Power system economics

Market-based operation: formulations, basic principles, problems and benefits Spatial dimension of energy trading and power balancing Ancillary services and real-time control

Andrej Jokić

Control Systems group Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Market-based operation Basic principles

Outline

- 1 Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- Distributed, real-time, price-based control
- Conclusions

smart grids?

hidden technology

invisible hand of market

important (for the "smart" part): get the fundamentals right and well

Deregulation

Andrej Jokić (FSB, University of Zagreb)

Unifying approach: optimization

In general terms, problems of a power system on global level can be summarized as follows

- i) Economical efficiency subject to: Global energy balance + Transmission system security constraints
- ii) Economical efficiency subject to: Accumulation of sufficient amount of ancillary service + Transmission system security constraints
- iii) Economical and dynamical efficiency, subject to: Global power balance + Robust stability

ECONOMY versus **RELIABILITY**

- Formulation of PROBLEMS: structured, time-varying optimization problems
- SOLUTIONS:
 - not only algorithms that give solution (as desired output), but also:
 - efficient, robust (optimally account for trade-offs), scalable and flexible control and operational architecture (who does what and when? relations?)
 - long term benefits of markets due to different solution architecture compared to regulated system

Market-based operation Basic principles

Positioning in time scale

Market commodities

- Energy markets: commodity is energy [MWh]
- Ancillary services markets (power balancing): commodity is energy (options) and sometimes capacity (placed on disposal over some time) [MWh]

Positioning in time scale

Market commodities

- Energy markets: commodity is energy [MWh]
- Ancillary services markets (power balancing): commodity is energy (options) and sometimes capacity (placed on disposal over some time) [MWh]

Observation: Commodities are defined over time intervals (necessary to quantify energy)

Program time unit (PTU)

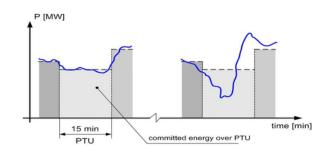
Program time unit (PTU): a market trading period (5min to 1h) for forward and real-time markets.

Some markets trade with over longer intervals (days, months,...)

Positioning in time scale

Power versus energy

- Ancillary services: provision of power (real-time), trading in energy/capacity
- Congestion: constraints on power flows (real-time), trading in energy



Positioning in time scale

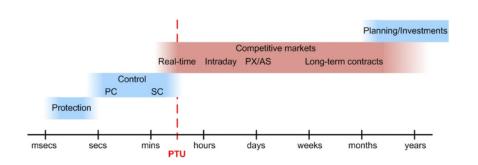
Power versus energy

- Ancillary services: provision of power (real-time), trading in energy/capacity
- Congestion: constraints on power flows (real-time), trading in energy

Economy(energy), Control(power)

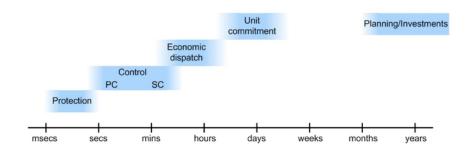
- ullet Interplay between power and energy o coupling economy and physics/engineering (control)
- ullet Increased uncertainties (renewables, decentralization) both in power and energy o tighter coupling economy, physics/control o requires design for efficiency and robustness

Out of scope in this talk: investments, legislation, details of regulation, political aspects

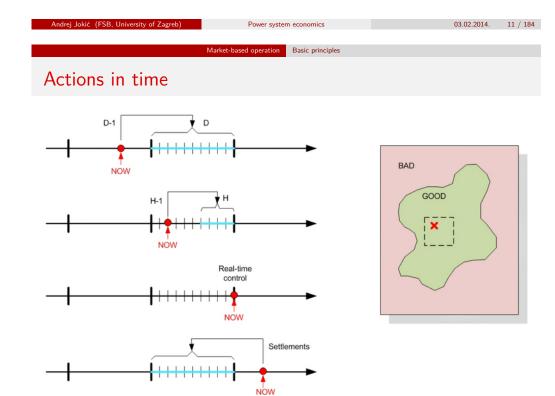


Market based power system

Positioning in time scale



Traditional power system



Conditions for deregulation

Natural monopoly

- Economy of scale: Efficiency(100 MW plant) > Efficiency(10 MW plant) > Efficiency(1 MW plant)
- Large generating companies: one owner of many plants \rightarrow cheaper production due to hiring of specialists, sharing parts and repair crews...

Conditions for successful deregulation

Lack of natural monopoly, or the conditions of natural monopoly should hold only weakly.

... if monopolist can produce power at significantly lower cost than the best competitive market, then regulation makes little sense.

Emerging playground for competition

More efficient low power plants (cheap gas turbines); renewable generation; smaller size distributed generation distributed on all levels in the system; price elastic demand,...

Market-based operation Basic principles

Maximizing social welfare

Energy market

- Production cost function: $C_i(p_i)$
- Consumption benefit function: $B_i(d_i)$

Social welfare maximization (isolated system)

$$\min_{p_1,...,p_n,d_1,...,d_m} \quad \sum_{i=1}^n C_i(p_i) - \sum_{j=1}^m B_j(d_j)$$

(= max social welfare)

subject to

$$p_i \in \mathcal{P}_i, \quad i=1,\dots,n$$

(local production constraints)

$$d_j \in \mathcal{D}_j, \quad j = 1, \dots, m$$

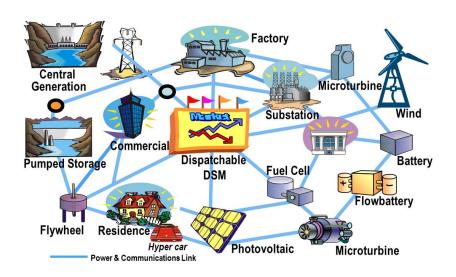
(local consumption constraints)

$$\sum_{i=1}^n p_i = \sum_{j=1}^m d_j$$

(balance supply and demand)

example local constraints: $\mathcal{P}_i := \{ p \mid p_i \leq p \leq \overline{p}_i \}, \quad \mathcal{D}_j := \{ d \mid \underline{d}_i \leq d \leq \overline{d}_j \}$

Conditions for deregulation



Intermezzo: Lagrange duality

Optimization problem

$$\min_{x} \{ f(x) \mid g(x) \leq 0, h(x) = 0 \}$$

where $h: \mathbb{R}^n \to \mathbb{R}^m$ $g: \mathbb{R}^n \to \mathbb{R}^p$

Let x be feasible point $(g(x) \le 0, h(x) = 0)$. For arbitrary $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^p$ with $\mu > 0$ we have

 $L(x, \lambda, \mu) := f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x) < f(x).$

After infimization we have

$$\ell(\lambda,\mu) := \inf_{x} L(x,\lambda,\mu) \le \inf_{\{x \mid g(x) \le 0, h(x) = 0\}} f(x)$$

Since λ and $\mu \geq 0$ were arbitrary we conclude

$$\sup_{\{\lambda,\mu \mid \mu \geq 0\}} \ell(\lambda,\mu) \quad \leq \quad \inf_{\{x \mid g(x) \leq 0, \ h(x) = 0\}} f(x)$$

Intermezzo: Lagrange duality

Terminology and observations

- Lagrange function: $L(x, \lambda, \mu) := f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$
- Lagrange dual cost: $\ell(\lambda, \mu) := \inf_{x} L(x, \lambda, \mu)$
- Lagrange dual problem: $d_{opt} = \sup_{\{\lambda, \mu \mid \mu \geq 0\}} \ell(\lambda, \mu)$
- Primal problem: $p_{opt} = \inf_{\{x \mid g(x) < 0, h(x) = 0\}} f(x)$

Dual problem is concave maximization problem. Constraints are often simpler than in primal problem.

Weak duality (lower bounds)

Dual optimal value $(d_{opt}) \leq Primal optimal value (p_{opt})$

Weak duality is always true.

