max] References

λ1 [m−1] [0, 6] Bertoldi et al. (2014), Zen et al. (2016)

v2.8.2 VAW - ETH Zurich 51



1.4. Morphodynamics and Vegetation BASEMENT System Manuals

Parameter Range [min, max] References

λ2 [m−1] [0.4, 100] Bertoldi et al. (2014), Zen et al. (2016)
z0 [m] [0.5, 1.25] Bertoldi et al. (2014), Zen et al. (2016)
Ks,v [m1/3s−1] [9, 17] Bertoldi et al. (2014), Zen et al. (2016),

Li and Millar (2011)
θcr,v [−] [0.055, 0.21] Bertoldi et al. (2014), Zen et al. (2016),

Li and Millar (2011)

1.4.6 Reconstruction of the position of the mean water table

The key assumption used for the calculation of the position of the mean water table is
that the water table level zw instantaneously match the river water stage, which holds
for gravel bed substrates in proximity to the river. zw is computed by using the Inverse
Distance Weighting method (IDW), a popular deterministic model adopted in spatial
interpolation. The basic assumption of the model is that the values of any given pair of
points are related to each other, but their similarities are inversely related to the distance
between their locations (Lu and Wong, 2008). IDW assumes that the unknown value of the
variable in location Sj = (xj , yj) can be estimated by the observed value at sample location
Si = (xi, yi). Here, the unknown variable is represented by the water table elevation in
dry cells, ẑw, while its observed value is the water surface elevation in submerged cells, zw.
Formally, given the number of known locations N , the model reads

ẑw(xj , yj) =
N∑

i=1

αizw(xi, yi) (1.131)

where the estimated value ẑw(xj , yj) is a linear combination of the weights αi and the
known value zw(xi, yi). αi can be written as

αi =
d−γ

j,i

N∑

i=1

d−γ
j,i

(1.132)

with

N∑

i=1

αi = 1 (1.133)

in which dj,i is the distance between Si and Sj and γ a parameter used to account for the
so-called distance-decay effect. IDW, in fact, assumes that the local influence of a know
variable decreases with the distance (dj,i), where greater weights αi are given to the points
closest to the location Sj . As such, γ measures the rate at which the weights decrease with
the distance. If γ = 0, there is no decrease with the distance and the method results on a
mean of the known variables, while at higher values only the immediate surrounding points
from the location of the unknown variable affect the prediction.

Because of the decreasing similarities with the distance between any pair of points, to
speed calculation, we can exclude the more distant points from the location of the unknown
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variable Sj . This is obtained by specifying a radius r [m] centered in such location, within
which the algorithm searches the known values of the variable (zw) for the interpolation.
In addition, the search can be also limited by a specific number of points surrounding the
prediction location (default = 3).
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Numerics Kernel

2.1 General View

There is great improvement in the development of numerical models for free surface flows
and sediment movement in the last decade. The presented number of publications about
these subjects proves this clearly. The SWE and the sediment flow equation are a nonlinear,
coupled partial differential equations system. A unique analytical solution is only possible
for idealised and simple conditions. For practical cases, it is required to implement the
numerical methods. A numerical solution arises from the discretisation of the equations.
There are different methods to discretize the equations such as:

• Finite difference. . . . . . . . . . . . .(FD)

• Finite volume. . . . . . . . . . . . . . . .(FV)

• Finite element. . . . . . . . . . . . . . . .(FE)

• Characteristic Method. . . . . . (CM)

It is normally distinguished between temporal and spatial discretisation of continuum
equations. The latter can be undertaken on different forms of grids such as Cartesian,
non-orthogonal, structured and unstructured, while the former is usually done by a FD
scheme in time direction, which can be explicit or implicit. The explicit method is usually
used for strong unsteady flows.

In FD methods the partial derivations of equations are approximated by using Taylor series.
This method is particularly appropriate for an equidistant Cartesian mesh. In FV methods;
the partial derivations of equations are not directly approximated like in FD methods.
Instead of that, the equations are integrated over a volume, which is defined by nodes of
grids on the mesh. The volume integral terms will be replaced by surface integrals using the
Gauss formula. These surface integrals define the convective and diffusive fluxes through
the surfaces. Due to the integration over the volume, the method is fully conservative.
This is an important property of FV methods. It is known that in order to simulate
discontinuous transition phenomena such as flood propagation, one must use conservative
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numerical methods. In fact, 40 years ago Lax and Wendroff proved mathematically that
conservative numerical methods, if convergent, do converge to the correct solution of the
equations. More recently, Hou and LeFloch proved a complementary theorem, which says
that if a non-conservative method is used, then the wrong solution will be computed, if
this contains a discontinuity such as a shock wave (Toro, 2001).

The FE methods originated from the structural analysis field as a result of many years of
research, mainly between 1940 and 1960. In this method the problem domain is ideally
subdivided into a collection of small regions, of finite dimensions, called finite elements.
The elements have either a triangular or a quadrilateral form (Figure 2.1) and can be
rectilinear or curved. After subdivision of the domain, the solution of discrete problem is
assumed to have a prescribed form. This representation of the solution is strongly linked
to the geometric division of sub domains and characterized by the prescribed nodal values
of the mesh. These prescribed nodal values must be determined in such way that the
partial differential equations are satisfied. The errors of the assumed prescribed solution
are computed over each element and then the error must be minimised over the whole
system. One way to do this is to multiply the error with some weighting function ω(x, y),
integrate over the region and require that this weighted-average error is zero. The finite
volume method has been used in this study; therefore it is explained in more detailed.

In this chapter it will be reviewed how the governing equations comprising the SWE
and the bed-updating equation, can be numerically approximated with accuracy. The
first section studies the fundamentals of the applied methods, namely the finite volume
method and subsequently the hydro- and morphodynamic models are discussed. In section
on the hydrodynamic model, the numerical approximate formulation of the SWE, the
flux estimation based on the Riemann problem and solver and related problems such as
boundary conditions will be analyzed. In the section on morphodynamics, the numerical
determination of the bed shear stress and the numerical treatment of bed slope stability
will be discussed as well as numerical approximation of the bed-updating equation.

2.2 Methods for Solving the Flow Equations

2.2.1 Fundamentals

2.2.1.1 Finite Volume Method

The basic laws of fluid dynamics and sediment flow are conservation equations; they are
statements that express the conservation of mass, momentum and energy in a volume
enclosed by a surface. Conversion of these laws into partial differential equations requires
sufficient regularity of the solutions.

This condition of regularity cannot always undoubtedly be guaranteed. The case of occurring
of discontinuities is a situation where an accurate representation of the conservation laws
is important in a numerical method. In other words, it is extremely important that these
conservation equations are accurately represented in their integral form. The most natural
method to achieve this is obviously to discretize the integral form of the equations and
not the differential form. This is the basis of the finite volume (FV) method. Actually
the finite volume method is in fact in the classification of the weighted residual method
(FE) and hence it is conceptually different from the finite difference method. The weighted
function is chosen equal unity in the finite volume method.
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Figure 2.1 Triangular Finite Elements of a Two-Dimensional Domain

In this method, the flow field or domain is subdivided, as in the finite element method,
into a set of non-overlapping cells that cover the whole domain on which the equations are
applied. On each cell the conservation laws are applied to determine the flow variables in
some discrete points of the cells, called nodes, which are at typical locations of the cells
such as cell centres (cell centred mesh) or cell-vertices (cell vertex mesh) (Figure 2.2).

Obviously, there is basically considerable freedom in the choice of the cell shapes. They
can be triangular, quadrilateral etc. and generate a structured or an unstructured mesh.
Due to this unstructured form ability, very complex geometries can be handled with ease.
This is clearly an important advantage of the method. Additionally the solution on the
cell is not strongly linked to the geometric representation of the domain. This is another
important advantage of the finite volume method in contrast to the finite element method.

2.2.1.2 The Riemann Problem

Formally, the Riemann problem is defined as an initial-value problem (IVP):

Ut + Fx(U) = 0

U(x, 0) =

{

UL ∀ x < 0
UR ∀ x > 0







(2.1)

Here eq. 1.36 and eq. 1.37 are considered for the x-split of SWE. The initial states UL ,
UR at the left or right side of an triangle edge

UL =






hL

uLhL

νLhL






UR =






hR

uRhR

νRhR






are constant vectors and present conditions to the left of axes x = 0 and to the right x = 0,
respectively (Figure 2.3).

There are four possible wave patterns that may occur in the solution of the Riemann
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Figure 2.2 Two-Dimensional Finite Volume Mesh: (a) Cell Centered mesh (b) Cell
Vertex mesh

Figure 2.3 Initial Data for Riemann Problem
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Figure 2.4 Possible Wave Patterns in the Solution of Riemann Problem

problem. These are depicted in Figure 2.4. In general, the left and right waves are
shocks and rarefactions, while the middle wave is always a shear wave. A shock is a
discontinuity that travels with Rankine-Hugoniot shock speed. A rarefaction is a smoothly
varying solution which is a function of the variable x/t only and exists if the eigenvalues
of J = ∂F (U)/∂U are all real and the eigenvectors are complete. The water depth and
the normal velocity are both constant across the shear wave, while the tangential velocity
component changes discontinuously (see Toro (1997) for details about Riemann problem).

By solving the IVP of Riemann (eq. 2.1), the desired outward flux F (U) which is at the
origin of local axes x = 0 and the time t = 0 can be obtained.

2.2.1.3 Exact Riemann Solvers

An algorithm, which solves the Riemann initial-value problem is called Riemann solver.
The idea of Riemann solver application in numerical methods was used for the first time
by Godunov (1959). He presented a shock-capturing method, which has the ability to
resolve strong wave interaction and flows including steep gradients such as bores and shear
waves. The so called Godunov type upwind methods originate from the work of Godunov.
These methods have become a mature technology in the aerospace industry and in scientific
disciplines, such as astrophysics. The Riemann solver application to SWE is more recent.
It was first attempted by Glaister (1988) as a pioneering attack on shallow water flow
problems in 1-D cases.

In the algorithm pioneered by Godunov, the initial data in each cell on either side of an
interface is presented by piecewise constant states with a discontinuity at the cell interface
(Figure 2.5). At the interface the Riemann problem is solved exactly. The exact solution
in each cell is then replaced by new piecewise constant approximation. Godunov’s method
is conservative and satisfies an entropy condition (Delis et al., 2000). The solution of
Godunov is an exact solution of Riemann problem; however, the exact solution is related
to a simplified problem since the initial data is approximated in each cell.

To compute numerical solutions by Godunov type methods, the exact Riemann solver or
approximate Riemann solver can be used. The choice between the exact and approximate
Riemann Solvers depends on:
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Figure 2.5 Piecewise constant data of Godunov upwind method

• Computational cost

• Simplicity and applicability

• Correctness

Correctness seems to be the overriding criterion; however the applicability can be also
very important. Toro argued that for the shallow water equations, the argument of
computational cost is not as strong as for the Euler equations. For the SWE approximate
Riemann solvers may lead to savings in computation time of the order of 20%, with respect
to the exact Riemann solvers (Toro, 2001). However, due to the iterative approach of
the exact Riemann solver on SWE, its implementation of this will be more complicated
if some extra equations, such as dispersion and turbulence equations, are solved together
with SWE. Since for these new equations new Riemann solvers are needed, which include
new iterative approaches, complications seem to be inevitable. Therefore, an approximate
solution which retains the relevant features of the exact solution is desirable. This led to
the implementation of approximate Riemann solvers which are non-iterative and therefore,
in general, more efficient than the exact solvers.

2.2.1.4 Approximate Riemann Solvers

Several researchers in aerodynamics have developed approximate Riemann solvers for the
Euler equations, such as Flux Difference Splitting (FDS) by Roe (1981), Flux Vector
Splitting (FVS) by van Leer (1982) and approximate Riemann Solver by Harten et al.
(1983); Osher and Solomon (1982). The first two approximate Riemann solvers have been
frequently used in aerodynamics as well as in hydrodynamics.

In addition to the exact Riemann solver, the HLL and HLLC approximate Riemann solvers
have been implemented in the code.

2.2.1.4.1 HLL Riemann Solver
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Figure 2.6 Principle of the HLL Riemann Solver. The analytical solution (left) is
replaced by an approximate one with a constant state U∗ separated by waves with estimated

wave speeds (right)

The HLL (Harten, Lax and van Leer) approximate Riemann solver devised by Harten et
al. (1983) is used widely in shallow water models. It is a Godunov-type scheme based on
the two-wave assumption. This approach assumes estimates for the wave speeds of the left
and right waves. The solution of the Riemann problem between the two waves is thereby
approximated by a constant state as indicated in Figure 2.6. This two-wave assumption is
only strictly valid for the one dimensional case. When applied to two dimensional cases,
the intermediate waves are neglected in this approach.

The HLL solver is very efficient and robust for many inviscid applications such as SWE.

By applying the integral form of the conservation laws in appropriate control volumes the
HLL-flux is derived. The numerical flux over an edge is sampled between three different
cases separated by the left and right waves. The indices L and R stand for the left and
right states of the local Riemann problem.

F i+1/2 =







F L if 0 ≤ SL,

F hll =
SRF L − SLF R + SRSL(UR − UL)

SR − SL
if SL ≤ 0 ≤ SR,

F R if 0 ≥ SR.

(2.2)

Furthermore, the left and right wave speed velocities are estimated as

SL = uL −
√

ghLqL ; SR = uR +
√

ghRqR (2.3)

where qK(K = L,R) are

qK =







√

1
2

[

(h∗+hK)h∗

h2
K

]

if h∗ > hK ,

1 if h∗ ≤ hK .

(2.4)

The quantity h∗ is an estimate for the exact solution of the water depth in the star region
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obtained using the depth positivity condition. It reads as

h∗ =
1

2
(hL + hR) − 1

4
(uR − uL)(hL − hR)/(

√

ghL +
√

ghR) (2.5)

In case of dry-bed conditions, the wave speed estimations are modified as follow:

SL =

{

uR − 2
√
ghR if hL = 0,

usualestimate if hL > 0,

SR =

{

uL + 2
√
ghL if hR = 0,

usualestimate if hR > 0.

(2.6)

2.2.1.4.2 HLLC Riemann Solver

A modification and improvement of the HLL approximate solver was proposed by Toro
(1994). This so called HLLC approximate Riemann solver also accounts for the impact of
intermediate waves, such as shear waves and contact discontinuities, in two dimensional
problems. In addition to the estimates of left and right wave speeds, the HLLC solver also
requires an estimate for the speed of the middle wave. This middle wave than divides the
region between the left and right waves into two constant states.

The numerical flux over an edge is sampled regarding four different cases as

F i+1/2 =







F L if 0 ≤ SL,
F ∗L = F L + SL(U∗L − UL) if SL ≤ 0 ≤ S∗,
F ∗R = F R + SR(U∗R − UR) if S∗ ≤ 0 ≤ SR,
F R if 0 ≥ SR.

(2.7)

The states U∗L,U∗R are obtained, as proposed by Toro (1997), from the relations

U∗L = hL

(
SL − uL

SL − S∗

)






1
S∗

νL




 ; U∗R = hR

(
SR − uR

SR − S∗

)






1
S∗

νR




 (2.8)

SL, S∗ and SR are the estimated wave speeds for the left, middle and right waves. SL and
SR are estimated according to eq. 2.3 or eq. 2.6 for the dry bed case. with h∗ given by
eq. 2.5.

The middle wave speed S∗ is calculated as proposed by Toro (1997) in a suitable way for
taking into account dry-bed problems as

S∗ =
SLhR(uR − SR) − SRhL(uL − SL)

hR(uR − SR) − hL(uL − SL)
(2.9)
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Figure 2.7 Definition sketch

2.2.2 Saint-Venant Equations

2.2.2.1 Spatial Discretisation

The time Discretisation is based on the explicit Euler schema, where the new values are
calculated considering only values from the precedent time step. The spatial Discretisation
of the Saint Venant equations is carried out by the finite volume method, where the
differential equations are integrated over the single elements.

It is assumed that values, which are known at the cross section location, are constant
within the element. Throughout this section it therefore can be stated that:

xiR∫

xiL

f(x) dx ≈ f(xi)(xiR − xiL) = fi∆xi (2.10)

where xiR and xiL are the positions of the edges at the east and the west side of element i,
as illustrated in Figure 2.7.

2.2.2.2 Discrete Form of Equations

2.2.2.2.1 Continuity Equation

The eq. 2.10 is integrated over the element:

xiR∫

xiL

(
∂A

∂t
+
∂Q

∂x
− ql

)

dx = 0 (2.11)

The different parts of the equation are discretized as follows:

xiR∫

xiL

∂Ai

∂t
dx ≈ ∂Ai

∂t
∆xi ≈ At+1

i −At
i

∆t
∆xi (2.12)

xiR∫

xiL

∂Qi

∂x
dx = Q(xiR) −Q(xiL) = Φc,iR − Φc,iL (2.13)
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xiR∫

xiL

ql dx ≈ qiR(xiR − xi) + qiL(xi − xiL) (2.14)

Φc,iR and Φc,iL are the continuity fluxes calculated by the Riemann solver and qiR and qiL

the lateral sources in the corresponding river segments.

For the explicit time discretisation the new value of A will be:

At+1
i = At

i − ∆t

∆xi
(Φc,iR − Φc,iL) − ∆t

∆xi
(qiR(xi − xi,R) + qiL(xiL − xi)) (2.15)

2.2.2.2.2 Momentum Equation

Assuming that the lateral in- and outflows do not contribute to the momentum balance,
thus neglecting the last term of eq. 1.9 and integrating over the element, the momentum
equation becomes:

xiR∫

xiL

(

∂Q

∂t
+

∂

∂x

(

β
Q2

Ared

)

+
∑

Sources

)

dx = 0 (2.16)

The different parts of the equation are discretized as follows:

xiR∫

xiL

∂Qi

∂t
dx ≈ ∂Qi

∂t
∆xi ≈ Qt+1

i −Qt
i

∆t
∆xi (2.17)

xiR∫

xiL

∂Qi

∂x
dx = β

Q2

Ared

∣
∣
∣
∣
xiR

− β
Q2

Ared

∣
∣
∣
∣
xiL

= Φm,iR − Φm,iL (2.18)

Φm,iR and Φm,iL are the momentum fluxes calculated by the Riemann solver.

For the explicit time Discretisation the new value of Q will be:

Qt+1
i = Qt

i − ∆t

∆xi
(Φm,iR − Φm,iL) +

∑

Sources (2.19)

2.2.2.3 Discretisation of Source Terms

2.2.2.3.1 Bed Slope Source Term

The bed slope source term:

W = gA
∂zS

∂x
(2.20)

is discretized as follows:
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xiR∫

xiL

gAred
∂zS

∂x
dx ≈ gAredi

∂zS

∂x

∣
∣
∣
∣
xi

∆xi ≈ gAredi

(
zS,i+1 − zS,i−1

xi+1 − xi−1

)

∆xi (2.21)

With the subtraction of the bed slope source term, eq. 2.19 becomes

Qt+1
i = Qt

i − ∆t

∆xi
(Φm,ir − Φm,il) − ∆t gAredi

(
zS,i+1 − zS,i−1

xi+1 − xi−1

)

(2.22)

2.2.2.3.2 Friction Source Term

The friction source term:

Fr = gAredSf

is simply calculated with the local values:

xiR∫

xiL

gAredSfi dx ≈ gArediSfi∆xi (2.23)

and

Sfi =
Qt

i|Qt
i|

(Kt
i )

2
(2.24)

This computation form however leads to problems if the element was dry in the precedent
time step, because in this case A , and thus K , become very small, and Sfi very large.
This leads to numerical instabilities. For this reason a semi-implicit approach has been
applied, which considers the discharge of the present time step:

Sfi =
Qt+1

i |Qt
i|

(Kt
i )

2
(2.25)

Consequently instead of simply subtracting the source term from eq. 2.22, the following
operation is executed on the new discharge Qt+1

i :

Qt+1
i =

Qt+1
i

1 +
∆t|Qt

i|gAt
i

(Kt
i )

2

(2.26)

With this approach the discharge tends to zero for small conveyances.

2.2.2.3.3 Hydraulic Radius / Conveyance

The hydraulic radius and the conveyance of a cross section are calculated by different ways
for different types of cross sections, depending on the geometry which is specified by the
user. The cross section can be simple or composed by a main channel and flood plains.
Additionally it can have a bed bottom.
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Figure 2.8 Simple cross section without definition of bed

Figure 2.9 Conveyance computation of a channel with a flat zone

A simple cross section is used when only a range for the main channel is defined and no
flood plain or bottom is specified (Figure 2.8). For an arbitrary simple cross section and a
given water surface elevation, the corresponding hydraulic radius R is calculated by the
total wetted area A divided by the total wetted perimeter P .

In order to get the conveyance K, a representative friction coefficient cf for the wetted
part of the cross section needs to be determined. This is done by averaging the raw friction
values ki (e.g. Strickler, Manning, Chezy, etc.) over the wetted part of the cross section,
weighted with the wetted perimeter. The averaged friction value k̄ is then used to calculate
the friction coefficient dependent on the function of the friction type. In general form,
cf = f(k̄) .

R =

∑

Ai
∑

Pi

(2.27)

K = cf

√

gRA (2.28)

If there are slices with nearly horizontal ground, such as flood plains for example, this
computation mode can lead to jumps in the water level-conveyance graph (see Figure 2.9 and
Figure 2.10 for a dimensionless example). It is dangerous however to store the conveyance
in a table, from which values will be read by interpolation. If the conveyance is calculated
by adding the conveyances of the single slices, the jump can be avoided, but this method
leads to an underestimation of the conveyance for water levels higher than the step.

In order to overcome this problem and deal with such cross sections, there is the possibility
to define a main channel and (right and left) flood plains, which will be treated differently.
Such a cross section is illustrated in Figure 2.11. In this case the conveyance and the
discharge are calculated separately for each part of the cross section. The total conveyance
results by summation.

Cross section with definition of bed (Figure 2.12)
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Figure 2.10 Conveyance computation of a channel with a flat zone

Figure 2.11 Cross section with flood plains and main channel
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Figure 2.12 Cross section with definition of a bed

Additionally to the distinction of flood plains and main channel, a bed bottom can be
specified for both simple and composed cross sections. In this case for the computation
of the hydraulic radius of the main channel are considered the distinct influence areas of
bottom, walls and, if existing, interfaces to the flood plains. In Figure 2.12 is illustrated
the case without flood plains or a water level below them.

The conveyance in this case is calculated by the following steps:

Ab = RbPb (2.29)

Atot = Awl +Awr +Ab (2.30)

Rb =
Atot

k
3/2
stb

(

Pwl

k
3/2
StW l

+
Pb

k
3/2
Stb

+
Pwr

k
3/2
StW r

) (2.31)

Kb = cf
√

gRbAb (2.32)

Umb =
Kb

Ab

√
S (2.33)

Qb = UmbAb (2.34)

Qw = Umb

(
Atot

1.05
−RbPb

)

(2.35)

Q = Qb +Qw (2.36)

K = Q/
√
S (2.37)

K = Kb +Kw =
Qb√
S

+
Qw√
S

=
Kb

Ab
RbPb +

Kb

Ab

(
Atot

1.05
−RbPb

)

= Kb +Kb

(
Atot

1.05Ab
− 1

)

(2.38)
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Figure 2.13 Cross section with flood plains and definition of a bed bottom

Figure 2.14 Water level in a cross section with internal levees: a) without consideration
of the levees, b) with consideration of the levees

Figure 2.13 shows the case of a water level higher than the flood plains.

In this case two more partial areas are distinguished for the computation of the hydraulic
radius of the bed and:

Rb =
Atot

k
3/2
Stb

(

Pil

k
3/2
Stil

+
Pwl

k
3/2
Stwl

+
Pb

k
3/2
Stb

+
Pwr

k
3/2
Stwr

+
Pir

k
3/2
Stir

) (2.39)

2.2.2.3.4 Simple approach for consideration of internal levees

From the wetted surface A provided by the equation solution, the corresponding water
surface elevation z has to be determined. All further hydraulic variables in the cross section
are computed from this value. A special problem occurs if there are levees in the channel.
The very simple 1-D approach leads to the situation in illustration a) of Figure 2.14. The
reality however would correspond more to illustration b).

The first approach can lead to problems i.e. for the computation of bed load, as part of the
shear stress is lost. For this reason the regions out of the main channel are considered only
when the water level exceeds the top level of the levees. When the whole main channel
is full and the wetted area increases, the water surface elevation remains constant until
the flood plains are “filled”. Only then the water surface elevation will continue to rise,
like illustrated in Figure 2.15. The second approach is used as default, but it can be
switched-off.
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Figure 2.15 Function z(A) with and without consideration of the levees

2.2.2.4 Discretisation of Boundary conditions

While normally the edges are placed in the middle between two cross sections, which are
related to the elements, at the boundaries the left edge of the first upstream element and
the right edge of the last downstream element are situated at the same place as the cross
sections themselves. Thus there is no distance between the edge and the cross section.

2.2.2.4.1 Inlet Boundary

The boundary condition is applied to the left edge of the first element, where it serves to
determine the fluxes over the element side. If there is no water coming in, these fluxes are
simply set to 0.

If there is an inlet flux it must be given as a hydrograph. The given discharge is directly
used as the continuity flux, whereas for the computation of the momentum flux, Ared and
β are determined in the first cross section (which has the same location).

Φc,1R = Qbound (2.40)

Φm,1R = β1
(Qbound)

Ared1
(2.41)

For the computation of the bed source term in the first cell, the values in the cell are used
instead of the lacking upstream values:

W1 = Ared1

(
zS,2 − zS,1

x2 − x1

)

(2.42)

2.2.2.4.2 Outlet Boundary

• weir and gate:

The wetted area An−1
N of the last cross section at the previous time step is used to

determine the water surface elevation zS,N . With zS,N , the wetted area of the weir
or gate and finally the out flowing discharge Q are calculated, which are used for the
computation of the flux over the outflow edge:
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Φc,NL = Qweir (2.43)

Φm,NL =
(Qweir)2

Aweir
(2.44)

• z(t) and z(Q):

If the given boundary condition is a time evolution of the water surface elevation or
a rating curve, the discharge Q is taken from the last cell and time step. In the case
of a rating curve it is used to determine the water surface elevation zS . The given
elevation is used to calculate the target A and β in the last cross section.

To satisfy the desired water level, the required inflow from the reservoir into the
simulation domain is calculated from:

Qres(t) = Qin(t) − ∆x

τ
(Atarget −A(t)) (2.45)

This approach converges to the target water surface elevation within the characteristic
time τ .

Φc,NL = Qres (2.46)

Φm,NL = βbound
(Qres)2

Abound
(2.47)

• In/out:

With the boundary condition in/out the flux over the outflow edge is just equal to
the inflow flux of the last cell:

Φc,Ll = Φc,NR (2.48)

Φm,NL = Φm,NR (2.49)

For the computation of the bed source term in the last cell, the values in the cell are
used instead of the lacking downstream values:

WN = AredN

(
zS,N − zS,N−1

xN − xN−1

)

(2.50)

2.2.2.4.3 Inner Boundaries

Inner boundary conditions are used to model hydraulic structures like a weir or a gate
within a model domain. Since the Saint Venant equations are not applicable for calculating
the flux at these structures, an empirical approach is implemented in BASEMENT.

For the inner boundary in BASEchain a definition of a reference cross section which is
located upstream of the weir/gate is mandatory. The reference cross section is the cross
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section where the water surface is just not affected by the flow acceleration at the weir
(Figure 2.16).

In the 1-D model only one weir field with the width of all weir fields can be set up. Thus,
an empirical formula for the effective width weff is implemented to take the reduction of
the width due to head losses at piers and abutments into account,

weff = w − 2(npcp + ca)Href (2.51)

where w is the total width of all the weir fields, np is the number of piers, cp is a coefficient
depending on the shape of the piers, ca is a coefficient depending on the shape of the
abutment and HRef is the energy height above the bottom level at the reference cross
section.

• Inner Weir:

The inner weir uses a slightly other approach than the boundary weir. If the weir crest is
higher than the water surface elevation in the neighbouring elements, the weir acts as a
wall. If one or both of the neighbouring water surface elevations are above the weir crest
(1, Figure 2.16), this weir formula is used

q =
2

3
µσuv

√

2g(zRef − zweircrest)3 (2.52)

where q is the specific discharge related to the effective width weff . This formula is the
classical POLENI formula for a sharp crested weir with an additional factor σuv which
accounts for the reduction in discharge due to incomplete weir flow. If only one side of the
weir has a water surface elevation above the weir crest, then a complete weir flow is given
with σuv = 1 (Figure 2.16). As soon as the water surface elevation tops the weir crest level
on both sides of the weir, the incomplete case is active and the reduction factor σuv is
calculated according to the Diagram in Figure 2.17. zRef is the water surface elevation at
the reference cross section. The weir bottom level (2) is the lowest possible weir crest level
(Figure 2.16).

The momentum flux at the weir is a function of the wetted area AW eir above the weir
crest. In BASEchain two options of calculation types are implemented:

I) “Standard”: The wetted area above the weir crest is calculated as

AW eir = (zRef − zweircrest)weff

II) “Critical”: It is assumed that the critical flow depth is at the weir crest. The critical
flow depth is calculated as hcrit = 2/3[zRef -zweircrest]. The wetted area above the
weir crest is calculated as AW eir = hcritweff . For a model calibration the water
surface elevation zcrit of the critical flow depth above the weir crest can be adjusted
by the calibration factor fcrit. zcorrection = zcrit + fcrit(zRef − zcrit). The formula for
the calculation of the factor fcrit is fcrit = a+ bhcrit.

• Inner Gate:
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WSE

1

2

Reference cross section

Figure 2.16 Inner weir with a complete weir flow. (1) weir crest level, (2) weir bottom
level, Reference cross section where water surface in unaffected by the flow acceleration at

the weir
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Figure 2.17 Reduction factor σuv for an incomplete flow over the weir. hu is the
downstream water depth over the weir crest and h denotes the upstream flow depth over the

weir crest
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WSE

1

2
a

Figure 2.18 Inner sluice gate. (1) gate level, (2) gate bottom level, a = water depth at
vena contracta

In BASEchain three types of gates are implemented: sluice gate, gate with flap and radial
gate with flap. The simplest gate type is the sluice gate which has three modes. Either the
gate level (1) is equal or less than the gate bottom level (2, Figure 2.18). The gate is then
closed and acts as a wall.

If the gate level is above the gate bottom level, the gate is considered as open. As long
as the water surface elevation near the gate is below the gate level, the flux at the inner
boundary is calculated as a weir flux with, where the weir level is equal to the gate bottom
level. The gate is active as soon as one of the neighbouring water surface elevations is
above the gate level (Figure 2.18). Similar to the gate boundary condition, the calculation
of the specific discharge is

q = µhgate

√

2gh0 (2.53)

The gate opening is defined as hgate = gate level (1) - gate botom level (2) (Figure 2.18), h0

denotes the water depth at the cross section upstream of the gate. The discharge coefficient
µ depends on the contraction factor δ which is the ratio of the water depth a at the vena
contracta to the gate opening hgate and is calculated as

µ = δ/

√

1 +
δhgate

h0
(2.54)

Derived from the conjugate depths at a hydraulic jump the criterion for considering the
backwater effect at the gate is defined as

hd

hgate
>
δ

2








√
√
√
√
√

1 +
16

δ

(

1 +
δhgate

h0

)
h0

hgate
− 1








(2.55)

where hd is the water depth downstream of the gate. When the backwater effect has to be
considered the discharge coefficient depends also on the water depth downstream of the
gate (Bollrich, 2000).
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1

2
a

WSE

3

Reference cross section

Figure 2.19 Inner gate with flap. (1) gate level, (2) gate bottom level, (3) gate size which
is defined as the difference between flap level and gate level, a = water depth at the vena

contracta

µ = δ

√
√
√
√
[

1 − 2
δhgate

h0

(

1 − δhgate

hd

)]

−
√
[

1 − 2
δhgate

h0

(

1 − δhgate

hd

)]2

+
(
hd

h0

)2

− 1

(2.56)

As for the momentum, the velocity through the gate is taken into account in both,
downstream and upstream direction.

The second gate type is the gate with flap. Three modes are equal to the sluice gate:

I) The gate is closed and the water surface elevation is lower than the flap level. The
inner boundary acts as a wall.

II) The water surface elevation is lower than the gate level. Then the exact Riemann
solver is used.

III) The gate is active. This means the water surface elevation is higher than the gate
level but lower than the flap level. In this case the gate flow is calculated by the gate
formula.

In case of a closed gate an overflow at the flap is possible. Then the inner boundary acts as
a weir and the weir level corresponds to the flap level. The flux calculation complies with
the flux calculation of the inner weir. For the weir flow a discharge coefficient depending on
the shape of the flaps must be defined. If the gate is active and the water surface elevation
is higher than the flap level, the flux is calculated as the sum of the gate flow and the weir
flow (Figure 2.19).

The third gate type in BASEchain is the radial gate with flap. The specific discharge at a
radial gate is calculated with this formula (Knapp, 1960)

q = ψhgate

√

2g
(

HRef − hgate

2

)

(2.57)
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2
4

3

1

WSE Reference cross section

Figure 2.20 Radial gate with flap at a Jambor sill: (1) gate level, (2) weir bottom level,
(3) gate height which is the difference between flap level and gate level, (4) gate bottom

level which is the level of the closed gate

where HRef is the energy height at the reference cross section above the bottom level and
ψ is the discharge coefficient which is defined as ψ = α(hgate/HRef )β. The user has to
define the calibration parameters α and β. The gate is active, when the gate level is higher
than the gate bottom level. The gate height hgate is the difference between gate level (1)
and gate bottom level (4) (Figure 2.20).

A radial gate is often combined with a weir sill, a so called Jambor sill. Due to various
operational conditions for this gate type several parameters have to be defined. The gate
is closed, if the gate level is equal or less than the gate bottom level at the Jambor sill (4,
Figure 2.20). In this case the inner boundary acts either as a wall or a as a weir with the
overfall at the flaps. This depends on the water surface elevation, whether it is higher or
lower than the flap level.

If the water surface elevation is higher than the flap level, the flux is calculated in the same
way as the gate with flap, namely as the sum of the gate flow and the weir flow. If the gate
is closed and the water surface exceeds the flap level, the inner boundary acts as a weir.

As soon as the radial gate is open and the water surface elevation is lower than the gate
level the inner boundary acts as a weir with the weir bottom level (2, Figure 2.20). For the
calculation of the weir flux the energy height above the bottom elevation at the reference
cross section is used.

2.2.2.4.4 Moving Boundaries

Boundaries are always considered to be on an edge. A moving boundary appears if one of
the cells, limited by the edge, is dry. In this case some changes have to be considered for
the computations:

• Flux over an internal edge:

If in one of the cells the water depth at the lowest point of the cross section is lower
than the dry depth hmin , the energy level in the other cell is computed. If this is
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Figure 2.21 General solution procedure of BASEchain

lower than the water surface elevation in the dry cell the flow over the edge is 0.
Otherwise it is calculated normally.

• Bed source:

For the computation of the bed source term in the case of the upstream or downstream
cell being dry, the local values are used as in the following example with an upstream
dry cell:

Wi = Ared,i

(
zS,i+1 − zS,i

xi+1 − xi

)

(2.58)

2.2.2.5 Solution Procedure

a) General solution procedure of BASEchain in detail (Figure 2.21 and Figure 2.22)

b) Time loop (Figure 2.23)

c) Hydrodynamic equations (Figure 2.24)

d) Morphodynamic equations (Figure 2.25)

e) Suspended load equations (Figure 2.26)
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Figure 2.22 General solution procedure of BASEchain
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Figure 2.23 Time loop

Figure 2.24 Hydrodynamic equations
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Figure 2.25 Morphodynamic equations

Figure 2.26 Suspended load equations
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2.2.3 Shallow Water Equations

2.2.3.1 Discrete Form of Equations

Numerical methods are used to transform the differential and the integral equations into
discrete algebraic equations. Based on the mentioned reasons, the FV method has been
used in the present work for the discretisation of SWE. The eq. 1.36 can be rewritten in
the following integral form:

∫

Ω

U t dΩ +
∫

Ω

∇ · (F, G) dΩ +
∫

Ω

S dΩ = 0 (2.59)

in which Ω equals the area of the calculation cell (Figure 2.1) Using the Gauss’ relation
eq. 2.59 becomes:

∫

Ω

U t dΩ +
∫

∂Ω

(F, G) · ns dl +
∫

Ω

S dΩ = 0 (2.60)

Assuming Ut and S are constant over the domain for first order accuracy, it can be written:

U t +
1

Ω

∫

∂Ω

(F, G) · ns dl + S = 0 (2.61)

The eq. 2.60 can be discretized by a two-phase scheme namely predictor corrector scheme
as follows:

Un+1
i = Un

i − ∆t

Ω

3∑

j=1

(F, G)n
i,j × njlj − ∆tSi (2.62)

where

m = number of cell or element sides
(F, G)i,j = numerical flux through the side of cell
ns,i = unit vector of cell side

The advantage of two-phase scheme is the second order accuracy in time marching. In the
FV method, the key problem is to estimate the normal flux through each side of the domain,
namely ((F, G) · ns). There are several algorithms to estimate this flux. The set of SWE
is hyperbolic and, therefore, it has an inherent directional property of propagation. For
instance, in 1-D unsteady flow, information comes from both, upstream and downstream,
in sub critical cases, while information only comes from upstream in supercritical cases.
Algorithms to estimate the flux should appropriately handle this property. The Riemann
solver, which is based on characteristics theory, is such an algorithm. It is the solution of
Riemann Problem. The Riemann solver under the FV method formulation is especially
suitable for capturing discontinuities in sub critical or supercritical flow, e.g. a dam break
wave or flood propagation in a river.

2.2.3.1.1 Flux Estimation

Considering the integral term of flux in eq. 2.61, it can be written:
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Figure 2.27 Geometry of a Computational Cell Ωi in FV

∫

∂Ω

(F (U),G(U)) · ns dl =
∫

∂Ω

(F (U) cos θ + G(U) sin θ) dl (2.63)

in which ns = (cos θ, sin θ) is the outward unit vector to the boundary of domain Ωi (see
Figure 2.27). Based on the rotational invariance property for F (U) and G(U) on the
boundary of the domain, it can be written according to Toro (1997):

(F (U),G(U)) = T −1(θ)F (T (θ)U) (2.64)

where θ is the angle between the vector ns and x-axis, measured counter clockwise from
the x-axis (see Figure 2.27).

T (θ) =






1 0 0
0 cos θ sin θ
0 − sin θ cos θ




 (2.65)

T −1(θ) = inverse of T (θ)

Using eq. 2.64, eq. 2.61 can be rewritten as:

U t +
1

Ω

∫

∂Ω

T −1(θ)F (T (θ)U) dl + S = 0 (2.66)

The quantity T (θ)U is transformed of U , with velocity components in the normal and
tangential direction. For each cell in the computational domain, the quantity U , thus
T (θ)U may have different values, which results in a discontinuity across the interface
between cells. Therefore, the two-dimensional problem in eq. 2.59 or eq. 2.61 can be
handled as a series of local Riemann problems in the normal direction to the cell interface
(x̄ ) by the eq. 2.66.

82 VAW - ETH Zurich v2.8.2



BASEMENT System Manuals 2.2. Methods for Solving the Flow Equations

Applying the foregoing, the flux computations over the edges are preformed in three
successive steps:

• First, the vector of conserved variables U is transformed into the local coordinate
system at the edge with the operation T (θ)U .

• A one-dimensional, local Riemann problem is formulated and solved in the normal
direction of the edge. From this calculation results the new flux vector over the edge
F [T (θ)U ].

• The flux vector, formulated in the local coordinate system at the edge, is transformed
back to Cartesian coordinates with T −1F [T (θ)U ] . The Sum of the fluxes of all
edges of an element gives the total fluxes in x- and y directions.

2.2.3.1.2 Flux Correction

When the solution is advanced and the continuity and momentum equations are updated in
each cell, there may be occurring situations in which more water is removed from an element
than is actually stored in the element (overdraft). Such overdraft is mostly experienced
in situations with strongly varying topography and low water depths, e.g. near wet-dry
interfaces on irregular beds. To guarantee positive depths in all elements, a correction of
the depths and volumetric fluxes is applied in such situations following an approach based
on Begnudelli and Sanders (2006). However, in some rare cases the overdraft cannot be
corrected and therefore mass continuity is not guaranteed.