Market-based operation Basic principles

Maximizing social welfare via dual problem

Energy market

Primal

$$\min_{p_i \in \mathcal{P}_i, d_j \in \mathcal{D}_j} \quad \sum_{i=1}^n C_i(p_i) - \sum_{j=1}^m B_j(d_j)$$

subject to
$$\sum_{i=1}^{n} p_i = \sum_{i=1}^{m} d_i$$

Dual

 $\max_{\lambda \in \mathbb{R}} \ell(\lambda)$

where

Andrej Jokić (FSB, University of Zagreb)

$$\ell(\lambda) = \min_{p_i \in \mathcal{P}_i, d_j \in \mathcal{D}_j} \quad \sum_{i=1}^n C_i(p_i) - \sum_{i=1}^m B_j(d_j) + \lambda \left(\sum_{i=1}^m d_j - \sum_{i=1}^n p_i\right)$$

Assumption: convexity. $C_i(\cdot)$ convex functions, $B_i(\cdot)$ concave fun., $\mathcal{P}_i, \mathcal{D}_i$ convex sets.

Lagrange Duality Theorem

Weak duality always holds: $d_{opt} \leq p_{opt}$

Intermezzo: Lagrange duality

Let primal problem be convex with satisfied Slater's constraint qualification.

Then strong duality holds: $d_{opt} = p_{opt}$.

Strong duality in compact form

$$\max_{\{\lambda,\mu \mid \mu \geq 0\}} \left(\inf_{x} f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x) \right) = \inf_{\{x \mid g(x) \leq 0, h(x) = 0\}} f(x)$$

Slater's constraint qualification

Define sets $\mathcal{I}_n, \mathcal{I}_a$: $i \in \mathcal{I}_n$ if $g_i(\cdot)$ is nonlinear; $i \in \mathcal{I}_a$ if $g_i(\cdot)$ is affine. Slater CQ: the set

$$\{x \mid h(x) = 0, g_i(x) < 0 \text{ for } i \in \mathcal{I}_n, g_i(x) \le 0 \text{ for } i \in \mathcal{I}_a, \}$$

is nonempty.

Maximizing social welfare via dual problem

Energy market

Dual

 $\max_{\lambda\in\mathbb{R}}\ell(\lambda)$

where

$$\ell(\lambda) = \min_{p_i \in \mathcal{P}_i, d_j \in \mathcal{D}_j} \quad \sum_{i=1}^n C_i(p_i) - \sum_{j=1}^m B_j(d_j) + \lambda \Big(\sum_{j=1}^m d_j - \sum_{i=1}^n p_i\Big)$$

Observation 1: Lagrange dual cost function $\ell(\lambda)$ is decomposable (for a fixed λ , can be decomposed into n + m separate minimization problems)

Observation 2: $\max_{\lambda \in \mathbb{R}} \ell(\lambda)$ is attained when $\sum_{i=1}^m d_i = \sum_{j=1}^n p_i$ ((sub)gradient of $\ell(\lambda)$ is zero).

Maximizing social welfare via dual problem

Energy market

$$\max_{\lambda \in \mathbb{R}} \ell(\lambda)$$

Supplier's *local* minimizations

$$egin{array}{ll} \min_{\mathcal{P}_1} & C_1(p_1) - \lambda p_1 \ \min_{\mathcal{P}_2} & C_2(p_2) - \lambda p_2 \ & dots \ \min_{\mathcal{P}} & C_n(p_n) - \lambda p_n \end{array}$$

Demand's local minimizations

$$egin{array}{ll} \min_{\mathcal{D}_1} & \lambda d_1 - B_1(d_1) \ \min_{\mathcal{D}_2} & \lambda d_2 - B_1(d_2) \ & dots \ \min_{\mathcal{D}_m} & \lambda d_m - B_1(d_m) \end{array}$$

Market based operation

Some observations/remarks

- change from regulated and single utility owned and operated system to the market based system can be seen as shift from explicitly solving primal problem to explicitly solving dual problem
- Lagrange dual (and "complementarity problems"): suitable as manipulates with both physical (primal) variables and economy related variables - prices (dual)
- generic approach: assign prices to global constraints (i.e. power balance) and use them to coordinate local behaviours to meet the global constraints
- By shifting to solving dual problem we have introduced different solution architecture: i) new players: market operators, competing market agents; ii) we have defined who does what; iii) we have introduced prices and bids as protocols for coordination among players.
- Large-scale complex systems: rely on **protocols**, **modularity** and architecture (Internet: TCP/IP; power system: 50 Hz is a "protocol"; money / bid format;... a bit wider view: passivity in control as a protocol...)

Maximizing social welfare via dual problem

Energy market

Market operator

$$\max_{\lambda \in \mathbb{R}} \ell(\lambda) \quad \Leftrightarrow \quad ext{determine } \lambda \, : \, \sum_{j=1}^m d_j^\star = \sum_{i=1}^n
ho_i^\star$$

Rational behaviour of market players (max its own benefits)

Supplier's *local* minimizations

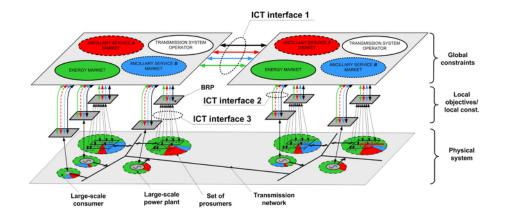
Demand's local minimizations

$$\begin{aligned} p_1^{\star} &= \operatorname{argmin}_{p_1 \in \mathcal{P}_1} & C_1(p_1) - \lambda p_1 & d_1^{\star} &= \operatorname{argmin}_{d_1 \in \mathcal{D}_1} & \lambda d_1 - B_1(d_1) \\ p_2^{\star} &= \operatorname{argmin}_{p_2 \in \mathcal{P}_2} & C_2(p_2) - \lambda p_2 & d_2^{\star} &= \operatorname{argmin}_{d_2 \in \mathcal{D}_2} & \lambda d_2 - B_1(d_2) \\ &\vdots & &\vdots & \\ p_n^{\star} &= \operatorname{argmin}_{p_n \in \mathcal{P}_n} & C_n(p_n) - \lambda p_n & d_m^{\star} &= \operatorname{argmin}_{d_m \in \mathcal{D}_m} & \lambda d_m - B_1(d_m) \end{aligned}$$

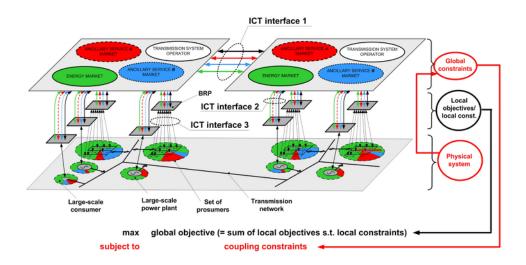
λ^* which solves the above problem is the (market clearing) price

Andrej Jokić (FSB, University of Zagreb)

Market based operation



Market based operation



Market based operation

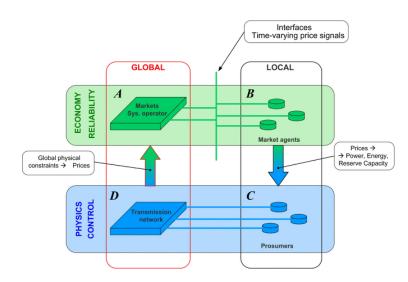
Supplier: $p_i^{\star} = \operatorname{argmin}_{p_i \in \mathcal{P}_i} C_i(p_i) - \lambda p_i$ Consumer: $d_j^{\star} = \operatorname{argmin}_{d_j \in \mathcal{D}_j} \lambda d_1 - B_j(d_j)$

Suppose λ is given such that $p_i^* \in \text{interior of } \mathcal{P}_i, d_i^* \in \text{interior of } \mathcal{D}_i$, then we have

$$\frac{\mathsf{d} C_i(p_i^{\star})}{\mathsf{d} p_i} = \lambda$$

$$\frac{\mathsf{d} B_j(d_j^\star)}{\mathsf{d} d_i} = \lambda$$

i.e., social welfare is maximized when all prosumers (producers/consumers) adjust their prosumption levels so that marginal cost/benefit functions are equal to the price.



Time varying price signals as

- Protocols and defining ingredients of uniform interfaces in communication between producers, consumers, market and system operators
- Signals for coordination and time synchronization of local behaviours to achieve global goals

Market-based operation Basic principles

Market clearing problem

Bids from marginal costs/benefits

$$\frac{\mathsf{d} C_i(p_i)}{\mathsf{d} p_i} = \lambda \quad \Leftrightarrow \quad p_i = \gamma_i^{p}(\lambda) \quad \Leftrightarrow \quad \lambda = \beta_i^{p}(p_i)$$

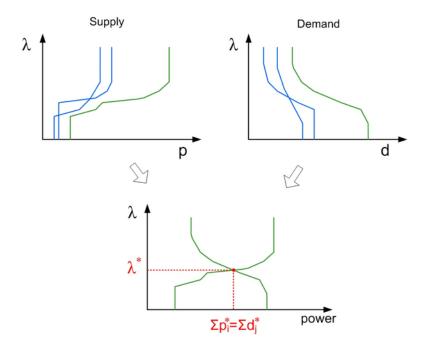
$$\frac{\mathsf{d}B_j(d_j)}{\mathsf{d}d_i} = \lambda \quad \Leftrightarrow \quad d_j = \gamma_j^d(\lambda) \quad \Leftrightarrow \quad \lambda = \beta_j^d(d_i)$$

Market clearing problem in practice

Find the market clearing price λ^* at intersection of the aggregated supply bid curve $\tilde{\gamma}^p(\lambda) := \sum_i \gamma_i^p(\lambda)$ with the aggregated demand bid curve $\tilde{\gamma}^d(\lambda) := \sum_i \gamma_i^d(\lambda)$:

$$\sum_{i=1}^{n} p_i^{\star} = \sum_{i=1}^{n} \gamma_i^{p}(\lambda^{\star}) = \tilde{\gamma}^{p}(\lambda^{\star}) = \tilde{\gamma}^{d}(\lambda^{\star}) = \sum_{i=1}^{m} \gamma_i^{d}(\lambda^{\star}) = \sum_{i=1}^{m} d_i^{\star}$$

Remark: extension to cases when assumptions $p_i^* \in \text{interior of } \mathcal{P}_i, d_i^* \in \text{interior of } \mathcal{D}_i$ are not valid are straightforward. Easy to include constraints in the bids.

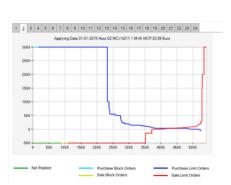


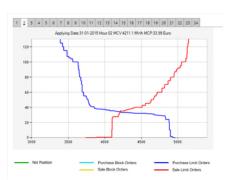
Market-based operation Basic principles

Market clearing: example

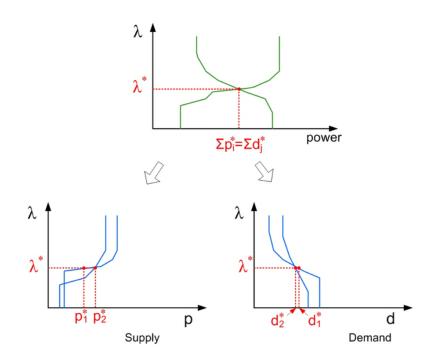
APX, aggregated bids

30. January 2015, 2 a.m.





In some markets (e.g., APX) block bids are possible (bids for more trading periods; convenient to account for start-up costs. Origin of nonconvexity.)



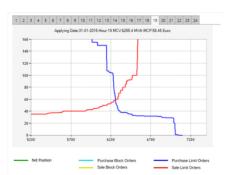
Market-based operation Basic principles

Market clearing: example

APX, aggregated bids

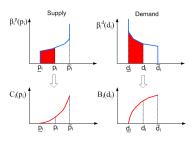
30. January 2015, 7 p.m.





In some markets (e.g., APX) block bids are possible (bids for more trading periods; convenient to account for start-up costs. Origin of nonconvexity.)

Market clearing problem



Terminology: "all supply bids smaller than some price are accepted

Exercise 1. Prove the following:

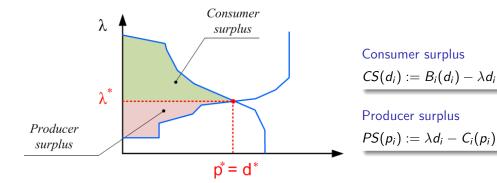
Non-decreasing $\beta_i^p(\cdot)$ $C_i(\cdot)$ is convex Non-increasing $\beta_i^d(\cdot)$ $B_i(\cdot)$ is concave

$$C_i(p_i) = \int_{p_i}^{p_i} \beta_i^p(\xi) d\xi, \quad B_i(d_i) = \int_{d_i}^{d_i} \beta_i^d(\xi) d\xi$$

Market operators require bids to be non-decreasing/non-increasing (irrespective of true marginal costs/benefits)

Market-based operation Basic principles

Maximizing social welfare via dual problem



Remarks:

In fact graphical interpretation of solving dual problem. Maximized areas (surpluses) = optimal value of Lagrange multiplier (price).

In practice it is often told that all the bids till Market clearing volume / Market clearing price are accepted.

Let the bids be piecewise constant (non-decreasing for supply, non-increasing for demand). Formulate market clearing problem as an optimization problem (primal).

Balance responsible party

Balance responsible party (BRP)

- BRP is a legal entity that is capable and allowed to trade on energy and ancillary service markets.
- BRP is defined by specification of its responsibilities (operational rules) and interfaces with other subsystems in the operational architecture of the overall system.

By defining the interfaces and responsibilities, we are in fact defining the BRPs as crucial building blocks (modules) of the system.

- Responsible for own production and load prediction:
- Responsible for behavior in markets (e.g. market power misuses);
- Responsible for behavior in power system (e.g. responsibility to react on real-time SC signal from TSO);
- Can pay bills;

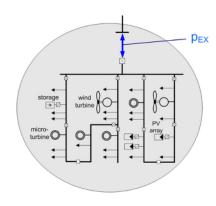
Bidding

Basics of bidding

BRPs portfolio: • m generators $\{C_i(p_i), p_i, \overline{p}_i\}_{i=1,...,m}$; • n controllable loads

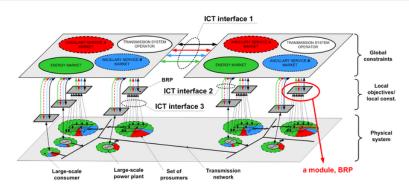
 $\{B_i(d_i), d_i, \overline{d_i}\}$; • aggregated price inelastic power injection q

How could the BRP bid for its aggregated prosumption p_{EX} ? $\beta_{BRP}(p_{EX}) = ?$



Market-based operation Basic principles

Balance responsible party



- All market participants interact with markets through a BRP, or are a BRP themselves.
- BRP as a module (building block)
- Heterogeneity, local "issues".... all "hidden" behind the interface ("Interface 2")
- Example: bids are requested to be increasing functions (CONVEXITY) simple and "smart" way to deal with complexity
- Later on: BRP will have to internally "decouple" services to comply with protocols

Bidding

Basics of bidding

Approach I

$$\min_{\substack{\{p_i\},\{d_j\},p_{\mathsf{EX}}\\ p_i\}}} \sum_{i=1}^m C_i(p_i) - \sum_{j=1}^n B_j(d_j) - \lambda p_{\mathsf{EX}} \qquad \min_{\substack{\{p_i\},\{d_j\}\\ p_i\}}} \sum_{i=1}^m C_i(p_i) - \sum_{j=1}^m B_j(d_j)$$

$$\text{subject to } \sum_{i=1}^m p_i - \sum_{j=1}^n d_j + q = p_{\mathsf{EX}}$$

$$\frac{p_i}{\leq p_i} \leq \overline{p}_i, \ i = 1, \dots, m$$

$$\frac{d_i}{\leq d_j} \leq \overline{d}_i \ j = 1, \dots, n$$

$$\min_{\substack{\{p_i\},\{d_j\}\\ p_i\}}} \sum_{i=1}^m C_i(p_i) - \sum_{j=1}^m B_j(d_j)$$

$$\text{subject to } \sum_{i=1}^m p_i - \sum_{j=1}^n d_j + q = p_{\mathsf{EX}} \clubsuit$$

 λ as parameter, calculate p_{EX}

Approach II

$$\begin{aligned} \min_{\{p_i\},\{d_j\}} & \sum_{i=1}^m C_i(p_i) - \sum_{j=1}^m B_j(d_j) \\ \text{subject to } & \sum_{i=1}^m p_i - \sum_{j=1}^n d_j + q = p_{\text{EX}} \clubsuit \\ & \underline{p}_i \leq p_i \leq \overline{p}_i \ i = 1, \dots, m \\ & \underline{d}_j \leq d_j \leq \overline{d}_j \ j = 1, \dots, n \end{aligned}$$

pex as parameter, Lagrange multiplier to 🖺 as price

Exercise 3: Show equivalence between Approach I and Approach II.