The overdraft element i having a negative water depth receives water from its surrounding
element k if two conditions are fulfilled. The element k must previously have taken water
from the overdraft element and it must have water available. The corrections of the depths
and volumetric fluxes of the neighbouring elements k are then calculated as

hcorr
k = hk + ωkhi

Ai

Ak

Fluxcorr
k = Fluxk + ωkhi

Ai

∆t

(2.67)

where hk is the water depth and Fluxk is the volumetric Flux of the neighbouring element.
hi is the (negative) water depth of the overdraft element and ωk is a weighting factor which
is obtained by weighting the volumetric fluxes of all corrected neighbouring elements k.

ωk =
Fluxk

∑

k

Fluxk

(2.68)

In case of element k does not have enough water available the overdraft is partly
compensated. Subsequently all the weights have to be recalculated and a new correction
attempt is made. After the correction of the neighbouring elements, the water depth of
the overdraft element is set to zero.

2.2.3.2 Discretisation of Source Terms

In eq. 2.62 there are different possibilities for the evaluation of the source term Si. It
can be evaluated either with the variables of the old time step as Si(U i) , which is often
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referred to as unsplitted scheme, or it can be evaluated with the advanced values U
n+1/2
i ,

which already include changes due to the numerical fluxes computed during this time step

as Si(U
n+1/2
i ) . The use of the advanced values for the source term calculation is chosen

here because it gives better results (Toro, 2001). Therefore eq. 2.62 is split in following way

U
n+1/2
i = Un

i − ∆t

Ω

3∑

j=1

(F ,G)n
i,j · njdlj

Un+1
i = U

n+1/2
i + ∆tSi(U

n+1/2
i )

(2.69)

But, as explained in the following, the friction source term Si,fr receives a special treatment.

2.2.3.2.1 Friction Source Term

When treating the friction source terms, a simple explicit Discretisation may cause numerical
instabilities if the water depth is very small, because the water depth is in the denominator.
Such problematic situations may occur in particular at drying-wetting interfaces. To
circumvent the numerical instabilities, the frictions terms are treated in a semi-implicit
way. Therefore the friction source term is calculated with the unknown value Un+1

i at the
new time level as

Un+1
i = U

n+1/2
i + ∆tSi,fr(Un+1

i ) (2.70)

Considering the generalized cf friction coefficient and after some algebraic manipulations,
one obtains:

Un+1
i =

U
n+1/2
i

1 + ∆t

√

(un
i )2 + (νn

i )2

c2
fiRi

(2.71)

Hydraulic Radius

The calculation of the friction source term requires a definition of the hydraulic radius
Ri in the element i. The hydraulic radius is defined here as water depth in the element
(Ri = hi).

Wall friction

In cases where an element is situated at a boundary wall of the domain, the influence of the
additional wall friction on the flow can optionally be considered, as illustrated in Figure 2.28.
The friction slope is extended to include additional wall friction effects. The method is
similar to the approach of Brufau and Garcia-Navarro and Vazquez-Cendon (2000) but
differs in the type the different friction parts are added together. In this implementation
the friction values of the bed cf and the wall cfw can be chosen differently.

The friction slope in x-direction is calculated as

Si,fr,x =
u

√
u2 + ν2

g

(

1

c̄2
fRw

)

(2.72)
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Figure 2.28 Wetted perimeter of a boundary element with wall friction

with Rw being the hydraulic radius of the wall friction at the boundary edge w. The first
term in eq. 2.72 defines the friction losses due to bed friction and the second term defines
the additional friction losses due to the flow along the boundary wall. The friction slope in
y-direction is derived in an analogous way.

The hydraulic radius Rw at the wall boundary edge i is calculated as

Rw =
Vwater

Aw
=

Abh

Ab +
∑

i

lw,ih
(2.73)

where Iw is the length of the element’s edge located at the wall boundary, Ab is bottom
area of the element and Aw is the wetted area of the wall. The average friction coefficient
c̄f at the boundary edge is calculated as

c̄f =

cfAb + cfw

∑

i

Aw,i

Ab +
∑

i

Aw,i

with cfw as the friction coefficient of the wall and
∑

i

Aw,i as the sum of all wetted wall areas.

For the determination of the bottom shear stress for sediment transport computations, this
additional wall friction component is not taken into account.

2.2.3.2.2 Source Term for viscous and turbulent Stresses

The kinematic and turbulent stresses are treated as source term. For the derivatives, the
divergence theorem from Gauss is used similarly to the ordinary fluxes. This approach
allows a derivative to be calculated as a sum over averaged values on an edge. A potential
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division by zero cannot occur. In the following, a cantered scheme for diffusive fluxes on
an unstructured grid based on the approach of Mohamadian et al. (2005) is described.

For the Finite Volume Method, the diffusive source terms are integrated over an element:

∫∫

Ω

Sd dΩ =
∫∫

Ω

∂F d

∂x
+
∂Gd

∂y
dΩ (2.74)

By using the divergence theorem, the diffusive flux integrals are becoming boundary
integrals

∫∫

Ω

∂F d

∂x
+
∂Gd

∂y
dΩ =

∮

∂Ω

F d · n + Gd · n ds (2.75)

The boundary integral is discretized by a summation over the element edges (index e)

∮

∂Ω

F d · n + Gd · n ds =
∑

e

(F d
e · ne + Gd

e · ne) dse (2.76)

The diffusive fluxes F d
e and Gd

e on the element edges are calculated by a centred scheme

F d
e =

1

2
(F d

R + F d
L), Gd

e =
1

2
(Gd

R + Gd
L) (2.77)

where R and L stand for a value right and left of the edge. The diffusive fluxes on the
edges read then as

F d
e =

1

2












0

(

νh
∂u

∂x

)

R
+
(

νh
∂u

∂x

)

L
(

νh
∂v

∂x

)

R
+
(

νh
∂v

∂x

)

L












(2.78)

and

Gd
e =

1

2












0

(

νh
∂u

∂y

)

R

+
(

νh
∂u

∂y

)

L
(

νh
∂v

∂y

)

R

+
(

νh
∂v

∂y

)

L












(2.79)

where ν = νm + νt is the sum of the molecular (kinematic) and turbulent eddy viscosity.
For this approach, the velocity derivatives at the element canters are used as right and
left approximation near the edge. The values for the water depth h right and left of an
edge are reconstructed using the water surface elevation of the adjacent elements. The
turbulent eddy viscosity νt can be either set to a constant value or calculated dynamically
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for each element. Using the dynamic case, the values for νt are taken from the right and
left element of an edge.

All that remains is to calculate the derivatives of the velocity components at the element
centres. For Finite Volume Methods, this is an easy task using again the divergence
theorem. The derivative of a general scalar variable ϕ on an arbitrary element is given by

(
∂ϕ

∂x

)

Elem
=

1

Ω

∫

Ω

∂ϕ

∂x
dΩ ≈

∑

e

ϕe∆ye

Ω
(2.80)

(
∂ϕ

∂y

)

Elem

=
1

Ω

∫

Ω

∂ϕ

∂y
dΩ ≈

∑

e

ϕe∆xe

Ω
(2.81)

where Ω is the area of the element and e stands for an edge. ϕe is a value on the edge. As
in finite volume methods, most variables are defined on an element, ϕe has to be calculated
as average of the neighbouring elements:

ϕe =
1

2
(ϕR + ϕL) (2.82)

The spatial differences ∆ye and ∆xe are the differences of the edge’s node-coordinates in x
and y direction. For this method to work, it is important to have the same direction of
integration along the elements edges either clockwise or counter-clockwise.

As a result, a viscous term from eq. 2.78 is computed as

(

νh
∂u

∂x

)

L
≈ νLhL

∑

e

ue∆ye

ΩL
(2.83)

with ue = 0.5(ueL + ueR).

The depth-averaged turbulent viscosity νt can either be set to a constant value or it is
calculated for every element using the formula

νt =
κ

6
u∗h (2.84)

Where κ = 0.4 is the von Karman constant and u∗ is the shear velocity which is defined as

u∗ =
√

cf (u2 + v2) (2.85)

Where cf is the bed friction coefficient derived from the same Manning- or Strickler-value
as defined for bed friction.

2.2.3.2.3 Bed Slope Source Term and Bed Slope Calculation

The irregularity of the topography plays an important role in real world applications and
often can have great impacts on the final accuracy of the results. A Discretisation scheme
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with the elevations defined in the nodes of a cell leads to an accurate representation of the
topography. Special attention thereby is needed with regard to the C-property which is
discussed in Section 2.2.3.3.

The numerical treatment of the bed slope source term here is formulated based on Komaei’s
method (Komaei and Bechteler, 2004). Regarding eq. 2.61, it is required to compute the
integral of the bed slope source term over a element Ωi .

∫∫

Ω

SB dΩ =
∫∫

Ω






0
ghSBx

ghSBy




dΩ = g

∫∫

Ω

h









0

−∂zB(x, y)

∂x

−∂zB(x, y)

∂y









dΩ (2.86)

Assuming that the bed slope values are constant over a cell, eq. 2.86 can be simplified to:

∫∫

Ω

SB dΩ = g





∫∫

Ω

h dΩ










0
SBx

SBy




 = gV olwater






0
SBx

SBy




 (2.87)

In order to evaluate the above integral, it is necessary to compute the bed slope of a cell
and the volume of the water over a cell. Since the numerical model allows the use of
triangular cells as well as quadrilateral cells in hybrid meshes, these both cases need to be
distinguished.

Triangular cells

The bed slope of a triangular cell can be computed by using the finite element formulation
as given by Hinton and Owen (1979). It is assumed that zb varies linearly over the cell
(Figure 2.29):

zB(x, y) = α1 + α2x+ α3y (2.88)

in which α2 =
∂zB

∂x
; α3 =

∂zB

∂y

The constants α1 ,α2 and α3 can be determined by inserting the nodal coordinates and
equating to the corresponding nodal values of zB. Solving for α1 , α2 and α3 finally gives

zB(x, y) =
1

2Ω
[(a1 + b1x+ c1y)zb,1 + (a2 + b2x+ c2y)zb,2 + (a3 + b3x+ c3y)zb,3] (2.89)

where

a1 = x2y3 − x3y2

b1 = y2 − y3

c1 = x3 − x2







(2.90)

With the other coefficients given by cyclic permutation of the subscripts in the order 1,2,3.
The area Ω of the triangular element is given by
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Figure 2.29 A Triangular Cell

2Ω =

∣
∣
∣
∣
∣
∣
∣

1 x1 y1

1 x2 y2

1 x3 y3

∣
∣
∣
∣
∣
∣
∣

(2.91)

One can compute the bed slopes in x- and y-direction in each cell as

SBx = −∂zB(x, y)

∂x
= − 1

2Ω
(b1zB,1 + b2zB,2 + b3zB,3)

SBy = −∂zB(x, y)

∂y
= − 1

2Ω
(c1zB,1 + c2zB,2 + c3zB,3)







(2.92)

The water volume over a cell can also be computed by using the parametric coordinates of
the Finite Element Method.

V olwater =
(
h1 + h2 + h3

3

)

Ω (2.93)

where h1 , h2 and h3 are the water depths at the nodes 1, 2 and 3 respectively (Figure 2.30).

In the case of partially wet cells (Figure 2.31) the location of the wet-dry line (a and b)
has to be determined, where the water surface plane intersects the cell surface.

Using the coordinates of a and b, the water volume over the cell can be calculated as:

V olwater = Ωa32
h2 + h3

3
+ Ω2ba

h2

3
(2.94)

In the computation of the fluxes through the edges (1-2) and (1-3), the modified lengths
are used. The modified length is computed under the assumption that the water elevation
is constant over a cell.
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Figure 2.30 Water volume over a cell

Figure 2.31 Partially wet cell
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Figure 2.32 Quadrilateral element and its division into four triangles (∆12C , ∆23C ,
∆34C , ∆41C)

Quadrilateral cells

The numerical treatment of the bed source term calculation greatly increases in complexity
if one has to deal with quadrilateral elements with four nodes. In the common case these
nodes do not lie on a plane and therefore the slope of the element is not uniquely determined
and not trivially computed. Even if the nodes initially lie on a plane, this situation can
change if morphological simulations with mobile beds are performed.

To prevent complex geometric algorithms and to avoid the problematic bed slope calculation,
the quadrilateral element is divided up into four triangles. Then the calculations outlined
before for triangular cells can be applied separately on each triangle.

The four triangles are obtained by connecting each edge with the centroid C of the element.
The required bed elevation of this centroid C is thereby estimated by a weighted distance
averaging of the nodal elevations as proposed by Valiani et al. (2002):

zC =

4∑

k=1

zk

√

(xk − xC)2 + (yk − yC)2

4∑

k=1

√

(xk − xC)2 + (yk − yC)2

(2.95)

where zC is the interpolated bed elevation of the centroid and k is the index of the four
nodes of the quadrilateral element. Following this procedure the water volumes and bed
slopes are calculated in the same way as outlined before for each of the triangles. Finally
the bed slope term of the quadrilateral element is obtained as sum over the values of the
corresponding four triangles.

∫∫

Ω

SB dΩ = g





∫∫

Ω

h dΩ










0
SBx

SBy




 = g

4∑

k=1




V olwater,∆k






0
SBx,k

SBy,k









 (2.96)

This calculation method circumvents the problematic bed slope determination for the
quadrilateral element during the calculation of the bed source term.
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But for other purposes, like for morphological simulations with bed load transport, a
defined bed slope within the quadrilateral element may be needed. For such situations the
bed slope is determined by an area-weighting of the slopes of the k triangles. Replacing φ
with the x- or y-coordinate, one obtains the bed slopes as follows:

∂zB(x, y)

∂φ
≈ 1

AQuad

4∑

k=1

(
∂zB,k(x, y)

∂φ
A∆,k

)

, φ = x, y (2.97)

2.2.3.3 Conservative property (C-Property)

The usually applied shock capturing schemes were originally designed for hyperbolic
systems without source terms. Such schemes do not guarantee the C-property in the
presence of source terms like the bed source term in the shallow water equations. At
stagnant conditions, when simulating still water above an uneven bed, unphysical fluxes
and oscillations may result from an unbalance between the flux gradients and the bed source
terms. In order to guarantee the C-property following condition, the reduced momentum
equation for stagnant conditions, must hold true:

∮

dΩ

(
1

2
gh2

)

nx dl = g

∫∫

Ω

hSBx dΩ|ζ=const

∮

dΩ

(
1

2
gh2

)

ny dl = g

∫∫

Ω

hSBy dΩ|ζ=const

(2.98)

Therefore it is necessary to guarantee conservation by an appropriate treatment and
discretisation of the flux gradients and the bed source terms. Recent studies provide several
approaches for proper source term treatment, but are often either computationally complex
or cannot be easily transferred to unstructured meshes. Following the approach of Komaei,
the left hand terms 0.5gh2

mod are calculated with a modified depth at the edges. This
modified depth is calculated as integral over the linearly varying water depth at an edge.

h2
mod =

1

L

L∫

0

h2(x) dx =
h2

i + hihj + h2
j

3
(2.99)

hi and hj are the water depths at the edge’s left and right nodes, as shown in Figure 2.33.

It can be easily proved that using hmod in the determination of the flux gradients guarantees
the C-property on unstructured grids, if the bed source terms are discretized as product
of the water volume with the bed slope as shown before. This is exemplified here for a
completely wetted triangle in x-direction:
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Figure 2.33 Edge with linearly varying water depth

g

∫∫

Ω

hSBx dΩ|ζ=const = gV olwaterSBx = g
1

3
(h1 + h2 + h3)

1

2
[b1zB,1 + b2zB,2 + b3zB,3]

=
g

6
(h1 + h2 + h3)[b1(ζ − h1) + b2(ζ − h2) + b3(ζ − h3)]

=
g

6
(h1 + h2 + h3)




ζ (b1 + b2 + b3)
︸ ︷︷ ︸

=0

−b1h1 − b2h2 − b3h3






= −g

6
(h1 + h2 + h3)[b1h1 + b2h2 + b3h3]

−
∮

dΩ

(
1

2
gh2

)

nx dl = −1

2
g

n∑

k=1





l∫

x=0

h(x) dx





= −g1

2

[
1

3
(h2

1 + h1h2 + h2
2)b3 +

1

3
(h2

2 + h2h3 + h2
3)b1 +

1

3
(h2

3 + h3h1 + h2
1)b2

]

= −g

6
(h1 + h2 + h3)[b1h1 + b2h2 + b3h3]

(2.100)

Both terms lead to the same result and therefore balance exactly for stagnant flow conditions.

2.2.3.4 Discretisation of Boundary Conditions

The hydrodynamic model uses the essential boundary conditions, i.e. velocity and water
surface elevation are to be specified along the computational domain. The theoretical
background of the boundary condition has already been already discussed in book one
“Physical Models”. In this part the numerical treatment of the two most important boundary
types, namely inlet and outlet will be discussed separately.

2.2.3.4.1 Inlet Boundary

• Hydrograph:

The hydrograph boundary condition is applied to a user defined inlet section which is
defined by a list of boundary edges. The velocity vectors are assumed to be perpendicular
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to these boundary edges and the inlet section is assumed to be a straight line with uniform
water elevation (1-D treatment). If there is an incoming discharge it must be given as
hydrograph. Both steady and unsteady discharges can be specified along the inlet section,
where water surface elevation and the cross-sectional area are allowed to change with time.
For an unsteady discharge, the hydrograph is digitized in a data set of the form:

t1 Q1

. . .
tn Qn

. . .
tend Qend

where Qn is the total discharge inflow at time tn. The hydrograph specified in this way,
can be arbitrary in shape. The total discharge is interpolated, based on the corresponding
time.

The water elevation at the inlet section is determined by the values of the old time step at
the adjacent elements. In case of dry conditions or supercritical flow at the inlet section,
the water elevation is calculated according the known discharge. For these iterative h-Q
calculations normal flow is assumed and an average bed slope, perpendicular to the inlet
section, must be given.

The calculated total inflow discharge is distributed over the inflow boundary edges and the
according momentum component is calculated. Thereby only the edges below the water
surface elevation receive a discharge. If some edges lie above the water elevation they are
treated as walls. To distribute the inflow discharge over the wetted inflow boundary edges
following approach is implemented.

The discharge Qi for each edge i is calculated as fraction of the total discharge Qin using a
weighting factor Ki as

Qi = KiQin (2.101)

This weighting factor Ki can be calculated based on its local conveyance as

Ki =
cfi

√
Ri

√
gAi

n∑

j=1

(cfj

√

Rj
√
gAj)

(2.102)

where Ki is the discharge at edge i and the index j ranges from the first to the last wetted
edge of the inflow boundary edges. Ri , Ai and cfi are the hydraulic radius, the wetted
area and the friction factor of the corresponding elements respectively.

Alternatively, the weighting factor Ki can be calculated based on the local wetted areas at
the edge i, which finally results in equal inflow velocities over all edges.

Ki =
Ai

n∑

j=1

Aj

(2.103)
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Figure 2.34 Flow over a weir

2.2.3.4.2 Outlet Boundary

• Free surface elevation boundary:

As is mentioned in Table 1.2, just one outlet boundary condition is necessary to be defined.
This could be the flux, the water surface elevation or the water elevation-discharge curve
at the outflow section. There is often no boundary known at the outlet. In this situation,
the boundary should be modelled as a so-called free surface elevation boundary. A zero
gradient assumption at the outlet could be a good choice. This could be expressed as
follows:

∂

∂n
= 0 (2.104)

Although this type of boundary condition has a reflection problem, numerical experiences
have shown that this effect is limited just to five to ten grid nodes from the boundary.
Therefore it has been suggested to slightly expand the calculation domain in the outlet
region to use this type of outlet boundary (Nujić, 1998).

• Weir:

In the other possibility of outlet boundary condition namely defining a weir (Figure 2.34),
the discharge at the outlet is computed based on the weir function (Chanson, 1999)

q =
2

3
C
√

2g(hup − hweir)3

where

C = 0.611 + 0.08
hup − hweir

hweir
; hup = WSE − zB and hweir = zweir − zB

Alternatively, instead of calculating the factor C automatically, a constant Poleni factor
can be set.