03.02.2014.

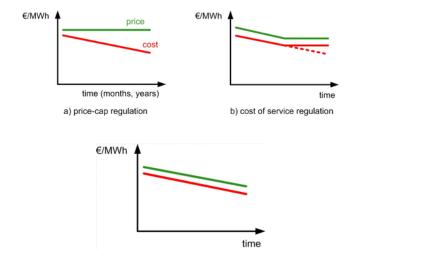
Benefits of deregulation Market-based operation

Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- - Basic notions
 - Congestion management approaches
 - Using full AC model
- - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services

Benefits of market-based (price-based) operation

In mathematical terms we reached (via dual) the same solution (as primal). Why deregulation?



Perfect competition

Adam Smith ("Wealth of Nations"):

- perfectly competitive market \implies economic efficiency
- "invisible hand of market" (Solution architecture matters)

Perfect competition (conditions)

- large number of generators (market agents)
- each agent act competitively (attempts to maximize its profits)
- price taking agents
- good information (market prices are publicly known)
- well-behaved costs

Well-behaved costs = convexity. Important for existence of equilibrium. Difficulties: start up costs

Competitive equilibrium

A market condition in which supply equals demand and traders are price takers.

Benefits of market-based (price-based) operation

In mathematical terms we reached (via dual) the same solution (as primal). Why deregulation?

Competitive markets simultaneously

- hold prices down to marginal cost
- minimize cost

Regulation can do one or the other, but not both.

Market-based operation Benefits of deregulation

Particularities of markets in power systems

Problems with electrical energy as commodity

- No buffering. Cannot be efficiently stored in large quantities. Consumed as produced \rightarrow fast changing production costs.
- No free routing. Other transportation systems have free choices among alternative paths between source and destination. Power transmission system: power flows governed by physical laws.

Demand-side flaws

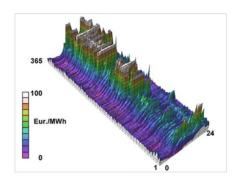
- Lack of metering and real-time billing. Customers disconnected from market (do not respond to real-time fluctuations in price/cost of supply)
- Lack of real-time control of power flow to specific customers. Ability of load to take power from the grid without prior contract with a generator.

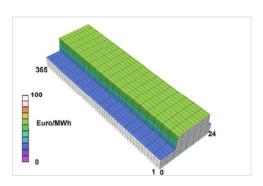
Consequences: necessity of an **independent system operator** as supplier in real-time, responsible for balancing; necessity of well designed market architecture

Power system economics

Prices

Demand-side flaws





Yearly market prices (APX)

Prices for consumers

Andrei Jokić (FSB, University of Zagreb)

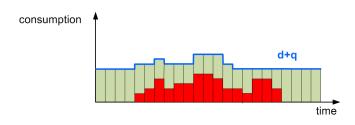
ower system economics

03.02.2014. 46 /

sed operation Ben

efits of deregulation

Benefits of market-based (price-based) operation



p(k)=controllable power production at time k

q(k)=uncontrollable load or negated uncontrollable power

d(k)=controllable load

C(p)=cost function for producing at power level p

B(d)=benefit function of consuming at power level d

Energy constrained load: $\sum_{k=1}^{N} d(k) = E_N$

(with B(d) = const., the goal of consumption profile $d(1), \ldots, d(N)$ is to shift the load to minimize payments while satisfying energy production over the time horizon)

Benefits of market-based (price-based) operation

Some expected benefits:

- large benefits expected to come from demand side (price-elastic consumers in "smart grids") when exposed to real-time prices (smart meters)
- ullet \to lower demand when generation is most costly
- ullet ightarrow in long run: less generators to be built, reduced production costs

Load factor

$$\mathsf{load}\ \mathsf{factor} = \frac{\mathsf{average}\ \mathsf{demand}}{\mathsf{peak}\ \mathsf{demand}}$$

Real-time pricing reduces load factor (but in the most general case does not achieve load factor of 1).

Andrej Jokić (FSB, University of Zagreb)

Power system economic

102 2014 47 / 18/

Market-based operation

Benefits of deregulat

Benefits of market-based (price-based) operation

Example

Social welfare maximization (\equiv market solution under perfect competition)

$$\min_{\substack{\{p(k),d(k)\}_{k=1,\ldots,N}\\}} \quad \sum_{k=1}^N \left(C(p(k)) - B(d(k))\right)$$
 subject to
$$p(k) = d(k) + q(k), \quad k = 1,\ldots,N$$

$$\sum_{k=1}^N d(k) = E_N$$

- With $C(\cdot)$, $B(\cdot)$ strictly convex/concave and q is not constant in time, power factor is necessarily smaller than 1.
- With $B(\cdot) \equiv 0$, load shifting leads to power factor 1 even with $q \neq 1c$

Exercise 4: Prove the above statements.

Benefits of market-based (price-based) operation

Example

Social welfare maximization (≡ market solution under perfect competition)

$$\min_{\{p(k),d(k)\}_{k=1...,N}} \quad \sum_{k=1}^N \left(C(p(k)) - B(d(k))\right)$$
 subject to
$$p(k) = d(k) + q(k), \quad k = 1, \ldots, N$$

$$\sum_{k=1}^N d(k) = E_N$$

Constant power profiles

(q=0) Let $C_i(\cdot)$ be strictly convex function $(B_i(\cdot))$ strictly concave function). Then optimal power production (consumption) profile to produce (consume) certain amount of energy over some PTU is a constant production (consumption) profile.

...observation in favour of dealing with real-time power balancing and congestion.

Market-based operation Market power

Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services

Benefits of market-based (price-based) operation

Load shifting (load factor improvement) caused by pricing is in some cases self-limiting

still ...

(+) changing load factor from 60% to 80% gives 25% reduction in needed generation capacity.

but...

(-) with more loads as baseload, reduction of for peaking generators: fixed costs reduction of $\approx 12\%$ (peaking generators cost roughly half of an average generator costs per installed megawatt). Overall reduction in cost of supply relatively low (several percent). [Stoft "Power system economics"]

but ...

(+) price-elastic demand side reduces conditions for market power

03.02.2014.

Market-based operation Market power

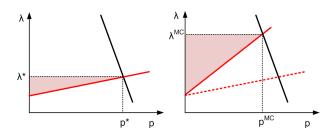
Market power

Andrej Jokić (FSB, University of Zagreb)

Market power

The ability to alter *profitably* prices away from competitive levels.

"profitably": important in definition. Some baseload plant (e.g. nuclear power plant) can influence the system when needed, even if it looses money by exercising this influence (e.g. by shutting down).



 $(\lambda^{MC}, p^{MC}) =$ monopolistic equilibrium $(\lambda^*, p^*) = \text{competitive}$ equilibrium

$$\max \ \lambda^{MC}(\beta(p)) \ p^{MC}(\beta(p)) - C(p^{MC}(\beta(p)))$$

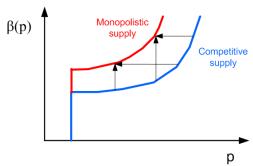
Market power

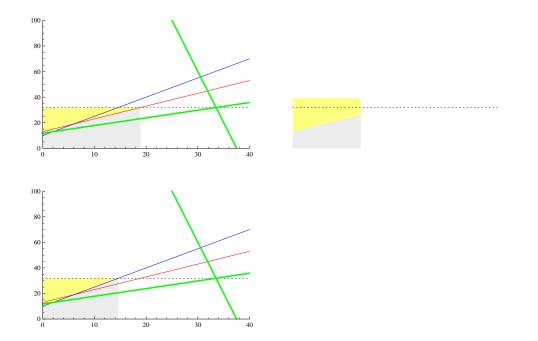
Market power

- on supply side: monopoly power. result: price higher than competitive
- on demand side: monopsony power. result: price lower than competitive

Exercising monopoly power

- quantity withholding (reducing output)
- financial withholding (raising the price for output)



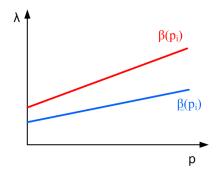


Market power

Example

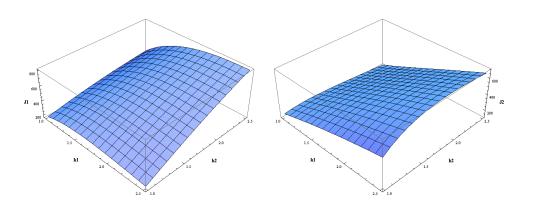
Incremental costs of a supplier: $a_i p_i + b_i$, with $a_i > 0$

Strategy: selecting $k_i \ge 0$ for the bid $\beta_i(p_i) = k_i \beta(p_i) = k_i a_i p_i + k_i b_i$



Market-based operation Market power

Market power



Andrej Jokić (FSB, University of Zagreb)

Power system economics

Market power

Competitive equilibrium (Walrasian equilibrium)

A market condition in which supply equals demand and traders are price takers.

Nash equilibrium

None of the players can increase its benefits by changing its own strategy, provided that other players continue with their strategies.

Strategy S_i of a player i (algorithm for playing in the market) $J_i(s_1, \ldots, s_n)$: benefits of player i, as outcome of all strategies

$$\forall i, s_i \in S_i : J_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*) \geq J_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$$

Andrei Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014.

58 / 184

Market-based operation

Market pow

Market power

Elasticity of demand (e)

With aggregated demand $D := \sum_i d_i$ and price λ

$$e = -rac{\Delta D}{D}/rac{\Delta \lambda}{\lambda} \qquad
ightarrow \qquad e = -rac{\mathrm{d} D}{\mathrm{d} \lambda} rac{\lambda}{D}$$

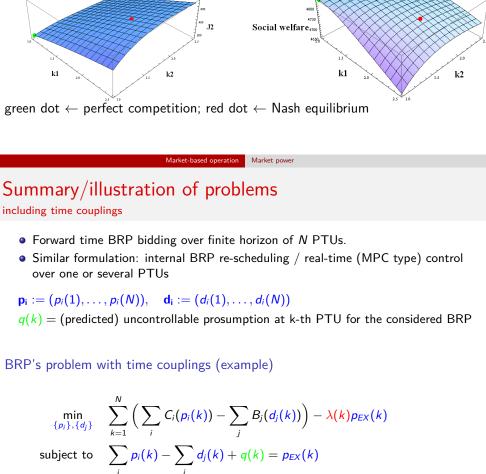
Market share

$$s_i = \frac{p_i}{\sum_i p_i}$$

Lerner index for Cournot oligopoly (group of uncoordinated suppliers)

$$L_{x}=\frac{s}{e}$$

For monopoly: $s = 1, L_x = 1/e$.



Load benefit

 $p_i(k) \in \mathcal{P}_i(\mathbf{p_i}(\mathbf{k})), \quad d_i(k) \in \mathcal{D}_i(\mathbf{d_i}(\mathbf{k})) \quad (dynamics, constraints)$

Summary/illustration of problems

including time couplings

$$\min_{\{p_i\},\{d_j\}} \quad \sum_{k=1}^{N} \left(\sum_{i} C_i(p_i(k)) - \sum_{j} B_j(d_j(k)) \right) - \frac{\lambda(k) p_{EX}(k)}{\sum_{i} p_i(k) - \sum_{j} d_j(k) + q(k) = p_{EX}(k)}$$
subject to
$$\sum_{i} p_i(k) - \sum_{j} d_j(k) + q(k) = p_{EX}(k)$$
$$p_i(k) \in \mathcal{P}_i(\mathbf{p_i(k)}), \quad d_j(k) \in \mathcal{D}_j(\mathbf{d_j(k)}) \quad (\textit{dynamics}, \textit{constraints})$$

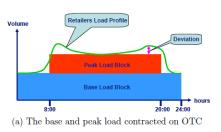
General philosophy: keep market operator's job simple and transparent; let BRPs cope with their problems

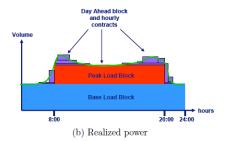
- Market operator services for time couplings: block bids, intra-day market
- Similarity with hierarchical/distributed (dual decomposition based) MPC
- Iterations replaced with bids (functions relating primal-dual variables)
- Complexity: largely on the BRP's side, behind the "market interface", behind bid
- Market power, game theory: $\lambda(k, p_{EX}(k))$

Market-based operation Market power

Market architecture

"Submarkets"

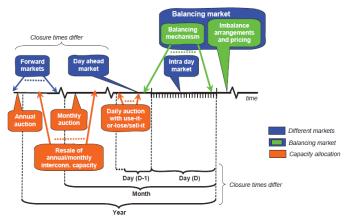




The base and peak load on energy markets

Market architecture

Architecture = functionality allocation: "who does what?", "how are the subsystems interrelated and connected?'



Forward time markets (Bilateral markets; "Over the counter (OTC) trade": reducing risks Day ahead market: adapting to D-1 state/prediction. competition; liquidity Intraday markets: adaptation to H-1 state/prediction (some similarity with MPC)

Andrej Jokić (FSB, University of Zagreb)

03.02.2014. 63 / 184

Market-based operation Market power

Market architecture

Market types

Two basic ways to arrange trades between buyers and sellers

Balancing market: reflecting true physical transactions

- bilateral (trade directly)
- mediated (over intermediary)

Arrangement	Type of Market				
Bilateral:	Search	Bulletin Board	Brokered		
Mediated:			Dealer	Exchange	Pool
	Less org	anized		More o	centralized

- Currently there is no consensus on the best list of submarkets from which to construct an entire power market.
- Design of market architecture must consider market structure in which it is embedded.
- Market structure = properties of the market closely tied to technology and ownership.

Andrej Jokić (FSB, University of Zagreb)

Power system economics

Andrej Jokić (FSB, University of Zagreb)

Power system economics

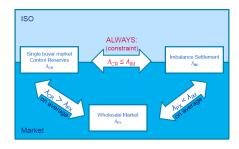
03.02.2014.

Market architecture

Linkages

- implicit (e.g., prices on forward markets (longer term) try to approximate expected spot prices (short term))
- explicit

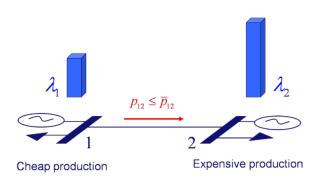
Implicit linkages are important part of market architecture (e.g., they create incentives for certain business opportunities.)



Relations between prices on different markets (TenneT NL)

Congestion management Basic notions

Congestion management



Line flow limits:

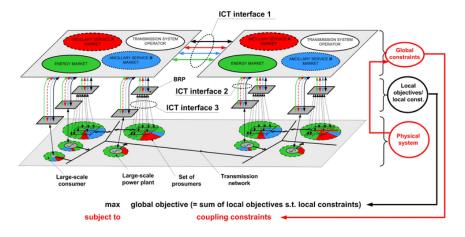
- physical: thermal limits, stability limits
- contingency limits (robustness): physical limits following contingency

Congestion is a problem on more time-scales (day-ahead, real-time).