The hydraulic and geometric parameters such as WSE, zB are the calculated variables on
the adjacent elements of the outlet boundary. Here it is assumed that the water surface
elevation is constant within the element. The weir elevation zweir is a time dependent
parameter. Based on the weir elevation (Figure 2.35) some edges of the outlet are considered
as a weir and the others have free surface elevation boundary condition. In order to avoid
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Figure 2.35 Outlet cross section with a weir

instabilities due to the water surface fluctuations, the following condition are adopted in
the program

if (hup(t) ≤ hweir(t) + khdry) ⇒ edge is a wall

if (hup(t) > hweir(t) + khdry) ⇒ edge acts as weir or a free surface elevation boundary

k is a numerical factor and has been set to 3 in this version. Figure 2.35 also shows the
effective computational width of a weir in a natural cross section.

• Gate:

The discharge over a gate boundary condition is computed according to

q = µhgate

√

2gh0 (2.105)

Within this formula, h0 is the water depth upstream of the gate. hgate denotes the difference
between gate level and soil elevation at the gate’s location. The factor µ can be defined by
the user (constant value or dynamical). According to Bernoullis’ equation and assuming
the upstream water is at rest, the discharge coefficient is

µ =
δ

√

1 +
δhgate

h0

(2.106)

where δ is the contraction coefficient of the outflow jet. Assuming a sharp-edged sluice
gate the contraction coefficient is calculated by Voigt (1971).

δ =
1

1 + 0.64
√

1 − (hgate/h0)2
(2.107)

The value of µ is usually around 0.6.

The gate formula is only active if the water surface elevation in the element belonging to
the boundary edge is higher than the gate elevation. Other possible states of the gate are
wall (in case of gate elevation lower than the soil elevation) and zero-gradient (in all other
cases).

• h-Q-relation:
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A water elevationdischarge relation can be applied as outflow boundary condition. Several
outflow boundary edges are therefore defined in a list. The outflow velocity vectors are
assumed to be perpendicular to the outflow boundary edges and the outflow section is
assumed to be a straight line with a uniform water elevation (1-D treatment). A relation
must be given between the outflow water surface elevation and the total outflow discharge.
This h-Q relation is digitized in a data set of the form

h1 Q1

. . .
hn Qn

where Qn is the total outflow discharge for a given water surface elevation hn. The
h-Q-relation specified in this way, can be arbitrary in shape. The total outflow discharge is
interpolated, based on the corresponding water surface elevation.

The water surface elevation at the outflow section is determined from the values of the
elements adjacent to the boundary edges at the last time step. With this water elevation a
total outflow discharge is interpolated using the given h-Q relation. Alternatively, if no
h-Q-relation is given, the outflow discharge is calculated under the assumption of normal
flow at the outflow section. In this case an average bed slope perpendicular to the outflow
cross section must be given.

The calculated total outflow discharge is then distributed over all wetted outflow boundary
edges according to a weighting factor based on the local conveyance or the wetted area (see
Section 2.2.3.4.1). In contrast, cells which are not fully wetted are set to wall boundary.

• Z-Hydrograph:

Another outflow boundary condition is to specify the time evolution of the water surface
at the outflow location. This boundary conditions aims to control the water elevation at
the outlet, e.g. at outflows to reservoirs with known water elevations.

A time evolution of the water surface elevation must be given in the form

t1 WSE1

. . .
tn WSEn

If the actual outlet water elevation lies below the desired reservoir elevation, than a wall
boundary is set at the outflow. On the other hand, if the actual water elevation lies above
the reservoir water elevation, a Riemann solver is applied. The Riemann problem is defined
between the outflow edges and a ghost cell outside of the domain with the reservoir water
level. (But be aware that the outlet water level is not guaranteed to be identical to the
specified water elevation.)

2.2.3.4.3 Inner Boundaries

• Inner Weir:
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The inner weir uses a slightly other approach than the boundary weir. If the weir
crest is higher than the water surface elevation in the neighbouring elements, the
weir acts as a wall.

If one or both of the neighbouring water surface elevations are above the weir crest,
the weir formula for discharge

Q =
2

3
µσuvw

√

2g(zupstream − zweir)3 (2.108)

is used. This is the classical Poleni formula for a sharp crested weir with an additional
factor σuv which accounts for the reduction in discharge due to incomplete weir flow.
If only one side of the weir has a water surface elevation above the weir crest, then a
complete weir flow is given with σuv = 1 . w is the width of the weir.

As soon as the water surface elevation tops the weir crest level on both sides of the
weir, the incomplete case is active and the reduction factor σ is calculated according
to the Diagram Figure 2.17.

As for the momentum, there is no momentum due to velocity accounted for in the
downstream direction. This behaviour acts as if all kinetic energy is dissipated over
a weir.

• Inner Gate:

Similar to the gate boundary condition, the inner gate has three modes. Either the
gate level is equal or less than the soil elevation. The gate is then closed and acts as
a wall.

If the gate level is above the local soil elevation, the gate is considered as open. As
long as the water surface elevations near the gate are below the gate level, the exact
Riemann solver is used. The gate is active as soon as one of the neighbouring water
surface elevations is above the gate level. Similar to the gate boundary condition,
the calculation of the specific discharge is

q = µhgate

√

2gh0 (2.109)

The discharge coefficient µ is usually between 0.5 and 0.6 and is either user-defined
or calculated dynamically. In the latter case the backwater effect is considered as
(Bollrich 2000)

µ = δ

√
√
√
√
[

1 − 2
δhgate

h0

(

1 − δhgate

hd

)]

−
√
[

1 − 2
δhgate

h0

(

1 − δhgate

hd

)]2

+
(
hd

h0

)2

− 1

(2.110)

where hd is the water depth downstream of the gate. The definition of the other
variables can be found under the description of the gate boundary condition.

As for the momentum, the velocity through the gate is taken into account in both,
downstream and upstream direction.

• Inner HQ-relation:

The inner HQ-Relation boundary acts similar to the inner gate boundary condition.
However, instead of applying the gate-formula to determine the discharge over
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the inner structure, a water surface discharge relation is applied. By specifying a
self-determined HQ-relation for the inner structure, a lot of flexibility is offered for
the implementation. The HQ-relation may be used e.g. to simulate a culvert, a bridge
or a pipe flow. The quality of the results depends strongly on the provided HQ-table!

For each edge of the upstream stringdef, the water level is taken from the adjacent
cell and the HQ-relation is used to determine the corresponding discharge over the
edge (scaled to the edge length). The water flows through the inner structure and
re-enters the domain at the downstream corresponding edge. The HQ relation is
digitized in a data set as

h1 Q1

. . .
hn Qn

where Qn is the total outflow discharge and hn is the water surface elevation.

Differing from other inner boundaries, this boundary operates only in a given direction
from upstream to downstream (stringdef1 = upstream, stringdef = downstream)
and cannot deal with changing flow directions! Furthermore, please note that the
inner HQ-relation does not depend upon the z-elevations of the boundary cells and,
hence, may be used to act over large distances with arbitrary height differences, as
e.g. a long pipe within the domain. At the moment, however, it is not feasible to
incorporate information of the downstream water surface elevation, what limits the
applicability to culvert or pipe modelling in some scenarios.

If inner boundaries and sediment transport computations are combined, the problem
arises that sediment masses are not transported over the inner boundary but stop in
front of the inner boundary structure. This behaviour is undesired in some scenarios.
A solution to overcome this problem, allowing for sediment continuity, is the use of
‘dredge sources’ which can be used to let the sediments pass the inner boundary (see
Section 2.3.3.3.2).

2.2.3.4.4 Moving Boundaries

Dry, partial wet and fully wet elements

Natural rivers and streams are highly irregular in both plan form and topography. Their
boundaries change with the time varying water level. The FV-based model with moving
boundary treatment is capable of handling these complex and dynamic flow problems
conveniently. The computational domain expands and contracts as the water elevation
rises and falls. Obviously, the governing equations are solved only for wet cells in the
computational domain. An important step of this method is to determine the water edge
or the instantaneous computational boundary. A criterion, hmin , is used to classify the
following two types of nodes:

1. A node is considered dry, if zS ≤ zB + hmin

2. A node is considered wet, if zS > zB + hmin

The determination of hmin is tricky, which can vary between 10−6 m and 0.1 m. Based on
the flow depth at the centre of the element we defined three different element categories
(Figure 2.36):
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Figure 2.36 Schematic representation of a mesh with dry, partial wet and wet elements

Figure 2.37 Wetting process of an element

1. dry cells where the flow depth is below hmin,

2. partial wet cells where the flow depth above hmin but not all nodes of the cell are
under water and

3. fully wet cells where all nodes included cell centre are under water.

By comparing the water surface elevation of two adjacent elements (Figure 2.37) and
determining which cell is dry it was decided whether there were or not a flux through the
edge.

Although the determination of hmin is tricky, as it mentioned above, it has been successfully
used in the past, has in the range of 0.05 ~ 0.1 m for natural rivers. It can be adjusted
to optimize the solution for particular flow and boundary conditions. It is suggested to
consider it close to min(0.1h, 0.1) .

Another problem related to partially wetted elements is the determination of the final
velocities at the end of the time step from the vector of the conserved variables U . To
calculate the velocities the conserved variables must be divided by the flow depth as
indicated below.
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νx =
(νxh)

h

νy =
(νyh)

h

(2.111)

For an element situated at the wetting and drying interface, the outflow of water amounts
may lead to very small water depths. Because the water depths are in the denominator,
instabilities can arise when updating the new velocities. To prevent these instabilities it is
checked if the water depth is smaller than the residual hmin . In such a case the velocities
are set to zero, since the water will not move in such a practical situation.

Flux computations at dry-wet interfaces

When solving the shallow water equations along dry-wet interfaces, special attention is
needed and different situations must be distinguished. Some models solve the complete
equations only for completely wetted elements, where all nodes are under water. Here, in
contrast, the flux computations are also performed for partially wetted elements. This
procedure is computationally more costly and has larger programming efforts, but it leads
to more accurate results in some situations and it can reduce problems related to the
wetting-drying process.

The complete flux computation is performed over a partially wetted edge if two conditions
are fulfilled:

• At least one of the both elements adjacent to the edge must be wetted, i.e. its water
depth must be above hmin .

• At least at one side of the edge, the element’s water surface elevation must be above
the average edge elevation.

The flux computations over partially wetted edges need to take into account that the flux
takes not place over the whole length of the edge (see Figure 2.38). The actually over flown
effective length Leff is calculated as follows assuming a constant water level.

Leff =

(

H − zB,1

zB,2 − zB,1

)

Ledge (2.112)

Here H is the water surface elevation in the partially wetted element and zB,1, zB,2 are
the nodal elevations of the edge

In Figure 2.39 several possible configurations at dry-wet interfaces are illustrated which
need to be treated appropriately. Attention must be paid to correctly reproduce the physics
and to preserve the C-property for stagnant flow conditions.

The first case a) shows a wetted left element adjacent to a dry right element, where the left
water surface elevation HL is above the center elevation zB,R of the right element. Here, no
special treatment is needed and a Riemann problem can be formulated. But the Riemann
solver must be capable of treating dry bed conditions in an appropriate way.

Case b) corresponds to an adverse slope at the right, dry element, where the left water
surface elevation HL is below the right bed elevation zB,R . This case has recently received
attention in the literature, as e.g. by Brufau et al. (2002). It requires a special treatment
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1

2

H

zB,1

zB,2

Leff

Ledge

Figure 2.38 Definition of effective length at partially wetted edge

because applying the Riemann solver in a situation with adverse slopes can produce
incorrect results. Some authors suggest to treat the dry-wet interface as a wall or to set
the velocities to zero. But these treatments are problematic because they do not always
preserve the C-property. Here a simple method is adopted whereas no Riemann problem is
formulated at the edge. But instead, only the pressure terms are evaluated which exactly
balance the bed source terms, thus guaranteeing a correct behaviour for stagnant flow
conditions.

In case c) the water elevation HL at the left element is below the average edge elevation.
In such a situation no Riemann problem is formulated as stated above. But again the
pressure term is evaluated here to preserve the C-property.

Finally, in cases d), e) and f) either both elements are dry or the edge is completely dry.
In these cases neither mass fluxes nor momentum fluxes need to be evaluated.

2.2.3.5 Solution Procedure

The logical flow of data through BASEplane from the entry of input data to the creating of
output files and the major functions of the program is illustrated in Figure 2.40, Figure 2.41
and Figure 2.42 shows the data flow through the hydrodynamic and morphodynamic
routines respectively. Program main control data is read first, and then the mesh file,
and then the sediment data file if there is one. Initialization of the parameters and
computational values is made next. If the sediment movement computation is requested,
the hydrodynamic routine will be started in cycle steps defined by user, otherwise the
hydrodynamic routine is run. After the hydrodynamic routine, the morphodynamic routine
is carried out next, if it is requested. Results can be printed at the end of every time steps
or only at the end of selected time steps.

a) General solution procedure of BASEplane (Figure 2.40)

b) Hydrodynamic routine in detail (Figure 2.41)

c) Morphodynamic routine in detail (Figure 2.42)
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1

2 2

1

e) f)

No mass and no momentum flow.

1

2

1

2

1

2

HL
zR

a)

c)b)

 Riemann-Problem (dry bed)

H > zL R

HL

H < zL R

zR

No mass flow, but pressure term

Figure 2.39 Different cases for flux computations over an edge at wet-dry interfaces

2.3 Solution of Sediment Transport Equations

2.3.1 Vertical Discretisation

2.3.1.1 General

A two phase system (water and solids) in which the sediment mixture can be represented by
an arbitrary number of different grain size classes is formulated. The continuous physical
domain has to be horizontally and vertically divided into control volumes to numerically
solve the governing equations for the unknown variables. Figure 2.43 shows a single cell
of the numerical model with vertical partition into the three main control volumes: the
upper layer for momentum and suspended sediment transport, the active layer for bed load
sediment transport as well as bed material sorting and sub layers for sediment supply and
deposition.

The primary unknown variables of the upper layer are the water depth h and the specific
discharge q and r in directions of Cartesian coordinates x and y. In the active layer, qBg ,x

and qBg ,y are describing the specific bed load fluxes (index refers to the g-th grain size
class). A change of bed elevation zB can be gained by a combination of balance equations
for water and sediment and corresponding exchange terms (source terms) between the
vertical layers.

2.3.1.2 Determination of Mixing Layer Thickness

The bed load control volume is the region where bed load transport occurs and it is assumed
to have a uniform grain distribution over the depth. Its extension is well-defined by the bed
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Figure 2.40 The logical flow of data through BASEplane

104 VAW - ETH Zurich v2.8.2



BASEMENT System Manuals 2.3. Solution of Sediment Transport . . .

Figure 2.41 Data flow through the hydrodynamic routine

Figure 2.42 Data flow through the morphodynamic routine

v2.8.2 VAW - ETH Zurich 105



2.3. Solution of Sediment Transport . . . BASEMENT System Manuals

Figure 2.43 Vertical Discretisation of a computational cell

surface at level zB and its thickness hm , which plays an important role for grain sorting
processes during morphological simulations with multiple grain classes.

Different methods are implemented for the determination of this thickness hm . It can
be determined either dynamically during the simulation (at the moment only for 2-D
simulations) or it can be given a priori as a constant value for the whole simulation. The
latter is used by default with an active layer thickness of 0.1 m.

Borah’s approach

With this approach the active layer thickness hm is different for degradation and for
aggradation. In case of deposition, hm corresponds to the thickness of the current deposition
stratum. In case of degradation, hm is proportional to the bed level decrase with a limitation
to account for the situation of an armoured bed (Borah et al. (1982)).

If the bed level increases (∆zB > 0 ):

hn+1
m = hn

m + ∆zB (2.113)

If the bed level decreases ( ∆zB < 0):

hm = 20∆zB +
dl

∑

βnm(1 − p)
(2.114)

where dl is the smallest non-mobile grain size and
∑

βnm is the sum of the non-mobile
sediment fractions, and p is porosity.

Calculation based on mean diameter d90

Following this approach the new thickness hm is determined proportional to the
characteristic grain size diameter d90 in the bed load control volume. The factor of
proportionality can be chosen freely.

hn+1
m = factor · d90 (2.115)

106 VAW - ETH Zurich v2.8.2



BASEMENT System Manuals 2.3. Solution of Sediment Transport . . .

Figure 2.44 Soil Discretisation in a cross section

Figure 2.45 Soil Discretisation in a cross section

But this simple approach does not take into account influences of present bottom shear
stresses or present erosion rates. Typically, the factor is between 1 and 3.

2.3.2 One Dimensional Sediment Transport

2.3.2.1 Spatial Discretisation

2.3.2.1.1 Soil Segments

For each cross section slice a different composition of the soil can be specified. A variable
number of sediment layers can be defined. Figure 2.44 illustrates by example a possible
distribution of soil types in a cross section. Each colour represents for a different grain
class mixture. Usually however one soil type will cover several cross section slices, like in
Figure 2.46.

The modification of the geometry of the cross section due to sediment transport it is
illustrated in Figure 2.46. This can lead to the elimination of layers or to the creation of
new ones. The grain class mixture of deposition will be the same over the whole wetted
width.

The elevation changes will modify the soil elements which are considered to be wetted,
but it is not always obvious when this is the case. For this reason the user can define
which fraction of the elevation amplitude of the soil has to be below the water level by a
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Figure 2.46 Effect of bed load on cross section geometry

Figure 2.47 Deposition a) and erosion b) due to suspended load with a wetting fraction
of 0.9.

parameter called wetting_fraction. In the example in Figure 2.45 the soil element of type
2 would be moved with a wetting_fraction of 0.3 but not with a wetting_fraction of 1. All
points of a wetted soil element are affected by the same elevation change.

Figure 2.47, Figure 2.48, Figure 2.49, Figure 2.50, Figure 2.51 and Figure 2.52 give some
simple examples of bedlevel changes to illustrate the mechanisms.

Figure 2.48 Deposition a) and erosion b) due to suspended load with a wetting fraction
of 0.1.
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Figure 2.49 Deposition a) and erosion b) due to bed load without cross section points on
embankments.

Figure 2.50 Deposition a) and erosion b) due to bed load with cross section points on
embankments.

Figure 2.51 Deposition a) and erosion b) due to bed load with 2 soils defined on the
bottom.
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Figure 2.52 Deposition a) and erosion b) due to bed load and suspended load.

2.3.2.2 Discrete Form of Equations

2.3.2.2.1 Advection-Diffusion Equation

The one dimensional suspended sediment or pollutant transport in river channels is
described by eq. 1.66 in the Mathematical Models section. This equation has to be solved
for each grain class g in the same manner. For this reason in this section g is omitted and
the equation becomes:

A
∂C

∂t
+Q

∂C

∂x
− ∂

∂x

(

AΓ
∂C

∂x

)

− S = 0 (2.116)

C is the concentration of transported particles averaged over the cross-section.

For the moment the sources S, which vary for different types of transport, will be set to 0.

The eq. 2.116 is integrated over the element (see Figure 2.7)

xiR∫

xiL

(

A
∂C

∂t
+Q

∂C

∂x
− ∂

∂x

(

AΓ
∂C

∂x

))

dx = 0 (2.117)

and the different parts are calculated as follows:

xiR∫

xiL

A
∂Ci

∂t
dx = Ai

xiR∫

xiL

∂C

∂t
dx ≈ Ai

∂Ci

∂t
∆xi ≈ Ai

Cn+1
i − Cn

i

∆t
∆xi (2.118)

xiR∫

xiL

Q
∂C

∂x
dx = Qi

xiR∫

xiL

∂C

∂x
dx = Qi(C(xiR) − C(xiL)) = (Φa,iR − Φa,iL) (2.119)

xiR∫

xiL

∂

∂x

(

AΓ
∂C

∂x

)

dx =

(

AΓ
∂C

∂x

∣
∣
∣
∣
xiR

−AΓ
∂C

∂x

∣
∣
∣
∣
xiL

)

= Φd,iR − Φd,iL (2.120)

The concentration at the new time is:
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Cn+1
i = Cn

i − ∆t

∆xiAi
(Φa,iR − Φa,iL − Φd,iR + Φd,iL) (2.121)

2.3.2.2.2 Computation of Diffusive Flux

The diffusive flux is calculated by finite differences.

Φd,iR = AiRΓ
Ci+1 − Ci

xi+1 − xi
(2.122)

For the interpolation on the edge of the wetted area, known only in the cross sections, the
geometric mean is used:

AiR =
√

Ai+1Ai (2.123)

If Γ is not given by the user it is calculated as follows:

Γ =
√
νLνR

σ
(2.124)

σ is generally assumed to be 0.5 (Celik and Rodi 1984).