Outline

- Market-based operation: benefits, problems and basic principles.
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based control

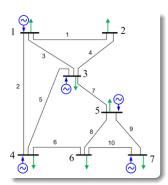
Congestion management



Traditional system: vertically integrated utility with full knowledge and control. Market-based system. Responsible party: Transmission system operator (TSO). Transmission system used in different way than planned. One of the toughest problems in market-based operation. Several solution architectures in practice

Recall: power flow equations (DC)

Transmission system: connected undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$



DC power flow model:

$$p_{ij} = b_{ij}(\theta_i - \theta_j) = -p_{ji}$$

 $b_{ij} = \mathsf{susceptance}$ of line $\epsilon_{ij} \in \mathcal{E}$,

 θ_i = voltage phase angle at node (bus) $v_i \in \mathcal{V}$.

Node v_i with neighbouring nodes \mathcal{N}_i , power balance: $p_i = \sum_{j \in \mathcal{N}_i} p_{ij}$

 p_i = node aggregated controllable power injection

- $p_i < 0$ consumption
- $p_i > 0$ production

Andrej Jokić (FSB, University of Zagreb)

Power system economics

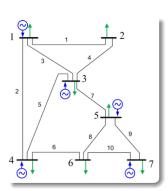
03.02.2014.

.4. 71 / 18

Congestion management

Basic notions

Power Transfer Distribution Factors (PTDF)



Power Transfer Distribution Factors (PTDF)

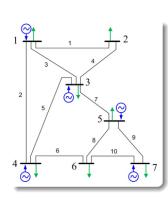
PTDF (of a line with respect to a transaction) is the coefficient of the linear relationship between the amount of transaction and the flow on the line.

A transaction = specific amount of power injected at one (specified) node and removed at another (specified) node.

PTDF is the fraction of the amount of a transaction from one node to the other that flows over a given transmission line.

Recall: power flow equations (DC)

Transmission system: connected undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$



$$\begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix} = \begin{pmatrix} b_{\mathcal{N}_1} & -b_{12} & \dots & -b_{1n} \\ -b_{12} & b_{\mathcal{N}_2} & \dots & -b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -b_{1n} & -b_{2n} & \dots & b_{\mathcal{N}_n} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$$

with
$$b_{\mathcal{N}_i} := \sum_{i \in \mathcal{N}_i} b_{ij}$$

Power flow equations

$$p = B\theta$$

Remark:
$$B^{\top} = B$$
, $B\mathbf{1}_n = 0$.

Line flow limits

$$L\theta \leq \overline{e}_{\mathcal{E}}$$

Andrej Jokić (FSB, University of Zagreb

Power system economic

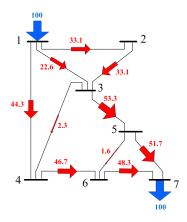
03.02.2014. 72 / 184

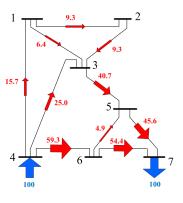
Congestion manageme

Basic notion

Power Transfer Distribution Factors (PTDF)

Example.



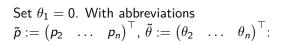


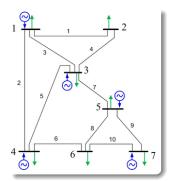
 \downarrow No free routing. (\uparrow Frequency as global variable.)

ic notions

Congestion management

Power Transfer Distribution Factors (PTDF)





$$\underbrace{\begin{pmatrix} p_1 \\ \tilde{p} \end{pmatrix}}_{p} = \underbrace{\begin{pmatrix} \tilde{B}_{11} & \tilde{B}_{21}^{\top} \\ \tilde{B}_{21} & \tilde{B}_{22} \end{pmatrix}}_{p} \underbrace{\begin{pmatrix} 0 \\ \tilde{\theta} \end{pmatrix}}_{\theta}$$

$$\underbrace{\begin{pmatrix} \theta_1 \\ \tilde{\theta} \end{pmatrix}}_{\theta} = \underbrace{\begin{pmatrix} \mathbf{0} & \mathbf{0}_{\mathbf{n-1}}^{\top} \\ \mathbf{0}_{\mathbf{n}} & \tilde{B}_{22}^{-1} \end{pmatrix}}_{F} \underbrace{\begin{pmatrix} p_1 \\ \tilde{p} \end{pmatrix}}_{p}$$

 $\psi_{ij,mn}$ the fraction of transaction from node m to node n, which flows over line ij.

$$\psi_{ij,mn} = b_{ij}(F_{im} - F_{in} - F_{jm} + F_{jn})$$

Andrej Jokić (FSB, University of Zagreb)

Power system economics

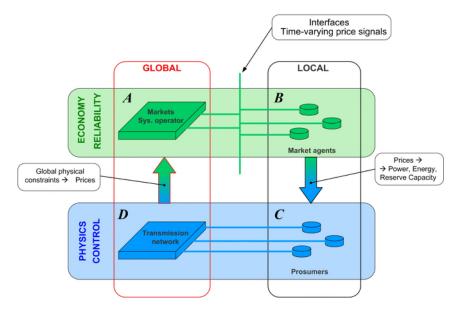
03.02.2014.

75 / 184

Congestion management

Basic notion

Market-based solution?



Optimal power flow problem

 p_i = node aggregated controllable power injection with assigned economic objective function $J_i(p_i)$:

- $p_i < 0$, net consumption, $J_i(p_i) = -B_i(p_i)$
- $p_i > 0$, net production, $J_i(p_i) = C_i(p_i)$

 q_i = uncontrollable, price inelastic, nodal power injection (net consumption: $q_i < 0$, net production : $q_i > 0$).

Optimal power flow problem (OPF)

$$egin{array}{ll} \min_{p, heta} & \sum_{i=1}^n J_i(p_i) \ & ext{subject to} & p+q-B heta=0 \ & \underline{p} \leq p \leq \overline{p} \ & L heta \leq \overline{e}_{\mathcal{E}} \end{array}$$

Andrej Jokić (FSB, University of Zagreb

Power system economics

03 02 2014 76

Congestion managemen

Congestion management approaches

Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- 2 Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based contr
- Conclusions

Congestion management approaches

Allocation methods

- Nodal pricing (Locational marginal pricing)
- Zonal pricing:
 - Market splitting
 - Flow-based coupling
- Explicit auctioning
- ...other.. (uniform pricing with congestion relief,...)

Alleviation methods

- Generation dispatching
- Buy-back countertrade

Andrei Jokić (FSB. University of Zagreb)

ower system economics

03.02.2014.

gement C

Congestion management approaches

Nodal pricing

Given: bids
$$\beta(p) := (\beta_1(p_1) \dots \beta_n(p_n))^{\top}$$
. Deduced: prosumption limits $\{\underline{p}_i, \overline{p}_i\}$, $\underline{p} < \overline{p}$, cost functions $J_i(p_i) := \int_{p_i}^{p_i} \beta_i(\xi) d\xi$ for $p_i \ge 0$ and $J_i(p_i) := \int_{p_i}^{\overline{p}_i} \beta_i(\xi) d\xi$ for $p_i < 0$

Optimal pricing problem

with
$$\lambda = \begin{pmatrix} \lambda_1 & \dots & \lambda_n \end{pmatrix}^{\top}$$

$$\min_{p,\theta,\lambda} & \sum_{i=1}^n J_i(p_i) \quad \text{(max welfare)}$$
 subject to
$$\beta(p) = \lambda$$

$$egin{aligned} oldsymbol{p} - oldsymbol{B} oldsymbol{ heta} &= 0 \ oldsymbol{L} oldsymbol{ heta} &\leq \overline{oldsymbol{e}}_{\mathcal{E}} \end{aligned}$$

Proposition

Vector of optimal dual variables related to the constraint (♣) in the dual to OPF problem is the vector of optimal nodal prices.