The eddy viscosity averaged over the depth can be calculated by (Fäh, 1997):

ν = uhκ/6 (2.125)

2.3.2.2.3 Computation of Advective Flux

A general problem of the computation of the advective flux is that it leads to strong
numerical diffusion. Several schemes can be used, four of them are implemented.

The first possibility to compute he advective flux over the edge (element boundary) is to
interpolate the concentration values from the neighbouring elements, considering the flow
direction, and multiply it with the water discharge over the edge.

a) QUICK-Scheme

For a positive flow from left to right the quick scheme determines the concentration
due to advection at the upstream edge of element i by:

Ca,iL =
(xiL − xi−1)(xiL − xi−2)

(xi − xi−1)(xi − xi−2)
Ci +

(xiL − xi−2)(xiL − xi)

(xi−1 − xi−2)(xi−1 − xi)
Ci−1

+
(xiR − xi−1)(xiR − xi)

(xi−2 − xi−1)(xi−2 − xi)
Ci−2

(2.126)

More in general the concentration is:

Ca,iL =

{

Ci + g1(Ci+1 − Ci) + g2(Ci − Ci−1) → u > 0
Ci+1 + g3(Ci − Ci+1) + g4(Ci+1 − Ci+2) → u < 0

(2.127)
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Between the velocities ui and ui+1 the one with the larger absolute value is
determinant.

g1 =
(xiR − xi)(xiR − xi−1)

(xi+1 − xi)(xi+1 − xi−1)
(2.128)

g2 =
(xiR − xi)(xi+1 − xiR)

(xi − xi−1)(xi+1 − xi−1)
(2.129)

g3 =
(xiR − xi+1)(xiR − xi+2)

(xi − xi+1)(xi − xi+2)
(2.130)

g4 =
(xiR − xi+1)(xi − xiR)

(xi+1 − xi+2)(xi − xi+2)
(2.131)

The QUICK scheme tends to get instable, especially for the pure advection-equation
with explicit solution (Chen and Falconer, 1992). For this reason the more stable
QUICKEST scheme (Leonard, 1979) is often used:

b) QUICKEST-Scheme

CiR,QUICKEST = CiR,QUICK−1

2
CriR(Ci+1−Ci)+

1

8
CriR(Ci+1−2Ci+Ci−1) (2.132)

with

CriR =
ui+1 + ui

2

∆t

∆x
(2.133)

c) Holly-Preissmann

The QUICKEST-scheme still leads to an important diffusion. For this reason the
HollyPreissmann scheme (Holly and Preissmann, 1977), which gives better results, is
also implemented. This scheme is based on the properties of characteristics and can
not be applied directly for the present Discretisation.

To find C(xiR) of eq. 2.119 the properties of characteristics or finite differences are
used, placing the edges on a new grid so that C(xiR) becomes Cj and C(xiL) = Cj−1.
Considering only the advection part of the eq. 2.116 and dividing by the cross section
area A:

∂C

∂t
+
u∂C

∂x
= 0 (2.134)

and

Cn+1
j − Cn

j

∆t
= −u

Cn
j − Cn

j−1

xj − xj−1
(2.135)

Thus the new concentration is
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Cn+1
j =

(

1 − u
∆t

xj − xj−1

)

Cn
j + u

∆t

xj − xj−1
Cn

j−1 (2.136)

for a courant number CFL = u(dt/dx) = 1 : Cn+1
j = Cn

j−1 . This means that the
solute travels from one side of the cell to the other during the time step.

The Holly-Preissmann scheme calculates the values in function of CFL and the
upstream value.

Y (Cr) = ACr3 +BCr2 +DCr + E (2.137)

Y (0) = Cn
j ; Y (1) = Cn

j−1

Ẏ (0) =
∂Cn

j

∂x
; Ẏ (1) =

∂Cn
j−1

∂x

Cn+1
j = a1C

n
j−1 + a2C

n
j + a3

∂Cn
j−1

∂x
+ a4

∂Cn
j

∂x
(2.138)

a1 = Cr2(3 − 2Cr) (2.139)

a2 = 1 − a1 (2.140)

a3 = Cr2(1 − Cr)∆x (2.141)

a4 = −Cr(1 − Cr)2 (2.142)

and

∂Cn+1
j

∂x
= b1C

n
j−1 + b2C

n
j + b3

∂Cn
j−1

∂x
+ b4

∂Cn
j

∂x
(2.143)

b1 = 6Cr(Cr − 1)/∆x (2.144)

b2 = −b1 (2.145)

b3 = Cr(3Cr − 2) (2.146)

b4 = (Cr − 1)(3Cr − 1) (2.147)

However this form is only valid for a constant velocity u. If u is not constant the
velocities in the different cells and at different times have to be considered. The
velocity u∗ is determined by interpolation of un

j−1 ,un
j ,un+1

j .

ūj =
1

2
(un

j + un+1
j ) (2.148)
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ūn = (un
j−1θ) + (1 − θ)un

j+1 (2.149)

with

θ = un
i

∆t

xj−1 − xj
(2.150)

û =
1

2
(ūj + ūn) (2.151)

Cr = û
∆t

∆x
=

un+1
j + un

j

2
xj−1−j

∆t
− un

j−1 + un
j

(2.152)

The Holly-Preissmann scheme gives good results for the pure advection-diffusion
equation. But if a sediment exchange with the bed takes place, because of the shifted
grid, it does not react to the influence of the source term.

For the last 3 schemes the advective flux is computed multiplying the concentration
on the edge with the discharge over the edge:

Φa,iR = QiRCiR

d) Modified Discontinuous Profile Method (MDPM)

The MDPM method presented by Badrot-Nico et al. (2007) is like a transposing of
the Holly-Preissmann scheme from a finite difference to a finite volume context and
thus much more adapted for the use within BASEMENT.

In this method the advective flux is calculated directly as a sediment discharge:

ΦiR =
1

∆t
Ai

tn+1
∫

tn

u(t)C(xiR, t)dt (2.153)

Using the invariance property along a characterstic line (Figure 2.53) this equation
can be transformed to

ΦiR =
1

∆t
Ai

xiR∫

xiL

C(x, tn) dx (2.154)

The function Cn
i (x) is reconstructed from the mean concentration in the cell Cn

i and
the concentration values on the edges Cn

iL and Cn
iR (Figure 2.54) by satisfying mass

conservation in the cell.

C̃n
i (x) =

{

Un
iL if x ≤ xi−1/2 + αi∆xi

Un
iR if x > xi−1/2 + αi∆xi

(2.155)

with
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Figure 2.53 Invariance of C along the characteristic line y

Figure 2.54 Function C̃n
i (x)
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αi =
Cn

i − Cn
iR

Cn
iL − Cn

ir

(2.156)

and αi ∈ [0, 1].

If Cn
iL = Cn

iR or (Cn
iL − Cn

i )(Cn
i − Cn

iR) < 0 the following values are set:

Cn
iL = Cn

i

Cn
iR = Cn

i

αi = ε







ε is an arbitrary value between 0 and 1.

If the velocity is the flux of suspended load per unity of depth and width can now be
determined as follows:

hi = Cn
iL max(xi+1/2−x−(1−αi)∆xi, 0)+Cn

iR min(xi+1/2−x, (1−αi)∆xi) (2.157)

If the velocity is negative respectively:

gi = −Cn
iLmin(x−xi+1/2, αi+1∆xi+1)−Cn

iRmax(x−xi+1/2 −αi+1∆xi+1, 0) (2.158)

The abscissa of the foot of the characteristic is given by xA = xi+1/2 − un
i+1/2(t)∆t.

Finally the advective flux is:

Φi+1/2 =







1

∆t
hi(xA) if un

xi+1/2
> 0

1

∆t
gi+1(xA) if un

xi+1/2
< 0

(2.159)

Furthermore the new concentrations on the edges have to be prepared for the
computations of the next time step:

Cn+1
i+1/2 =







Cn
iL if un

xi+1/2
(t) > 0 and Crx ≥ 1 − αi

Cn
iR if un

xi+1/2
(t) > 0 and Crx < 1 − αi

Cn
i+1L if un

xi+1/2
(t) < 0 and Crx ≥ −αi

Cn
i+1R if un

xi+1/2
(t) < 0 and Crx < −αi

(2.160)

The required Courant number is

Crx =







ux(t)
∆t

∆xi
ux(t) > 0

ux(t)
∆t

∆xi+1
ux(t) < 0

(2.161)

2.3.2.2.4 Global Bed Material Conservation Equation
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As the y-direction is not considered, in the one dimensional case the mass conservation
equation (Exner-equation) becomes:

(1 − p)
∂zB

∂t
+





ng
∑

k+1

∂qB

∂x
+ sg − slBg



 = 0 (2.162)

qB is the sediment flux per unit channel width. Integrating eq. 2.162 over the channel width,
hence multiplying everything by the channel width, the following equation is obtained:

(1 − p)
∂ASed

∂t
+

( ng
∑

k=1

∂QB

∂x
+ Sg − SlBg

)

= 0 (2.163)

The discretisation is effected exactly in the same way as for the hydraulic mass conservation.
The eq. 2.163 is integrated over the element (Figure 2.7):

xiR∫

xiL

(

(1 − p)
∂ASed

∂t
+

( ng
∑

k=1

∂QB

∂x
+ Sg − SlBg

))

dx = 0 (2.164)

The parts of the eq. 2.164 are discretized as follows:

(1 − p)

xiR∫

xiL

∂ASed,i

∂t
dx = (1 − p)

An+1
Sed,i −An

Sed,i

∆t
∆x (2.165)

xiR∫

xiL

ng
∑

k=1

QB,i

∂x
dx =

ng
∑

k=1

QB(xiR) −
ng
∑

k=1

QB(xiL) = ΦB,iR − ΦB,iL (2.166)

xiR∫

xiL

ng
∑

k=1

(Sg − SlBg ) dx =
ng
∑

k=1

Sg −
ng
∑

k=1

SlBg (2.167)

ΦB,iL and ΦB,iR are the bed load fluxes through the west and east side of the cell. Their
determination will be discussed later (Section 2.3.2.3.1).

The change of the sediment area is thus calculated by:

∆ASed = An+1
Sedi −An

Sedi =
∆t

∆xi
(ΦB,iR − ΦB,iL) − ∆t

∆xi

( ng
∑

k=1

Sg −
ng
∑

k=1

SlBg

)

(2.168)

As the result of the sediment balance is an area, the deposition or erosion height ∆zb has
yet to be determined. The erosion or deposition is distributed over the wetted part of the
cross section. If a bed bottom is defined the deposition height is equal and constant for
all wetted slices. Only in the exterior slices the bed level difference is 0 where the cross
section becomes dry. The repartition of the soil level change is illustrated in Figure 2.55.

The change of the bed level is calculated as follows:
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Figure 2.55 Distribution of sediment area change over the cross section

∆zB =
∆ASed

br

2
+
bl

2
+
∑

bi

(2.169)

As the sediments transported by bed load can be deposed only on the bed bottom, whilst
the sediments transported by suspended load can be deposed on the whole wetted section,
two separate values of ∆ASed and ∆zB are calculated for the two processes by splitting
eq. 2.168 in two parts.

The change of bed level due to bed load is:

∆ASed,bl =
∆t

∆xi
(ΦB,iR − ΦB,iL) − ∆t

∆xi

( ng
∑

k=1

SlBg

)

(2.170)

The change of bed level due to suspended load accordingly:

∆ASed,bl = − ∆t

∆xi

( ng
∑

k=1

Sg −
ng
∑

k=1

Slg

)

(2.171)

2.3.2.2.5 Bed material sorting equation

For the 1-D computation the bed material sorting equation computation is:

(1 − p)
∂

∂t
(βghB) +

∂qBg

∂x
+ sg − sfg − slBg = 0 (2.172)

Considering the whole width of the cross section and introducing an active layer area AB ,
eq. 2.172 becomes:

(1 − p)
∂

∂t
(βgAB) +

∂QBg

∂x
+ Sg − Sfg − SlBg = 0 (2.173)

The eq. 2.173 is integrated over the length of the control volume:

xiR∫

xiL

(

(1 − p)
∂

∂t
(βgAB) +

∂QBg

∂x
+ Sg − Sfg − SlBg

)

dx = 0 (2.174)

The different parts are discretized as follows:
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(1 − p)

xiR∫

xiL

∂

∂t
(βgAB) dx = (1 − p)

βn+1
g An+1

B − βn
gA

n
B

∆t
∆x (2.175)

xiR∫

xiL

∂QBg

∂x
dx = QB(xiR) −QB(xiL) = Φg,iR − Φg,iL (2.176)

Then the new βg at time n+ 1 can be calculated for every element i by:

βn+1
gi

=

(

(1 − p)βn
giA

n
Bi

− ∆t

∆xi
(Φk

iR − Φk
iL) − (Sg − Sfg − SlBg )

∆t

∆xi

)

/((1 − p)An+1
Bi

)

(2.177)

As for the global bed material conservation equation the bed material sorting equation is
also solved twice: once for the bed load and once for the suspended load.

βn+1
gi,bl =

(

(1 − p)βn
giA

n
Bi

− ∆t

∆xi
(Φk

iR − Φk
iL) − (−Sfg − SlBg )

∆t

∆xi

)

/((1−p)An+1
Bi

) (2.178)

and

βn+1
gi,susp =

(

(1 − p)βn
giA

n
Bi

− (−Sfg − Slg)
∆t

∆xi

)

/((1 − p)An+1
Bi

) (2.179)

2.3.2.2.6 Interpolation

To solve the eq. 2.166 and eq. 2.176 the total bed load fluxes over the edges (ΦB,iL ,ΦB,iR)
and the fluxes for the single grain classes (QBg ,iL , QBg ,iR) are needed, but the data for the
computation of bed load are available only in the cross sections. For this reason the values
on the edges are interpolated from the values calculated for the cross sections, depending
on a weight choice of the user (θ):

ΦB,iL = (θ)QB,i−1 + (1 − θ)QB,i (2.180)

If all values for the computation ofQB by a bed load formula are taken from the cross section,
the results of sediment transport tend to generate jags, as some effects of discretisation
accumulate instead of being counterbalanced. For this reason it has been preferred not to
take all values from the same location. The local discharge Q is substituted by a mean
discharge for the edge, computed with the discharges in the upstream and downstream
elements of the edge. This means that the bed load in a cross section will be calculated
twice with different values of Q.

2.3.2.3 Discretisation of Source Terms

2.3.2.3.1 External Sediment Sources and Sinks

The discretisation of external sediment sources and sinks is analogous to BASEplane.
Please see Section 2.3.3.3.1
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2.3.2.3.2 Sediment Flux through Bottom of Bed Load Control Volume

The discretisation of the sediment flux through the bottom of the bed load control volume
is analogous to BASEplane. Please see Section 2.3.3.3.3

2.3.2.3.3 Source Term for Sediment Exchange between Water and Bottom

The source term Sg from eq. 1.72 is computed in different ways depending on the scheme
used for the solution of the advection equation.

a) With MDPM scheme

The source term Sg is calculated for the concentration value on the left and the
concentration value on the right according to eq. 1.72 :

Sg,L = f(Cn
iL)

Sg,R = f(Cn
iR)

The volume exchanged with the bottom during ∆t is given by the sum of the exchange
on the left and the exchange on the right:

EL1 = αSg,LB∆x∆t (2.181)

EL2 = α2Sg,LB∆x∆t/2 (2.182)

EL = EL1 + EL2 (2.183)

ER1 = α2Sg,RB∆x∆t/2 (2.184)

ER2 = α3Sg,RB∆x∆t (2.185)

ER = ER1 + ER2 (2.186)

Where α is defined like in eq. 2.156, α2 = min(Crx, 1−α) and α3 = max(1−α−Crx, 0)

The final mean source term is then:

Sg =
(EL + ER)

B∆t∆x
(2.187)

The exchange values on the right and left side are used to adjust the concentration
values on the edges. The new concentrations on the edges after deposition or erosion
in the left and right part of the cell are calculated by:

Cn+1
iL =

Cn
iLAiα∆x+ EL1

Aiα∆x
(2.188)

Cn+1
iR =

Cn
iRAiα3∆x+ ER2

Aiα3∆x
(2.189)

120 VAW - ETH Zurich v2.8.2



BASEMENT System Manuals 2.3. Solution of Sediment Transport . . .

b) With QUICK and QUICKEST scheme

Sg is calculated for each cross section according to eq. 1.72 .

c) With Holly-Preissmann scheme

The Holly-Preissmann scheme should not be used with material erosion and deposition.

2.3.2.3.4 Splitting of Bed Load and Suspended Load Transport

The same size of particles can be transported by bed load as well as by suspended load.
van Rijn (1984b) found a parameter which describes the relation between the two transport
modes depending on the shear velocity u∗ and the sink velocity wk determined in eq. 1.60 -
eq. 1.62.

ϕk = 0 if

(
u∗

wk

)

< 0.4

ϕk = 0.25 + 0.325ln

(
u∗

wk

)

if 0.4 ≤
(
u∗

wk

)

≤ 10

ϕk = 1 if

(
u∗

wk

)

> 10

(2.190)

The computation of bed load flux and the computation of the exchange flux between
suspended load and bed (eq. 1.71) have to be modified as follows:

QBg = (1 − ϕg)QBg (2.191)

Sg = wg(ϕgβgCeg − Cdg ) (2.192)

2.3.2.3.5 Abrasion

As BASEMENT always works with volumes, the abrasion after Sternberg (eq. 1.118 in the
Mathematical Models section) is applied as follows:

V (x) = V0e
−c(x−x0) (2.193)

For the sediment balance in the element, the incoming sediment flux over the upstream
edge is reduced by the factor:

f = e−c(x−x0)

where the x is the position of the present element and x0 the position of the upstream
element. The factor f is constant for an edge and is computed at the beginning of the
computation.

2.3.2.4 Solution Procedure

The solution procedure for the one dimensional sediment transport is described in chapter
Section 2.2.2.5.
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Figure 2.56 Schematic illustration of problems related to the update of bed elevations

2.3.3 Two Dimensional Sediment Transport

2.3.3.1 Spatial Discretisation

The finite volume method is applied to discretise the morphodynamic equations, slightly
different from that of the hydrodynamic section. In the hydrodynamic discretisation a
cell-centered approach is applied (see Figure 2.2). Thereby, the bed elevations are defined
in the cell vertexes (nodes) of each cell. This arrangement, with bed elevations defined
in the nodes, enables a more accurate representation of the topography compared to an
approach with bed elevations defined in the cell centres. A further advantage of the chosen
approach is that the slope within each cell is clearly defined by its nodal bed elevations.

But applying the same Discretisation approach for the sediment transport leads to several
problematic aspects, which can be summarized briefly as follows.

• The change of a cell’s sediment volume ∆V would have to be distributed on all
nodes of the cell, where the bed elevations are defined. But it is not obvious by
which criteria the sediment volume must be divided upon these nodes (see left part
of Figure 2.56).

• If a nodal elevation would be changed due to a sediment inflow into a cell, this change
in bed elevation would not only affect the sediment volume of this cell, but also
the sediment volumes of all neighbouring cells (see right part of Figure 2.56). This
situation is problematic regarding the conservation properties of the numerical scheme
and it induces numerical fluxes into the neighbouring cells which cause undesired
numerical diffusion.

To circumvent these problematic aspects and to ensure a fully conservative numerical
scheme, a separate mesh is used for the spatial discretisation for the sediment transport.
Because the hydraulic and sediment simulations are performed on different meshes, this
approach is called “dual mesh morphodynamics” (DMMD) from here on. Both meshes,
with its cells and edges, are illustrated in Figure 2.57 .

The cells of the sediment mesh are constructed around the nodes of the hydraulic mesh
by connecting the midpoints of the edges and the centres of the hydraulic cells. This
procedure results in the generation of median dual cells. Following this dual mesh approach
all conservative variables of the sediment transport (zb ,βg ,Cg ) are defined within the
centres of the sediment cells, thus forming a standard finite volume approach regarding the
sediment transport. Changes in bed elevation of a node do not influence the neighbouring
sediment elements, as it is illustrated in Figure 2.58. Therefore this Discretisation approach
is conservative and no diffusive fluxes into the neighbouring cells do occur.

122 VAW - ETH Zurich v2.8.2



BASEMENT System Manuals 2.3. Solution of Sediment Transport . . .

Figure 2.57 Dual mesh approach with separate meshes for hydrodynamics (black) and
sediment transport (green). Sediment cells have the bed elevations defined in their cell

centers.

+ΔV

Sediment-Mesh
Hydraulic-Mesh

cell i cell j cell k

cross-sectional view:

Figure 2.58 Cross sectional view of dual mesh approach. Changes in sediment volume
∆V do not affect the neighboring cells’ sediment volumes.
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The sediment mesh is generated automatically during the program start from the hydraulic
mesh without the need of any additional information.

2.3.3.2 Discrete Form of Equations

2.3.3.2.1 Global Bed material Conservation Equation - Exner Equation

Considering the Exner equation (eq. 1.87) and applying the FVM, it can be written in the
following integral form

(1 − p)

∫

Ω

∂zB

∂t
dΩ +

∫

Ω

ng
∑

g=1

(
∂qBg ,x

∂x
+
∂qBg ,y

∂y

)

dΩ =

∫

Ω

ng
∑

g=1

(slg − sBg) dΩ (2.194)

In which Ω is the same computational area as defined in hydrodynamic model (Figure 2.27).
Using the Gauss’ theory and assuming ∂zB/∂t is constant over the element, one obtains

(1 − p)
zn+1

B − zn
B

∆t
+

1

Ω

ng
∑

g=1

∫

∂Ω

(
qBg ,xnx + qBg ,yny

)
dl =

1

Ω

ng
∑

g=1

(Slg − SBg) (2.195)

Where nx and ny are components of the unit normal vector of the edge in x and y direction
respectively.

2.3.3.2.2 Computation of Bed Load Fluxes

Direction of bed load flux

The direction of the bed load flux equals the direction of the velocity in near bed region
and is a 2-D vector in a 2-D simulation. It is assumed here that this direction equals the
direction of the depth-averaged velocity, although this assumption may become invalid
in particular in curved channels with significant secondary flow motions. A correction of
this flux direction is performed on sloped bed surfaces due to the gravitational induced
lateral bed load flux component. The lateral transport component is perpendicular to the
direction of flow velocity and therefore the resulting bed load flux vector is determined as

−→q Bres = −→q B + −→q Blateral
= qB

(

cos θ
sin θ

)

+ qBlateral

(

sin θ
− cos θ

)

(2.196)

where θ is the angle between the velocity vector and the x-axis.

Computation of bed load flux

The bed load transport capacity −→q B and the lateral transport −→q Blateral
are calculated using

the transport formulas outlined in the Mathematical Models section. Different empirical
transport formulas can be used and also fractional transport for multiple grain classes can
be considered. These formulas require the flow variables and the soil compositions as data
input.

As a consequence of the discretisation of the sediment elements as median dual cells, each
sediment edge lies completely within a hydraulic element (see Figure 2.59, where sediment
edges are indicated in green color). Therefore an obvious approach is to determine the
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Figure 2.59 Determination of bed load flux over the sediment cell edges i,j

bed load fluxes over a sediment edge with the flow variables and the bottom shear stress
defined in this hydraulic element. This eases the computations since no interpolations of
hydraulic variables onto the sediment edges are necessary. Furthermore, it can be made
use of the clearly defined bed slope within this hydraulic element, derived from its nodal
elevations.

Following this approach the transport capacity is calculated with the flow variables defined
in the centre of the hydraulic element. But since the transport capacity calculations also
depend on the bed materials and grain compositions, this computation is repeated for
every sediment element which partially overlaps the hydraulic element. Thus, one obtains
multiple transport rates within the hydraulic element, as illustrated in Figure 2.59. (In
case of single grain simulations, the bed material is the same over the hydraulic element
and therefore the transport calculation must only be done once.) From these multiple
transport rates an averaged transport rate over the sediment cell is determined by areal
weighting.

Finally, the flux over the sediment cell edge is determined from the calculated transport
capacities to its left and right sediment elements as

qB,edge = [(θup)−→q B,res,L + (1 − θup)−→q B,res,R] −→n edge (2.197)

where θup is the upwind factor and −→n edge is the normal vector of the edge.

Treatment of partially wetted elements

Per default no sediment transport is calculated within partially wetted hydraulic elements.
This behaviour seems favourable in most situations. For example, in some cases it prevents
upper parts of a river bank, which are not over flown, from automatically being eroded by
sediment erosion which takes place only at the toe of the bank. But this default behaviour
can be changed for special situations.

2.3.3.2.3 Flux Correction

When bed load fluxes are summed up over an element k, there may occur situations in
which more sediment mass leaves the element than is actually available. Such situations
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are observed for example when the bed level reaches a fixed bed elevation or bed armour
where no further erosion can take place.

To guarantee sediment mass conservation over the whole domain a correction of the bed
load fluxes which leave the element is applied in such situations. All the outgoing computed
bed load fluxes of such an overdraft element k are reduced proportionally by a factor ωk,g.
This factor is determined in a way that limits the overall outflow to the available sediment
mass Vsed,k,g .

ωk,g =







ng
∑

j=1

Fluxout,j,g − Vsed,k,g

ng
∑

j=1

Fluxout,j,g

if Vsed,k,g <
ng
∑

j=1

Fluxout,j,g

0 if Vsed,k,g ≥
ng
∑

j=1

Fluxout,j,g

(2.198)

Fluxcorr
out,k,g = (1 − ωk,g)Fluxout,k,g

2.3.3.2.4 Bed Material Sorting Equation

The global bed material conservation eq. 2.195 has to be solved first, because its results
are needed to solve the bed material sorting equation. The bed material sorting equation
(eq. 1.79) is also discretized using FVM. The discretized form is

(1 − p)
(hmβg)n+1 − (hmβg)n

∆t
+

1

Ω

∫

∂Ω

(
qBg ,xnx + qBg ,yny

)
dl +

1

Ω
Sg − 1

Ω
SlnBg

− sf∗

g = 0

(2.199)

The bed load control volume thickness hm has to be determined before the new values
of fractions are calculated through the eq. 2.199. The determination of hm is detailed in
Section 2.3.1.2. The solution of the bed material sorting equation finally yields the grain
factions βn+1

g at the new time level.

2.3.3.2.5 Advection-Diffusion Equation

The two dimensional suspended sediment or pollutant transport in river channels is
described by eq. 1.68 in the Mathematical Models section. This equation has to be solved
for each grain class g in the same manner. For this reason g is omitted in this section as
well as the source terms. This yields to the following equation:

∂

∂t
Ch+

∂

∂x

(

Cq − hΓ
∂C

∂x

)

+
∂

∂y

(

Cr − hΓ
∂C

∂y

)

= 0 (2.200)

C is the concentration of transported suspended material averaged over flow depth.

The eq. 2.116 also can be written as follows.

(Ch)t + ∇(Cq,Cr) − ∇(hΓCx, hΓCy) = 0 (2.201)
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It is integrated over the area of the hydraulic element Ω :

∫

Ω

((Ch)t + ∇(Cq,Cr) − ∇(hΓCx, hΓCy)) dΩ = 0 (2.202)

Applying the Gauss theorem, eq. 2.202 becomes:

∫

Ω

(Ch)tdΩ +

∮

∂Ω

(Cq,Cr)−→n dl −
∮

∂Ω

(hΓCx, hΓCy)−→n dl = 0 (2.203)

the different parts are calculated as follows:

∫

Ω

(Cihi)tdΩ = hi

∫

Ω

∂Ci

∂t
dΩ ≈ hi

∂Ci

∂t
Ω ≈ hi

Cn+1
i − Cn

i

∆t
Ω (2.204)

the advective flux is:

∮

∂Ω

(Cq,Cr)−→n dl =
∑

j

Cj(qj , rj)−→njlj =
∑

j

Φa,j (2.205)

and the diffusive flux:

∮

∂Ω

(hΓCx, hΓCy)−→n dl =
∑

j

hjΓ(Cx, Cy)−→njlj =
∑

j

Φd,j (2.206)

The concentration at the new time n+ 1 is:

Cn+1
i = Cn

i − ∆t

Ωihi

∑

j

(Φa,j − Φd,j) (2.207)

2.3.3.2.6 Computation of Diffusive Flux

The diffusive flux over the edge is computed by the derivatives of the concentration over
the edge multiplied with the vector normal to the edge, the edge length, the water depth
on the edge and the diffusivity:

Φd,j = hjΓ








∂Cj

∂x

∂Cj

∂y








−→n ilj

The derivatives of the concentration are given by the mean value of the derivatives in the
left and the right element of the edge:








∂Cj

∂x

∂Cj

∂y








=
1

2















∂CL

∂x

∂CL

∂y








+








∂CR

∂x

∂CR

∂y















(2.208)
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The mean value of the derivatives of the concentration in an element can be transformed
on a sum over the edges by the Gauss theorem:

(
∂C

∂x

)

i
=

1

Ω

∫

Ω

∂C

∂x
dΩ ≈ 1

Ω

∑

j

Cj∆yj (2.209)

(
∂C

∂y

)

i

=
1

Ω

∫

Ω

∂C

∂y
dΩ ≈ 1

Ω

∑

j

Cj∆xj (2.210)

2.3.3.2.7 Computation of Advective Flux using the Upwind Scheme

The Upwind Scheme is the simplest possible method to calculate the advective flux in
eq. 2.205. The hydraulic discharges q and r over the edge are known from the hydraulic
computation (eq. 2.59). The only challenge is the choice of the edge concentration C.

For the Finite Volume Method, the concentration is regarded as constant over every
computation element. Instead of averaging element concentrations in order to get an edge
concentration, the upwind scheme simply uses the concentration from the upwind element.
The upwind element for an edge is the one element from which the hydraulic discharge
originates.

Upwind schemes are computationally not expensive. However, their side effect is an
increased numerical diffusion which flattens strong gradients within the concentration. If
it was important to detect a sharp front in the concentration, a more accurate and more
time-expensive scheme like the MDP-method should be used.

2.3.3.2.8 Computation of Advective Flux using the MDPM scheme

The computation of the advective flux with the MDP-method (Badrot-Nico et al., 2007), is
described for the one dimensional case in Section 2.3.2.2.3 d). Because of the unstructured
grid used in BASEMENT the MDP-method is not used separately in x and y-direction
but directly in the direction of the local velocity.

The advective flux is calculated directly as a sediment discharge:

Φa,j = Cj

(

qj

rj

)

−→n jlj

The discharge of water over the edge

(

qj

rj

)

−→n j is known from the hydraulic computation

(eq. 2.59). As the concentration on the edge in the MDPM scheme is not constant in time,
the flux is integrated over the time step.

The flux from the element i over the edge j can be described as:

Φj =
1

∆t
hjlj

tn+1
∫

tn

ui(t)Cj(t) dt (2.211)
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Figure 2.60 Division of element and edge j in segments which receive the water from
different upstream edges.

The velocity ui in the element is constant and its multiplication with the depth hi on the
edge gives the specific discharge qi over the edge, which is known from the hydraulics.
Hence the flux is:

Φj =
1

∆t
qjlj

tn+1
∫

tn

Cj(t) dt (2.212)

or:

Φj = qjljCj(t) (2.213)

Now the concentration Ci(t) hast to be determined on the edge. It changes not only with
time. If the edge is not perpendicular to the velocity, it is not constant over the whole
length of the edge at one moment. It depends on the concentration on the edge from which
the water comes. For an unstructured grid with triangular or quadrilateral elements these
can be up to 3 different edges. For this reason the edge j is divided in k segments for which
the fluxes Φk are computed separately and then summed up:

Φj =
k∑

1

Φk (2.214)

This procedure is illustrated in figure Figure 2.60.

From now on only a segment concerned by one upstream edge will be considered. The
concentration on the upstream edge is CL and the one on the downstream edge CR. The
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Figure 2.61 Position of the front between the upstream and the downstream
concentration at the beginning and at the end of the time step.

part of the segment which is over flown with concentration CL or CR changes while the
concentration front between the two concentrations advances.

The position of the front is determined in an analogous way to 1D with eq. 2.156. But
instead of representing the fraction of the distance behind the front, α now represents the
fraction of the area. The area which is behind the front therefore becomes:

AL = αiAi (2.215)

The position of the front at the beginning of the time step pn, can now be determined from
the area AL .

The position at the end of time step pn+1 is obtained by adding the distance covered during
the time step u∆t. la indicates concentration CL during the whole time step and lc with
concentration CR. For lb the fractions with CL and CR have to be integrated over time. It
holdes:

Φk = (CLla + CRlc + (0.5CL + 0.5CR)lb)q (2.216)

Finally the concentrations on the edge j have to be replaced:

The value used as CL, when the edge lies upstream, is replaced with CL if the edge is
partially behind the concentration front at the end of the time step. The value used asCR,
when the edge lies downstream, is replaced with CL if the edge at the end of the time step
lies completely behind the concentration front.

2.3.3.3 Discretisation of Source Terms

2.3.3.3.1 External Sediment Sources and Sinks

The source term SlB can be used, for example, to describe a local input or removal of
sediment masses into a river or mass inflow due to slope failures. This source term can be
added directly to the equations. It is specified as mass inflow with a defined grain mixture.
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2.3.3.3.2 Dredge sources and sediment continuity at inner boundaries

A special subset of external sediment sinks is the so-called ‘dredge source’. This source type
allows for the definition of a constant dredge-level. Using the ‘dredge source’, sediment is
removed from a cell if its bed elevation exceeds the specified dredge-level due to sediment
deposition. The exceeding sediment is then removed by dredging. Additional parameters,
like the maximum dredge rate, may be used to adjust the model to realistic scenarios.

This type of ‘dredge source’ can also be applied to achieve sediment continuity at inner
boundary conditions, as e.g. an inner weir structure. It is possible to set dredge sources
at the upstream region of the inner boundary, to prevent large sediment deposits and to
hold a constant bed elevation. To achieve sediment continuity, one can add the removed
sediment (due to dredging) to other elements, situated downstream of the inner structure.
Thereby the sediments can pass the inner boundary.

2.3.3.3.3 Sediment Flux through Bottom of Bed Load Control Volume

The source term sfg describes the change in volume of material of grain class g which
enters or leaves the bed load control volume. The term sfg is a time dependent source term
and a function of grain fractions and the bed load control volume thickness. Therefore it
has been handled in a special form in order to consider the time variation of the parameters.
A two step method is applied, where in the first step the fractions are updated without the
sfg source term. Then, in the second step, this source term is computed with the advanced
grain fractions values. The first step can be written as

βn+1/2
g =

1

hn+1
m



(hmβg)n − ∆t

(1 − p)Ω

∫

∂Ω

(qBg ,xnx + qBg ,yny)n dl +
∆t

(1 − p)Ω
SlnBg





(2.217)

After this predictor step, the advanced value βn+1/2
g is used for the calculation of the

fractions of the new time level βn+1
g by adding the sfg(β

n+1/2
g ) source term as

βn+1
g = βn+1/2

g +
∆t

hn+1
m (1 − p)

sfg (2.218)

And the sfg source term, which describes the material which enters or leaves the bedload
control volume, is finally discretized as given below.

sfg = −(1 − p)
β

n+1/2
g (zn+1

F − zsub) − βn
g (zn

F − zsub)

∆t
(2.219)

In the calculation of this expression for the sfg term, cases of erosion and deposition must
be considered separately.

Erosion

In case of erosion the bottom of the bed load control volume zF moves down and the
fractions of the underneath layer enter the control volume. The fractions of this underneath

layer are constant over time, i.e. βg = βn
gsub

= β
n+1/2
gsub , and the source term therefore

calculates as:
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Figure 2.62 Definition of mixed composition βgmix for the eroded volume (red)

sfg = −(1 − p)βg
(zn+1

F − zn
F )

∆t
(2.220)

Implementing this source term it must be paid attention to situations where the eroded
bed volume comprises more than the first underneath sub layer. In such a situation the
exchanged sediment does not exactly have the composition βn

gsub
of this first underneath

layer, but a mixture βgmix of the different compositions of all affected underneath sublayers
(see Figure 2.62). In this implementation the number of the affected layers nsub can be
arbitrary.

The mixed grain composition βgmix is determined by weighting the grain fractions with the
layer thicknesses as

βgmix =
1

zn
F − zn+1

F

nsub∑

j=1

[

βgj (zj−1 −max(zj , z
n+1
F ))

]

(2.221)

Deposition

In case of deposition, the bottom of the bed load control volume zF moves up and material

with the updated composition β
n+1/2
g leaves the bed load control volume and enters the

underneath layer. The source term therefore calculates as:

sfg = −(1 − p)βn+1/2
g

(zn+1
F − zn

F )

∆t
(2.222)

And a likewise term is used to update the grain compositions of the first underneath layer.

2.3.3.3.4 Sediment Exchange between Water and Bottom

The source term Sg describes the exchange between the suspended load in the water column
and the sediment surface.

2.3.3.4 Gravitational Transport

2.3.3.4.1 Basic concepts
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The erosion and deepening of stream leads to a steepening of the stream banks which
finally can result in discontinuous mass collapses from time to time into the stream. The
slope failures thereby are a main mechanism for the lateral widening of the stream. The
occurrence of slope failures depends strongly on the soil characteristics and pore pressures
present in the bank material. Furthermore, this gravitational induced transport type also
plays a significant role in modelling dike or dam breaches due to overtopping.

The main idea of this geometrical approach is to assume that a slope failure takes place if
the slope becomes steeper than a critical slope. If the critical value is exceeded, sediment
material moves from the upper regions in direction of the slope and finally deposits in the
lower region. This corresponds to a rotation of the cell in a way that its slope is flattened
until the critical angle is reached. In order to be able to better represent the complex
geotechnical aspects, it is distinguished here between three different critical failure angles
in this approach:

1. A critical failure angle γdry , for partially saturated material at the bank which is
not over flown. This angle may largely exceed the material’s angle of repose γrep in
small-grained materials due to stabilizing effects of negative pore pressures.

2. A critical failure angle γwet , for fully saturated material below the water surface.
This angle can be assumed to be in the range of the material’s angle of repose.

3. A deposition angle, γdep , for the deposited and not compacted material resulting
from the slope collapse. This angle determines the sliding of the collapsed masses
into the stream after the failure. It should be smaller than γwet and is supposed here
to be in the range of about half the material’s angle of repose.

These different critical angles thereby should fulfil the criteria γdry> γwet> γdep.

The idea of using different critical failure angles above and below the water surface already
was successfully applied by previous numerical models for dike breaches (e.g. Faeh (2007)).
In addition, recent laboratory tests of Soares-Frazão et al. (2007) clearly showed a formation
of different side wall angles above and below the water surface in their experimental flume.

Algorithm of geometrical slope failure modelling

The geometrical approach is applied on the original mesh which is used for the hydraulic
calculations (see Figure 2.63). This is advantageous because the slopes of the hydraulic cells
are clearly defined by the elevations of their nodes. A similar approach of a 2D bank-failure
operator applied on unstructured meshes was recently presented by Swartenbroekx et
al. (2010). But due to the use of the dual-mesh approach the computation here differs
significantly from their method. The computational algorithm consists of five successive
computational steps:

(1) In a first step the steepness of a hydraulic cell’s slope is used as an indicator if a
slope failure has to be assumed. The appropriate critical failure angle is selected
depending upon the water elevation. It is checked if the cell is wetted or dry and if
the present sediment in the control volume was previously deposited or not.

(2) Then for each sediment edge i a volume Vi is calculated which must flow over the
sediment edge in order to flatten the slope of the cell in a way that it no longer
exceeds the critical value. Using Median-Dual cells for the sediment transport, this
is easily possible since each sediment edge is situated completely within a hydraulic
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Figure 2.63 Gravitational transport for an element with a slope angle larger than the
critical slope angle (dashed = original situation, dotted = flattened slope after collapse)

cell. The size of the volume Vi depends on the difference between the present slope
in the cell and the critical slope which shall be set. The present slope and the critical
slope in the cell are projected on the normal vector of this sediment edge i and the
pyramidal volume is then determined as:

Vi =
1

3
Ailchar,i(niSi − niScrit,i)

with Ai = area above the sediment edge, lchar,I = characteristic length, Si = slope
vector of the cell, Scrit,i = critical slope vector, ni = normal vector of sediment
edge and hi = height of pyramidal volume. If γdep is set, then Vi is limited to the
deposited material present in the cell.