Power system economics

OPF problem

$$\min_{p,\theta} \quad \sum_{i=1}^n J_i(p_i)$$

subject to

$$p - B\theta = 0$$

$$p \le p \le \overline{p}$$

$$L\theta \leq \overline{e}_{\mathcal{E}}$$

Congestion management approaches

- common: maintaining security; different: impact on market economy
- Why such diversity? previous market developments (history) and conservative engineering, national politics and economic developments, strategic approach to market players, specific topologies, generation portfolios, policy, young filed (?)...
- Congestion management is depended on the energy market architecture

Andrej Jokić (FSB, University of Zagre

Power system economic

3 02 2014 80 / 1

Congestion managem

Congestion management approach

Intermezzo: Lagrange duality, KKT conditions

$$f: \mathbb{R}^n \to \mathbb{R}, \quad h: \mathbb{R}^n \to \mathbb{R}^m, \quad g: \mathbb{R}^n \to \mathbb{R}^p$$

$$\min_{x} \quad f(x)$$
subject to
$$h(x) = 0$$

$$g(x) \le 0$$

Lagrange function

$$L(x, \lambda, \mu) := f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x)$$

KKT optimality conditions

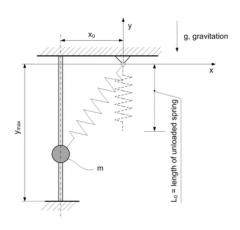
$$abla f(x) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x) + \sum_{i=1}^{p} \mu_i \nabla g_i(g) = 0$$

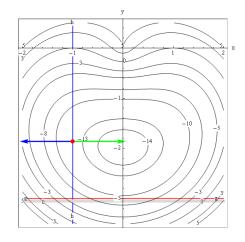
$$h(x) = 0$$

$$0 < -g(x) \perp \mu > 0$$

Intermezzo: Lagrange duality, KKT conditions

Illustrative example





Andrei Jokić (ESB University of Zagreh)

Power system economic

03.02.2014.

2.2014. 83 / 1

Congestion management

Congestion management approaches

Nodal pricing

KKT conditions (after "including back" the limits $\{p_i, \overline{p}_i\}$ into the bids $\beta_i(p_i)$)

OPF problem

$$egin{aligned} \min_{p, heta} & \sum_{i=1}^n J_i(p_i) \ & ext{subject to } p - B heta = 0 \ & \underline{p} \leq p \leq \overline{p} \ & L heta \leq \overline{e}_{\mathcal{E}} \end{aligned}$$

KKT conditions

$$\beta(p^*) - \lambda^* = 0$$

$$p^* - B\theta^* = 0$$

$$B\lambda^* + L^{\top}\mu^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \quad \perp \quad \mu^* \ge 0$$

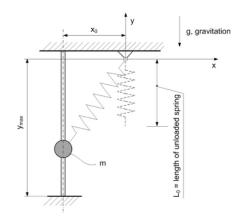
Singe price in case of no congestion

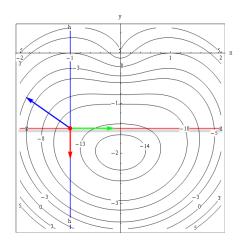
$$-L\theta^{\star} + \overline{e}_{\mathcal{E}} < 0 \quad \Longrightarrow \quad \mu^{\star} = 0 \quad \Longrightarrow \quad B\lambda^{\star} = 0 \quad \Longrightarrow \quad \lambda^{\star} = \mathbf{1}_{n}\hat{\lambda}, \ \hat{\lambda} \in \mathbb{R}$$

In case of singe congested line, optimal nodal price in general have different value for each node. $(B\lambda^* = -L^\top \mu^*)$

Intermezzo: Lagrange duality, KKT conditions

Illustrative example





Andrej Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014. 84

ongestion management

Congestion management approach

Nodal pricing

Accounting for contingencies

OPF problem with contingencies

$$\begin{aligned} \min_{p,\theta} \quad & \sum_{i=1}^n J_i(p_i) \\ \text{subject to } p - B\theta = 0 \\ & p - B_c\theta_c = 0 \\ & \underline{p} \leq p \leq \overline{p} \\ & L\theta \leq \overline{e}_{\mathcal{E}} \\ & L_c\theta_c \leq \overline{e}_c \end{aligned}$$

KKT conditions

$$\beta(p^*) - \underbrace{(\lambda_n^* + \lambda_c^*)}_{\lambda^*} = 0$$

$$p^* - B\theta^* = 0$$

$$p^* - B\theta_c^* = 0$$

$$B\lambda_n^* + L^{\top}\mu_n^* = 0$$

$$B_c\lambda_c^* + L_c^{\top}\mu_c^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \quad \perp \quad \mu^* \ge 0$$

$$0 \le (-L_c\theta_c^* + \overline{e}_c) \quad \perp \quad \mu_c^* \ge 0$$

Accounting for overloads when a singe circuit is out: "N-1 criteria.

Usually post contingency flow limits are higher than nominal $(\overline{e}_{\mathcal{E}} < \overline{e}_{\mathcal{E}})$

Nodal pricing

Congestion revenue (collected by the market operator): $-(p^\star)^\top \lambda^\star$

Congestion revenue (merchandise surplus) is nonnegative

With losses neglected (DC), it always hold that

$$-(p^{\star})^{\top}\lambda^{\star} \geq 0.$$

In case of at least one line congested (line flow constraint active), we have

$$-(p^{\star})^{\top}\lambda^{\star}>0.$$

With $p=p_g+p_d$ where $p_g\geq 0$ are generator injections and $p_d\leq 0$ load, we have

$$-(p^\star)^\top \lambda^\star \geq 0 \quad \Longrightarrow \quad (\lambda^\star)^\top |p_d| - (\lambda^\star)^\top |p_g| \geq 0 \quad \text{(market operator profits)}$$

where $|\cdot|$ is elementwise applied absolute value on the vector.

Exercise 5: prove that congestion revenue is always nonnegative (Hint: multiply optimality condition $B\lambda^* + L^\top \mu^* = 0$ from left with $(\theta^*)^\top$.)

Andrej Jokić (FSB, University of Zagreb)

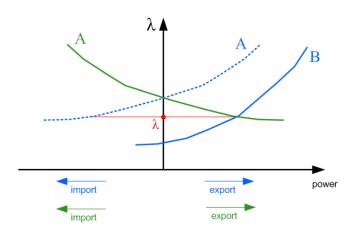
ower system economics

03.02.2014. 87 / 1

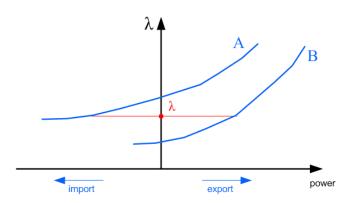
Congestion management

Congestion management approaches

Nodal pricing



Nodal pricing



Andrej Jokić (FSB, University of Zagreb)

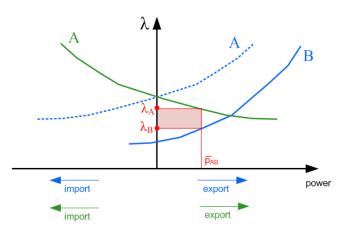
Power system economics

03.02.2014. 88 / 184

Congestion manageme

Congestion management approache

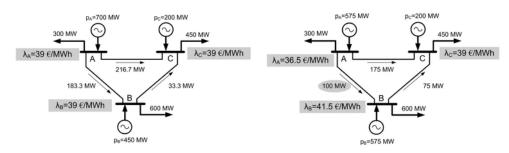
Nodal pricing



Nodal pricing

Example I

Exercise 6: Solve the nodal pricing problem from the figure.