(3) Finally the gravitational flux qBg ,ngrav over the edge is obtained by dividing this
volume Vi by the time step size ∆t. This flux leads to mass transport from the upper
to the lower sediment cell which results in a flattening of the cell’s slope.

qBg ,ngrav =
Vi

∆t

(4) The balancing of the gravitational fluxes and the determination of the new soil
elevations zB is achieved by applying and solving the Exner equation using the same
numerical approaches as outlined for the bed load transport. This procedure ensures
that fixed bed elevations or surface armouring layers are taken into account and the
mass continuity is fulfilled.

(5) The modification of the slope of a cell in turn influences the slopes of all adjacent
cells. For this reason the algorithm can be applied in an iterative manner also for
the affected adjacent cells until finally no more slope angle is found which exceeds
the critical value.

2.3.3.4.2 Fractional transport

The presented algorithm can be applied in this form for single grain computations only. For
fractional transport additional aspects must be taken into account. In fractional transport
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Figure 2.64 Influence of grid resolution on the slope failures. (a) No slope failure with a
coarse mesh at the indicated water level. (b) Slope failure at the same water level using a

fine mesh.

simulations, the failed slope may be composed of multiple soil layers with different grain
compositions. If the slope fails, collapsed material from different soil layers with different
grain compositions will be mixed and finally deposit at the toe of the slope. A detailed
modelling of these mixing processes would require tracking the particles’ individual motions
and interactions, which cannot be achieved using the geometrical approach. Instead, a
simple procedure is chosen to cope with this situation by applying the sorting equations
to consider some mixing and the continuity of the failed masses. The moved material
volume Vi is now limited to the available material within the bed load control volume.
And because this control volume typically is rather small, with a height in the order of
few grain diameters, the moved material in one computational step will be usually not
sufficient to establish the critical slope. Therefore, the algorithm needs large number of
iterations to establish the critical failure slopes.

2.3.3.4.3 Influence of grid resolution

Using the geometrical approach the side walls of a channel typically will collapse as soon
as the water level wets at least one of the steep cells. If the cell becomes wetted the critical
angle γwet is applied on this cell resulting in a collapse of the side wall. But in case of
coarse discretization, the water level must be rather high until the critical angle γwet is
applied. The slope failure therefore takes place slowly and may be underestimated. In
contrast, in case of a finer grid resolution, the slope failure will take place earlier at a lower
water level. Hence, the accuracy of the geometrical approach depends strongly on the grid
resolution and a rather fine discretization should be applied at the areas of interest.

2.3.3.5 Management of Soil Layers

In case of sediment erosion, the bottom of the bed load control volume can sink below the
bottom of the underneath soil layer. In such a situation the soil layer is completely eroded
and consequently the data structure is removed. If the eroded layer was the last soil layer,
than fixed bed conditions are set.

In case of sediment deposition, the uppermost soil layer grows in its thickness. And such
an increase in layer thickness can continue up to large values during prolonged aggradation
conditions. But very thick soil layers can be problematic, because the newly deposited
sediments are completely mixed with the sediment materials over the whole layer thickness.
Therefore a dynamic creation of new soil layers in multiple grain simulations should be
enabled, which allows the formation of new soil layers.
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Finding suitable general criteria for the creation of new soil layers is a difficult task. Here,
two main conditions are identified and implemented:

• The thickness hsl of the existing soil layer must exceed a given maximum layer
thickness hmax before a new layer is created. Generation of a new soil layer: hsl >
hmax

• The grain composition of the depositing material must be different from the present
grain composition of the soil layer. It is assumed here in a simple approach that this
condition is fulfilled if the mean diameters of the grain compositions differ more than
a given percentage P .

∣
∣
∣
∣
∣

dm,deposition − dlayer

dlayer

∣
∣
∣
∣
∣
> P/100

2.3.3.6 Solution Procedure

The manner - uncoupled, semi coupled or fully coupled - to solve eq. 1.34, eq. 1.77 and
eq. 1.85 from the section Mathematical Models or appropriate derivatives with minor
corrections has been often discussed over the last decade. A good overview is given by
Kassem and Chaudhry (1998) or Cao et al. (2002). Uncoupled models are often blamed
for their lacking of physical and numerical considerations. Vice versa coupled models are
said to be very inefficient in computational effort and accordingly inapplicable for practical
use. Kassem and Chaudhry (1998) showed that the difference of results calculated by
coupled and semi coupled models is negligible. In addition Belleudy (2000) found that
uncoupled solutions have nearly identical performance to coupled solutions even near
critical flow conditions. Furthermore, the increasing difficulties and stability problems of
coupled models that have to be expected when applying complicated sediment transport
formulas or simulating multiple grain size classes are to be mentioned.

According to the preliminary state of this project the model with uncoupled solution of the
water and sediment conservation equations has been chosen. This requires the assumption
that changes in bed elevation and grain size distributions at the bed surface during one
computational time step have to be slow compared to changes of the fluid variables, which
dictates an upper limit on the computational time step. Consequently, the asynchronous
solution procedure as depicted in Figure 2.65 and described in Figure 2.40 is justified: flow
and sediment transport equations are solved uncoupled throughout the entire simulation
period, i.e. with calculation of the flow field at the beginning of a given time step based on
current bed topography and ensuing multiple sediment transport calculations based on
the same flow field until the end of the respective time step. Thus the given duration of a
calculation cycle ∆tseq (overall time step) consists of one hydraulic time step ∆th and a
resulting number of time steps ∆ts for sediment transport (see Figure 2.66).

By default, the mobile bed equations for sediment and suspension are solved using the
current hydraulic time step with one cycle. For BASEplane, in case of quasi-stationary
conditions where the changes in the hydraulic are small, the number of cycle step can be
increased. The shallow water equations are solved using the hydraulic time step. The
resulting water levels and velocities are then used to solve the mobile bed equations until they
have been calculated for the number of cycle steps. This leads to a considerable speedup,
reducing the calculation time as the hydraulic equations are solved only occasionally. The
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Figure 2.65 Uncoupled asynchronous solution procedure consisting of sequential steps

Figure 2.66 Composition of the given overall calculation time step ∆tseq

determination of the time step for the mobile bed equations depends on the model being
used. For suspension transport, a time step size ∆ts is calculated to satisfy the numerical
stability.

2.4 Time Discretisation and Stability Issues

2.4.1 Explicit Schemes

2.4.1.1 Euler First Order

The explicit time discretisation method implemented in BASEMENT is based on Euler
first order method. According the method the full discretized equations are

Un+1
i = Un

i +RES(U)

zn+1
B = zn

B +RES(U , d)

βn+1
g = βn

g +RES(U , dg, hm)

Where the RES(. . . ) is the summation of fluxes and source terms.
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2.4.2 Determination of Time Step Size

2.4.2.1 Hydrodynamic

For explicit schemes, the hydraulic time step is determined according the restriction based
on the Courant number. In case of the 2-D model the Courant number is defined as follows:

CFL =
(
√
u2 + ν2 + c)∆t

L
≤ 1 (2.223)

Where L is the length of an edge with corresponding velocities of the element u, ν and
c =

√
gh. In general, the CFL number has to be smaller than unity.

2.4.2.2 Bedload Transport

For the sediment transport another condition c >> c3 holds true, which states that the wave
speed of water c is much larger than the expansion velocity c3 of a bottom discontinuity
(eg. de Vries (1966)). Since the value of c3 depends on multiple processes like bed load,
lateral and gravity induced transport, its definitive determination is not obvious. Therefore
the global time steps have been adopted based on the hydrodynamic condition.

2.4.2.3 Suspension Transport

For the suspension transport, the time step ∆ts is calculated similar to the hydraulic time
step. However, the wave velocity c =

√
gh is not taken into account, leading to slightly

higher time step sizes. This time step is only active if a cycle step larger than 1 has been
defined. By default, the cycle step is set to 1 and all mobile bed equations use the hydraulic
time step.

2.4.3 Implicit Scheme

2.4.3.1 Introduction

In addition to the explicit scheme, BASEchain supports implicit calculations. To evaluate
the evolution of the geometry of a channel as an effect of sediment transport, often long
term computations are necessary. Additionally the calibration of a model with sediment
transport is particularly laborious and needs many simulations. With the explicit solution
of the hydraulics the needed simulation time becomes very large. This is because the
explicit method uses a small time step, limited by the CFL-Number. The implicit method
is needed to avoid this problem, allowing much larger time steps.

This chapter describes the implicit solution of the hydrodynamics in detail. The system of
equations to solve is formed by eq. 1.3 and eq. 1.9 and applied to each cross section.

2.4.3.2 Time Discretisation

For the time discretisation of the differential equation ∂u/∂t = f(u) the θ-method is used:
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un+1 − un

∆t
= θf(un+1) + (1 − θ)f(un)

with 0 ≤ θ ≤ 1 .

If θ = 0 the explicit Euler method results: the values at time n+1 are computed solely
from the old values at time n with limitation of the time step by the CFL-number. For
θ = 0.5 the scheme is second-order accuracy in time.

On the contrary, if θ = 1 the solution is fully implicit. The equations are solved with
the values at the new time n+1. As they are not known, initial values are assumed
and the solution is approached to the exact solution by iteration. BASEchain uses the
Newton-Raphson method, which has the quality to converge rapidly. However this is only
the case if the initial values are sufficiently close to the exact solution. Here the values of
the last time step are used as initial values for the iterations. This means that the more
distant the new time from the old one and the bigger the change of the hydraulic state,
the higher is the possibility that the solution cannot be found.

For the present implementation, the recommended value of θ is between 0.5 and 1.

2.4.3.2.1 Continuity Equation

The integration of the continuity equation

xie∫

xiw

(
∂Asi

∂t
+
∂Q

∂x
− q

)

dx = Fn
ι̂ + FΦ

ι̂ + F q
ι̂ = 0

gives the following integral terms.

Fn
ι̂ =

xie∫

xiw

∂Asi

∂t
dx

FΦ
ι̂ =

xie∫

xiw

∂Q

∂x
dx

F q
ι̂ = −

xie∫

xiw

q dx

Applying the θ -method:

Fn+1
ι̂ = Fn

ι̂ + θ(FΦ
ι̂ + F q

ι̂ ) + (1 − θ)(FΦ0
ι̂ + F q0

ι̂ ) (2.224)

2.4.3.2.2 Momentum Equation

The integration of the momentum equation:
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xie∫

xiw

(

∂Q

∂t
+

∂

∂x

(

β
Q2

Ared

)

+ gAred
∂z

∂x
+ gAredSf

)

dx = Gn
i +GΦ

i +Gsz
i +Gsf

i = 0

leads to the following integral terms:

Gn
i =

xie∫

xiw

∂Q

∂t
dx

GΦ
i =

xie∫

xiw

∂

∂x

(

β
Q2

Ared

)

dx

Gsz
i =

xie∫

xiw

gAred
∂z

∂x
dx

Gsf
i =

xie∫

xiw

gAredSf dx

Applying the θ-method:

Gn+1
i = Gn

i + θ(GΦ
i +Gsz

i +Gsf
i ) + (1 − θ)(GΦ0

i +Gsz0
i +Gsf0

i ) (2.225)

2.4.3.3 Solution

The equation system is

F (x) = 0

with

F = (F1, G1, F2, G2, . . . , Fn−1, Gn−1, Fn, Gn)

and

x = (A1, Q1, A2, Q2, . . . , An−1, Qn−1, An, Qn)

The system is solved by the Newton-Raphson method. Starting from an approximated
solution xk, the corresponding improved solution xk+1 is determined by the linear equation
system.

Axk+1 − c = 0 (2.226)

with
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c = Axk − F

and
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2.4.3.4 Integral Terms

2.4.3.4.1 Continuity Equation

The integral terms of the continuity equation are approximated as follows. For a general
cross section i:

Fn+1
i = Fn

i + FΦ
i + F q

i

Fn
i =

Asi −A0
si

∆t
∆xi

FΦ
i = Φc

ie − Φc
iw

F q
i = −q−

i ∆x−

i − q+
i ∆x+

i

For the first cross section i = 1:

Fn
1 =

A1 −A0
1

∆t
∆x1
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FΦ
1 = Φc

1e −Qin

F q
1 = −q+

1 ∆x1

For the last cross section i = N

Fn
n =

An −A0
n

∆t
∆xn

FΦ
n = Qout − Φc

nw

F q
n = −q−

n ∆xn

2.4.3.4.2 Momentum Equation

The integral terms of the continuity equation are approximated as follows. For a general
cross section i:

Gn
i =

Qi −Q0
i

∆t
∆xi

GΦ
i = Φm

ie − Φm
iw

Gsz
i = gAred,i

zi+1 − zi−1

2

Gsf
i = gAred,iSfi∆xi Sfi =

Qi|Qi|
K2

i

For the first cross section i = 1:

Gn
1 =

Qin −Q0
in

∆t
∆x1

GΦ
1 = Φm

1e − β1Q
2
in

Ared,in

Gsz
1 = gAred,1

z2 − z1

2

Gsf
1 = gAred,1Sf1∆x1 Sf1 =

Q1|Q1|
K2

1

For the last cross section i = n
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Gn
n =

Qout −Q0
out

∆t
∆xn

GΦ
n =

βnQ
2
out

Ared,out
− Φm

nw

Gsz
n = gAn

zn − zn−1

2

Gsf
n = gAnSfn∆xn Sfn =

Qn|Qn|
K2

n

2.4.3.5 General Description of the Derivatives for the Matrix A

2.4.3.5.1 Derivatives of the Continuity Equation

For a general cross section i:

∂Fi

∂Ared,i−1
=

∂Φc
ie

∂Ared,i−1
− ∂Φc

iw

∂Ared,i−1

∂Fi

∂Ared,i
=

∆xi

∆t

dAi

dAred,i
+

∂Φc
ie

∂Ared,i
− ∂Φc

iw

∂Ared,i

∂Fi

∂Ared,i+1
=

∂Φc
ie

∂Ared,i+1
− ∂Φc

iw

∂Ared,i+1

∂Fi

∂Qi−1
=

∂Φc
ie

∂Qi−1
− ∂Φc

iw

∂Qi−1

∂Fi

∂Qi
=
∂Φc

ie

∂Qi
− ∂Φc

iw

∂Qi

∂Fi

∂Qi+1
=

∂Φc
ie

∂Qi+1
− ∂Φc

iw

∂Qi+1

For the first cross section i = 0:

∂F1

∂Ared,1
=

∆x1

∆t

dA1

dAred,1
+

∂Φc
1e

∂Ared,1
− ∂Qin

∂Ared,1

∂F1

∂Ared,2
=

∂Φc
1e

∂Ared,2
− ∂Φc

in

∂Ared,2

∂F1

∂Q1
=

∂Φc
1e

∂Q1=in
− ∂Qin

∂Q1=in

∂F1

∂Q2
=
∂Φc

1e

∂Q2
− ∂Qin

∂Q2
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For the last cross section i = n:

∂Fn

∂Ared,n−1
=

∂Qout

∂Ared,n−1
− ∂Φc

nw

∂Ared,n−1

∂Fn

∂Ared,n
=

∆xn

∆t

dAn

dAred,n
+

∂Qout

∂Ared,n
− ∂Φc

nw

∂Ared,n

∂Fn

∂Qn−1
=

∂Qout

∂Qn−1
− ∂Φc

nw

∂Qn−1

∂Fn

∂Qn
=

∂Qout

∂Qn=out
− ∂Φc

nw

∂Qn=out

2.4.3.5.2 Derivatives of the Momentum Equation

For a general cross section i:

∂Gi

∂Ared,i−1
=

∂Φm
ie

∂Ared,i−1
− ∂Φm

iw

∂Ared,i−1
+
gAred,i

2

dzi−1

dAred,i−1

∂Gi

∂Ared,i
=

∂Φm
ie

∂Ared,i
− ∂Φm

iw

∂Ared,i
+
g

2
(zi+1 − zi−1) + g∆xiSfi

(

1 − 2
Ared,i

Ki

dKi

dAi

)

∂Gi

∂Ared,i+1
=

∂Φm
ie

∂Ared,i+1
− ∂Φm

iw

∂Ared,i+1
+ g

Ared,i

2

dzi+1

dAred,i+1

∂Gi

∂Qi−1
=

∂Φm
ie

∂Qi−1
− ∂Φm

iw

∂Qi−1

∂Gi

∂Qi
=

∆xi

∆t
+
∂Φm

ie

∂Qi
− ∂Φm

iw

∂Qi
+ 2gAred,i∆xi

Sfi

Qi

∂Gi

∂Qi+1
=

∂Φm
ie

∂Qi+1
− ∂Φm

iw

∂Qi+1

For the first cross section i = 1:

∂G1

∂Ared,1
=

∂Φm
1e

∂Ared,1
− ∂Φm

in

∂Ared,1
+
g

2
(z2 − z1) + g∆x1Sf1

(

1 − 2
A1

K1

dK1

dAred,1

)

∂G1

∂Ared,2
=

∂Φm
1e

∂Ared,2
− ∂Φm

in

∂Ared,2
+ g

A1

2

dz2

dA2

∂G1

∂Q1
=

∆x1

∆t
+
∂Φm

1e

∂Qin
−
∂
β1Q

2
in

Ared,in

∂Qin
+ 2gAred,1∆x1

Sf1

Qin
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∂G1

∂Q2
=
∂Φm

1e

∂Q2
−
∂
β1Q

2
in

Ared,in

∂Q2

For the last cross section i = n:

∂Gn

∂Ared,n−1
=

∂Φm
out

∂Ared,n−1
− ∂Φm

nw

∂Ared,n−1
+ g

Ared,n

2

dzn−1

dAred,n−1

∂Gn

∂Ared,n
=

∂Φm
out

∂Ared,n
− ∂Φm

nw

∂Ared,n
+
g

2
(zn − zn−1) + g∆xnSfn

(

1 − 2
An

Kn

dKn

dAred,n

)

∂Gn

∂Qn−1
=

∂Φm
out

∂Qn−1
− ∂Φm

nw

∂Qn−1

∂Gn

∂Qn
=

∆xn

∆t
+
∂Φm

out

∂Qn
− ∂Φm

nw

∂Qn
+ 2gAred,n∆xn

Sfn

Qn

2.4.3.6 Determination of the Derivatives with Upwind Flux Determination

With the upwind method the flux is defined as follows:

f(xie) = Γie
i fi + Γie

i+1fi+1 (2.227)

with

Γie
i = 1 and Γie

i+1 = 0 if Qi +Qi+1 ≥ 0
Γie

i = 0 and Γie
i+1 = 1 if Qi +Qi+1 < 0

2.4.3.6.1 Derivatives of the Continuity Equation

For a general cross section:

∂Fi

∂Ared,i−1
= 0

∂Fi

∂Ared,i
=

∆xi

∆t

∂Ai

∂Ared,i

∂Fi

∂Ared,i+1
= 0

∂Fi

∂Qi−1
= −θΓi−0.5

i−1

∂Fi

∂Qi
= θ(Γw

i − Γe
i )
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∂Fi

∂Qi+1
= θΓe

i+1

For cross section i =1:

∂F1

∂Ared,1
=

∆x1

∆t

∂A1

∂Ared,1

∂F1

∂Q1
= θ(Γe

1 − 1)

∂F1

∂Q2
= θΓe

2

For cross section i =n:

∂Fn

∂An
=

∆xn

∆t

∂An

∂Ared,n

∂Fn

∂Qn−1
= −θΓw

n−1

∂Fn

∂Qn
= θ(1 − Γw

n )

2.4.3.6.2 Derivatives of the Momentum Equation

For a general cross section i:

∂Gi

∂Ared,i−1
= θ

(

Γw
i−1

[

β
Q2

Ared

](

1

Ared,i−1
− 1

βi−1

dβi−1

dAred,i−1

))

− g
Ared,i

2

dzi−1

dAred,i−1

∂Gi

∂Ared,i
= θ

(

(Γw
i − Γe

i )

[

β
Q2

Ared

]

i

(

1

Ared,i
− 1

βi

dβi

dAred,i

)

+
g

2
(zi+1 − zi−1)

)

+

θ

(

g∆xiSfi

(

1 − 2
Ared,i

Ki

dKi

dAred,i

))

∂Gi

∂Ared,i+1
= θ

(

−Γe
i+1

[

β
Q2

Ared

]

i+1

(

1

Ared,i+1
− 1

βi+1

dβi+1

dAred,i

)

+ g
Ared,i

2

dzi+1

dAred,i+1

)

∂Gi

∂Qi−1
= −2θΓw

i−1

1

Qi−1

[

β
Q2

Ared

]

i−1

∂Gi

∂Qi
=

∆xi

∆t
+ 2θ

(

(Γe
i − Γw

i )
1

Qi

[

β
Q2

Ared

]

i

+ 2gAred,i∆xi
Sfi

Qi

)
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∂Gi

∂Qi+1
= 2θΓe

i+1

1

Qi+1

[

β
Q2

Ared

]

i+1

For cross section i =1:

∂G1

∂Ared,1
= θ

(

(1 − Γe
1)

[

β
Q2

Ared

]

1

(

1

Ared,1
− 1

β1

dβ1

dAred,1

)

+
g

2

(

z2 − z1 −Ared,1
dz1

dAred,1

))

+

θ

(

g∆x1Sf1

(

1 − 2
Ared,1

K1

dK1

dAred,1

))

∂G1

∂Ared,2
= θ

(

−Γe
2

[

β
Q2

Ared

]

2

(

1

Ared,2
− 1

β2

dβ2

dAred,2

)

+ g
Ared,2

2

dz2

dAred,2

)

∂G1

∂Q1
=

∆x1

∆t
+ 2θ

(

(Γe
1 − 1)

1

Q1

[

β
Q2

Ared

]

1

+ 2gAred,1∆x1
Sf1

Q1

)

∂G1

∂Q2
= 2θΓe

2

1

Q2

[

β
Q2

Ared

]

2

For cross section i =n:

∂Gn

∂Ared,n−1
= θ

(

Γw
n−1

[

β
Q2

Ared

]

n−1

(
1

An−1
− 1

βn−1

dβn−1

dAn−1

))

− g
An

2

dzn−1

dAred,n−1

∂Gn

∂Ared,n
= θ

(

(Γw
n − 1)

[

β
Q2

Ared

]

n

(
1

An
− 1

βn

dβn

dAn

)

+
g

2

(

zn − zn−1 +An
dzn

dAn

))

+

θ

(

g∆xnSfn

(

1 − 2
An

Kn

dKn

dAn

))

∂Gn

∂Qn−1
= −2θΓw

n−1

1

Qn−1

[

β
Q2

A

]

n−1

∂Gn

∂Qn
=

∆xn

∆t
+ 2θ

(

(1 − Γw
n )

1

Qn

[

β
Q2

A

]

n

+ gAn∆xn
Sfn

Qn

)

2.4.3.7 Determination of the Derivatives with Roe Flux Determination

Fluxes and derivatives of the fluxes of the continuity equation:

Φc
ie = Q(ie) =

1

2
(Qi +Qi+1) −RcA(Ai+1 −Ai) −RcQ(Qi+1 −Qi) (2.228)
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∂Φc
ie

∂Ai−1
= 0

∂Φc
ie

∂Ai
= Rie

cA

∂Φc
ie

∂Ai+1
= −Rie

cA

∂Φc
ie

∂Qi−1
= 0

∂Φc
ie

∂Qi
= 0.5 +Rie

cQ

∂Φc
ie

∂Qi+1
= 0.5 −Rie

cQ

Φc
iw = Q(iw) = 0.5(Qi−1 +Qi) −RcA(Ai −Ai−1) −RcQ(Qi −Qi−1) (2.229)

∂Φc
iw

∂Ai−1
= Riw

cA

∂Φc
iw

∂Ai
= −Riw

cA

∂Φc
iw

∂Ai+1
= 0

∂Φc
iw

∂Qi−1
= 0.5 +Riw

cQ

∂Φc
iw

∂Qi
= 0.5 −Riw

cQ

∂Φc
iw

∂Qi+1
= 0

Fluxes and derivatives of the fluxes of the momentum equation:

Φm
ie = β

Q2

A

∣
∣
∣
∣
∣
ie

= 0.5

(

βi
Q2

i

Ai
+ βi+1

Q2
i+1

Ai+1

)

−RmA(Ai+1 −Ai) −RmQ(Qi+1 −Qi) (2.230)

∂Φm
ie

∂Ai−1
= 0

∂Φm
ie

∂Ai
= −0.5βi

Q2
i

A2
i

+Rie
mA

∂Φm
ie

∂Ai+1
= −0.5βi+1

Q2
i+1

A2
i+1

−Rie
mA

∂Φm
ie

∂Qi−1
= 0

∂Φm
ie

∂Qi
= βi

Q2
i

A2
i

+Rie
mQ

∂Φm
ie

∂Qi+1
= βi+1

Q2
i+1

A2
i+1

−Rie
mQ

Φm
iw = β

Q2

A

∣
∣
∣
∣
∣
iw

= 0.5

(

βi
Q2

i−1

Ai − 1
+ βi

Q2
i

Ai

)

−RmA(Ai −Ai−1) −RmQ(Qi −Qi−1) (2.231)

∂Φm
iw

∂Ai−1
= −0.5βi−1

Q2
i−1

A2
i−1

+Riw
mA

∂Φm
iw

∂Ai
= −0.5βi

Q2
i

A2
i

−Riw
mA

∂Φm
ie

∂Ai+1
= 0

∂Φm
iw

∂Qi−1
= βi−1

Qi−1

Ai−1
+Riw

mQ

∂Φm
iw

∂Qi
= βi

Qi

Ai
−Riw

mQ

∂Φm
iw

∂Qi+1
= 0

2.4.3.7.1 Derivatives of the Continuity Equation:

For a general cross section i:

∂Fi

∂Ared,i−1
= −Riw

cA

∂Fi

∂Ared,i
=

∆xi

∆t

∂Ai

∂Ared,i
+Rie

cA +Riw
cA

∂Fi

∂Ared,i+1
= −Rie

cA
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∂Fi

∂Qi−1
= −1

2
−Riw

cQ

∂Fi

∂Qi
= Rie

cQ −Riw
cQ

∂Fi

∂Qi+1
=

1

2
−Rie

cQ

For the first cross section i=1:

∂F1

∂Ared,1
=

∆x1

∆t

∂A1

∂Ared,1
+Rie

cA − ∂Qin

∂Ared,1

∂F1

∂Ared,2
= −Rie

cA

∂F1

∂Q1=in
= Rie

cQ − 0.5

∂F1

∂Q2
=

1

2
−Rie

cQ

For the last cross section i=n:

∂Fn

∂An−1
= −Riw

cA

∂Fn

∂An
=

∆xn

∆t

∂An

∂Ared,n
+Riw

cA +
∂Qout

∂Ared,n

∂Fn

∂Qn−1
= −1

2
−Riw

cA

∂Fn

∂Qn
= 0.5 +Riw

cQ

2.4.3.7.2 Derivatives of the Momentum Equation

For a general cross section i:

∂Gi

∂Ared,i−1
=

1

2
βi−1U

2
i−1 −Riw

mA + g
Ared,i

2

dzi−1

dAred,i−1

∂Gi

∂Ared,i
= −1

2
βiU

2
i +Rie

mA +
1

2
βiU

2
i +Riw

mA +
g

2
(zi+1 −zi−1)+g∆xiSfi

(

1 − 2
Ared,i

Ki

dKi

dAred,i

)
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∂Gi

∂Ared,i+1
= −1

2
βi+1U

2
i+1 −Rie

mA + g
Ared,i

2

dzi+1

dAred,i+1

∂Gi

∂Qi−1
= βi−1Ui−1 −Riw

mQ

∂Gi

∂Qi
=

∆xi

∆t
+Rie

mQ +Rie
mQ + 2gAred,i∆xi

Sfi

Qi

∂Gi

∂Qi+1
= βi+1Ui+1 −Rie

mQ

For the first cross section i=1:

∂G1

∂Ared,1
= −1

2
β1U

2
1 +R1e

mA − ∂Φm
in

∂Ared,1
+
g

2
(z2 − z1) + g∆x1Sf1

(

1 − 2
Ared,1

K1

dK1

dAred,1

)

∂G1

∂Ared,2
= −1

2
β2U

2
2 +R1e

mA + g
Ared,1

2

dz2

dAred,2

∂G1

∂Q1
=

∆x1

∆t
+ β1U1 +R1e

mQ − ∂Φm
in

∂Q1=in
+ 2gA1∆x1

Sf1

Q1

∂G1

∂Q2
= β2U2 −R1e

mQ

For the last cross section i=n

∂Gn

∂Ared,n−1
=

1

2
βn−1U

2
n−1 −Rnw

mA + g
Ared,n

2

dzn−1

dAred,n−1

∂Gn

∂Ared,n
= −1

2
βnU

2
n+Rne

mA+
1

2
βnU

2
n+Rnw

mA+
g

2
(zn−zn−1)+g∆xnSfn

(

1 − 2
Ared,n

Kn

dKn

dAred,n

)

∂Gn

∂Qn−1
= βn−1Un−1 −Rnw

mQ

∂Gn

∂Qn
=

∆xn

∆t
+βnUn+Rne

mQ−βnUn+Rnw
mQ+2gAn∆xn

Sfn

Qn
=

∆xn

∆t
+Rne

mQ+Rne
mQ+2gAn∆xn

Sfn

Qn

2.4.3.8 Derivatives of the fluxes for an inner Weir

w is the weir width and p the Poleni factor
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2.4.3.8.1 Derivatives for the continuity flux

∂Φc
ie

∂Ai
= wp

√

2g(zi − zweir)
dzi

dAi

∂Φc
iw

∂Ai
= 0

∂Φc
ie

∂Ai−1
= 0

∂Φc
iw

∂Ai−1
= wp

√

2g(zi−1 − zweir)
dzi−1

dAi−1

∂Φc
ie

∂Ai+1
= 0

∂Φc
iw

∂Ai+1
= 0

∂Φc
ie

∂Qi−1
= 0

∂Φc
iw

∂Qi−1
= 1

∂Φc
ie

∂Qi
= 1

∂Φc
iw

∂Qi
= 0

∂Φc
ie

∂Qi+1
= 0

∂Φc
iw

∂Qi+1
= 0

2.4.3.8.2 Derivatives of the momentum flux

∂Φm
ie

∂Ai−1
= 0

∂Φm
iw

∂Ai−1
=

8gp2w2(zi−1 − zweir)2

3Aweir

dzi−1

dAi−1

∂Φm
ie

∂Ai
=

8gp2w2(zi−1 − zweir)2

3Aweir

dzi

dAi

∂Φm
iw

∂Ai
= 0

∂Φm
ie

∂Ai+1
= 0

∂Φm
iw

∂Ai+1
= 0

∂Φm
ie

∂Qi−1
= 0

∂Φm
iw

∂Qi−1
=

2Qi−1

Ai−1

∂Φm
ie

∂Qi
=

2Qi

Ai

∂Φm
iw

∂Qi
= 0

∂Φm
ie

∂Qi+1
= 0

∂Φm
iw

∂Qi+1
= 0

2.5 Numerical Solution of Sub-surface Flow

2.5.1 Introduction

The numerical solution of the Richard’s equation is a challenging task due to strong
non-linearities introduced by the constitutive models. Additionally, at the interfaces
between different soils in heterogeneous embankments, steep jumps and abrupt changes in
the variables may occur. Many models were presented in the past solving the Richard’s
equation based on Finite-Difference or Finite-Element methods and showed good results. A
novel application of the Lattice-Boltzmann method on the Richard’s equation was recently
presented by Ginzburg et al. (2004) and Ginzburg (2006), basing on a LBM approach
for generic anisotropic advection-dispersion equations. The application of the LBM has
some advantages which can make it an interesting alternative choice compared to classical
continuum approaches. The method is simple and easy to implement and it allows for

v2.8.2 VAW - ETH Zurich 151



2.5. Numerical Solution of Sub-surface Flow BASEMENT System Manuals

macroscopic

mesoscopic

microscopic

continuum fields

probability 

distr. function

particles

Navier-Stokes eq.

Boltzmann eq. (BGK)

Particle mechanics

Level of Description Conceptual Approach Equation

Figure 2.67 Comparison of different levels of description and conceptual approaches
applied to determine fluid motion.

the modeling of complex geometries using bounce-back boundaries. Also, the method is
local and therefore suited well for parallelization. Ginzburg adapted solution strategies
for advection-diffusion problems to different formulations of the Richard’s equation, like
the moisture θ formulation and mixed moisture-pressure head θ − h formulation. This
method of Ginzburg is applied and adapted here to simulate the 3-D sub-surface flow in
the saturated and partially-saturated zone.

2.5.2 Lattice-Boltzmann Method

The LBM is a mesoscopic modelling approach which is positioned in between microscopic,
particle-based dynamics and macroscopic continuum approaches. The underlying theory
bases on the Boltzmann equation from kinetic theory which was derived by the Austrian
physicist and philosopher L. Boltzmann.

The Boltzmann equation is formulated for a probability distribution function f(−→r , t) of
particles in the 6-D phase-space −→r (−→x ,−→v ). This phase-space is formed by the three spatial
coordinates and the three velocity components. The distribution function may be seen
as a representation of particles at time t with locations and velocities in between −→r and
−→r + ∆−→r . The integration of the distribution function over the phase-space results in the
macroscopic fluid density. Since the LBM is used here to solve the macroscopic Richard’s
equation, the function f(−→r , t) may be interpreted as a directional saturation density,
whereas the integration over the phase-space results in the macroscopic water saturation.
The Boltzmann equation for the scalar distribution function f(−→r , t) can be written in 1D
as (Mohamad, 2011)

∂f(−→r , t)
dt

+ v
∂f(−→r , t)

dx
= Ω (2.232)

with Ω as the collision operator, which describes the mutual influences of distribution
functions f(−→r , t) on each other. This partial differential equation has the simple form of a
single linear transport equation, even in higher dimensions. The main problem for solving
the Boltzmann equation, however, is the treatment of its complex collision operator. The
single relaxation time BGK (Bhatnagar et al., 1954) approach is often applied and treats
the collision as simple relaxation of the distribution function f towards its equilibrium state,
characterized by the local equilibrium distribution function feq. The collision operator
then results to Ω = ω(f − feq) with the relaxation parameter ω.
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Figure 2.68 2D lattice with 9 directions (left), 3D lattice with 15 directions (right).

The LBM solves the Boltzmann equation in a discrete form on a uniform mesh. The
discrete Boltzmann equation for the spatial mesh directions q reads

fq(−→r + ∆t−→c q, t+ ∆t) = fq(−→r , t)
︸ ︷︷ ︸

advection step

+ω[fq(−→r , t) − feq
q (−→r , t)]

︸ ︷︷ ︸

collision step

+Qq/cm
︸ ︷︷ ︸

source

q = 1 . . . nq

(2.233)

with a single time relaxation parameter ω being determined as a function of the diffusivity
D as ω = −1.0/(D/c2

s + 0.5). The diffusivity is determined as

• D = kr(θ)kf∂h/∂θ for the θ formulation, and

• D = kr(θ)kf for the mixed θ − h formulation.

The variable Qq on the right hand side is an external source for modelling water infiltration
into the embankment. The parameter c2

s is determined as c/ϑ with the free adjustable
constant ϑ.

The uniform mesh is constructed with cubic cells using a set of q discrete velocities cq

which connect the grid cells with each other. Overall, nq =15 different directions are used
(3DQ15). The directions of the q discrete velocities (compare Figure 2.68) are set as

cq = cm







(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1) q = 0 . . . 6
(1, 1, 1), (−1, 1, 1), (−1,−1, 1), (1,−1, 1) q = 7 . . . 10
(1, 1,−1), (−1, 1,−1), (−1,−1,−1), (1,−1,−1) q = 11 . . . 14

(2.234)

2.5.3 Solution procedure

Mainly three explicit computational steps are applied to solve the discrete Boltzmann
equation. The first two steps are hereby analogous to particle based approaches, whereas
the third step reflects the handling with particle distribution functions instead of single
particles.
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2.5.3.1 Advection step

At the advection step, the distribution functions are just moved along the discrete lattice
directions from each cell to its adjacent cells. At the lattice boundaries special treatments
are required as described below.

2.5.3.2 Collision step

The collision operator is approximated using the BGK approach which assumes a simple
relaxation of f towards its equilibrium distribution function feq , i.e. the solution approaches
the equilibrium over time according to the single time relaxation parameter w.

The equilibrium distribution function hereby is the key element of the collision step where
the main physics of the problem is included. The solution strategy in the LBM stays
largely the same even for different physical problems, like e.g. fluid motion governed by the
Navier-Stokes equation, whereas mainly the equilibrium distribution function has to be
replaced. The equilibrium distribution function is here applied only in first order accuracy
as provided in a general formulation by Ginzburg et al. (2004). It is outlined in the next
section in detail.

2.5.3.3 Update of macroscopic variables

Using the relationships given above and the empirical constitutive model, the discrete
Boltzmann equation is solved in each direction q by applying the propagation and collision
steps mentioned above. The macroscopic variables of interest can finally be derived from
the computed distribution functions fq at the new time level.

The effective water saturation θ is simply obtained by summing up the distribution functions
of all directions of a cell, which corresponds to an integration of f over phase-space.
Afterwards, the pore-water pressure head h can be derived using the water retention curve.
According to Ginzburg et al. (2004) one obtains:

θ =
n∑

q=0

fq

h = f(θ)

−→v f = (θs − θr) ·






n∑

q=0

−→c feq
q +

(

cx0 . . . cxn

cy0 . . . cyn

)

·






feq
0 − f0

...
feq

n − fn









 (2.235)

2.5.4 Equilibrium functions

The equilibrium distribution function for the θ formulation is given in first order accuracy
in all mesh directions by
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feq
q =







(

1.0 − 7

3
c2

s

)

· θ q = 0

tqθc
2
s q = 1, 2, 3, 4

tq · (θc2
s +

−→
I · −→c ) q = 5, 7, 8, 9, 10

tq · (θc2
s − −→

I · −→c ) q = 6, 11, 12, 13, 14

(2.236)

where c2
s = c/ϑ with ϑ being a free constant. The method is local because the equilibrium

function needs no information from neighbouring cells.

Accordingly, the equilibrium distribution function for the mixed θ − h formulation is
obtained in all mesh directions as

feq
q =







θ − 7/3c2
s · h q = 0

tq · (hc2
s) q = 1, 2, 3, 4

tq · (hc2
s +

−→
I · −→c ) q = 5, 7, 8, 9, 10

tq · (hc2
s − −→

I · −→c ) q = 6, 11, 12, 13, 14

(2.237)

In contrast to the θ formulation, the mixed θ − h formulation is able to reproduce the
continuous transition of the pressure head at the interface of different soils correctly.
Therefore, the mixed θ − h formulation should be applied in cases of heterogeneous
embankments with core and filter zones. The θ formulation, however, has advantageous
stability conditions for imbibition problems (Ginzburg, 2006) and as such is recommended
for use in case of homogeneous embankments. The weighting factors tq for the lattice
directions q can be derived for the chosen lattice configuration. The values for the 3DQ15
model are:

q tq (D3Q15)

1-6 1/3
7-14 1/24

To calculate the equilibrium functions given above, the advective, gravitational term
−→
I ,

which acts in vertical downward direction, is needed and is evaluated as

−→
I = −kr(θ)ks

−→e z (2.238)

2.5.5 Boundary and initial conditions

At the mesh boundaries the values of the distribution function fq in the incoming directions
are unknown and must be provided.

• For solid walls standard bounce-back boundaries are used. The unknown incoming
distribution functions fq thereby are set equal to the outgoing, anti-symmetric values
to simulate wall reflection. Using this type of boundary condition allows incorporating
even complex boundaries.

• A water column above the embankment is modelled using a pressure boundary,
thereby presuming a hydrostatic pressure distribution. Equilibrium conditions are
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assumed at the boundary which allows for computing the values for the incoming
directions (fq = feq

q ). For the mixed θ−h formulation, the water depth can be directly
used as pore-water pressure head. For the θ formulation, the water saturation θ is
needed instead and can be derived from the inverse water retention curve θ = f(h) .

• The seepage flow out of the embankment is modelled with a combined approach. In
the saturated zone (q ≥ 1.0) a constant saturation of 1.0 is set at the boundary cells.
In the unsaturated zone (q < 1.0) a bounce-back boundary is set.

The exact treatment of sloped or curved boundaries may become difficult, especially in 3D.
Here, for simplicity, the sloped embankment faces are approximated using a series of steps
using reflection angles of 0°, 45° or 90°. These simplifications can reduce the numerical
accuracy in the vicinity of the embankment faces.

As initial conditions, the pore pressures or saturations in the domain can be given. The
initial distribution functions are then set equal to the corresponding equilibrium values
(fq = feq

q ) assuming equilibrium conditions.
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