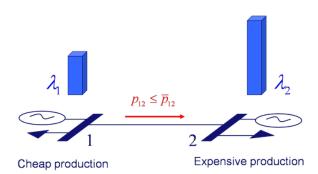
- The bids (incremental costs): $\beta_A(p_A)=25+0.02p_A$, $\beta_B(p_B)=30+0.02p_B$, $\beta_C(p_C)=35+0.02p_C$
- Load is price inelastic.
- Line flow limits: only line A B has a limit on power flow, which is set to 100MW.
- All three lines are identical

Andrej Jokić (FSB, University of Zagreb) Power system economics 03.02.2014

Congestion management

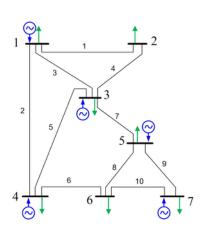
Congestion management approache

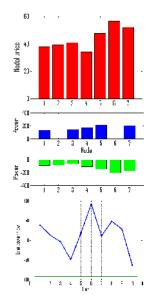
Congestion and market power



- Bid lower then incremental cost in one location to induce congestion and profit by exercising market power in other location.
- Positive side of market power due to congestion or number of generators: larger prices "invite" new players/investments.
- Market power due to exploration of holes in market rules or exploitation of conflict of interest: no useful economic signals

Nodal pricing





Andrej Jokić (FSB, University of Zagreb)

Power system econ

03.02.2014. 92 / 18

Congestion manageme

Congestion management approach

Transmission rights

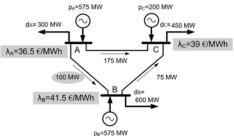
Transmission is scarce.

There is an extra money (congestion rent).

 \downarrow

Organize market for transmission rights. Use extra money to control financial risks of congestion induced price variations.

Transmission rights



CR = congestion rent

$$CR = \lambda_A(d_A - p_A) + \lambda_B(d_B - p_B) + \lambda_C(d_C - p_C)$$

$$= p_{AB}(\lambda_B - \lambda_A) + p_{BC}(\lambda_B - \lambda_C) + p_{AC}(\lambda_C - \lambda_A)$$

$$= 750$$

Example a)

- d_B has contract for 150MW from p_A .
- Physically max transaction from A to B = 150MW (2/3 of transaction flows across line AB and 1/3 across path AC - CB).
- p_B buys 150MW of its power at locational price of node A: pays $d_B * \lambda_B$ but gets compensated (paid by generator in A) in amount $150 * (\lambda_B - \lambda_A) = 750$.
- Market operator compensates generator at A for 750 = CR

Congestion management Congestion management approaches

Transmission rights

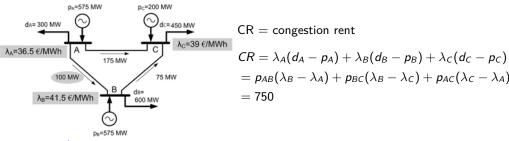
Optimal nodal prices are competitive prices.

Well designed markets with perfect competition will find the same set of prices as calculated via Lagrange multipliers.

So, using optimization (duality) is a "shortcut". However...

- One might purchase a transmission right to protect itself against locational price swings due to congestion (congestion implies more local balancing \rightarrow local conditions are more volatile than global (no aggregation) \rightarrow volatility of locational prices)
- Owning a transmission right protects loads from market power exercise of local producers
- Market operator might have losses if contracted transmission rights are in excess of transmission capacity across a congested interface (sell according to worst case contingency)
- With limited amount of transmission rights, not all loads are protected from market power in case of congestion

Transmission rights



Example b)

- d_C has contract for 300MW from p_A .
- Physically max transaction from A to C = 300MW (1/3 of transaction flows across path AB - BC and 2/3 across line AC).
- p_C buys 300MW of its power at locational price of node A: pays $d_C * \lambda_C$ but gets compensated (paid by generator in A) in amount $300 * (\lambda_C - \lambda_A) = 750$.
- Market operator compensates generator at A for 750 = CR

Congestion management approaches

Zonal pricing (market splitting)

Given: bids $\beta(p) := (\beta_1(p_1) \dots \beta_n(p_n))^{\top}$ Deduced: cost functions $J_i(p_i)$

Optimal pricing problem

with
$$\lambda = \begin{pmatrix} \mathbf{1}_{\mathsf{n}\mathbf{1}}^{\mathsf{T}} \lambda_{\mathcal{Z}_1} & \dots & \mathbf{1}_{\mathsf{n}\mathsf{K}}^{\mathsf{T}} \lambda_{\mathcal{Z}_{\mathcal{K}}} \end{pmatrix}^{\mathsf{T}}$$

$$\min_{p, heta, \lambda} \quad \sum_{i=1}^n J_i(p_i) \quad (\mathsf{max} \; \mathsf{welfare})$$

subject to

$$\beta(p) = \frac{\lambda}{\lambda}$$
$$p - B\theta = 0$$
$$L\theta < \overline{e}_{\mathcal{E}}$$

Different types of bids - different class of optimization problem:

- i) QP for $\{\beta_i(p_i)\}_{i=1,...,n}$ affine with no saturation
- ii) MILP for $\{\beta_i(p_i)\}_{i=1,...,n}$ piecewise constant (often in current practice)
- iii) MIQP $\{\beta_i(p_i)\}_{i=1,...,n}$ affine with saturations

No simple characterization via duality. except for (i).

 $\lambda_{\mathcal{Z}_i}$ zonal price for n_i nodes in zone i (zone \mathcal{Z}_i). First n_1 nodes in zone \mathcal{Z}_2 , then next n_2 nodes in zone $\mathcal{Z}_2,...$

Zonal pricing (market splitting)

Given: bids $\beta(p) := (\beta_1(p_1) \dots \beta_n(p_n))^{\top}$ Deduced: cost functions $J_i(p_i)$

Optimal pricing problem

with
$$\lambda = \begin{pmatrix} \mathbf{1}_{\mathbf{n}\mathbf{1}}^{\mathsf{T}} \lambda_{\mathcal{Z}_1} & \dots & \mathbf{1}_{\mathbf{n}\mathsf{K}}^{\mathsf{T}} \lambda_{\mathcal{Z}_{\mathsf{K}}} \end{pmatrix}^{\mathsf{T}} \qquad \gamma_i(\cdot) = \beta_i^{-1}(\cdot)$$

$$\min_{p,\theta,\lambda} \quad \sum_{i=1}^n J_i(p_i) \quad \text{(max welfare)}$$

subject to

$$\beta(p) = \frac{\lambda}{\lambda}$$

$$p - B\theta = 0$$
 $L\theta - \overline{e}_{\mathcal{E}} \le 0$

Zonal prices for affine bids (case (i))

$$\gamma_i(\cdot) = \beta_i^{-1}(\cdot)$$

 $\tilde{\mu}$ opt. Lagrange multiplier for \spadesuit $\min_{p,\theta,\lambda} \sum_{i=1}^n J_i(p_i) \quad (\text{max welfare}) \qquad \tilde{\lambda} \text{ opt. Lagrange multiplier for } \clubsuit \text{ ("auxiliary nodal prices", note that } B\tilde{\lambda} + L^\top \tilde{\mu} = 0)$

$$\sum_{j\in\mathcal{Z}_i} (ilde{\lambda}_j - \lambda_{\mathcal{Z}_i}) \gamma_j'(\lambda_{\mathcal{Z}_i}) = 0, \quad i=1,\ldots, \mathcal{K}$$

where $\gamma_i'(\cdot)$ is derivative of $\gamma_i(\cdot)$.

In case of affine bids, zonal prices can be calculated as averaged sum of auxiliary nodal prices, where the weights are derived from the bids.

Congestion management approaches

INTERMEZZO: Exercise 7

Exercise 7

For network with topology on previous slide calculate: nodal prices, zonal prices, PTDFs for transactions of choice. ...

line i-j	Xij	flow limit
1-2	0.0576	100
1-4	0.092	100
1-3	0.17	100
2-3	0.0586	100
3-4	0.1008	100
4-6	0.072	100
3-5	0.0625	100
3-5	0.161	100
3-5	0.085	100
3-5	0.0856	100

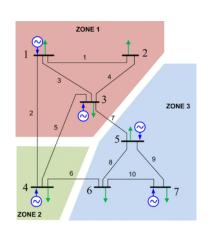
node i	a _i	b_i	load
1	0.13	1.73	88
2	-	_	87
3	0.13	1.86	64
4	0.09	2.13	110
5	0.10	2.39	147
6	-	-	203
7	0.12	2.53	172

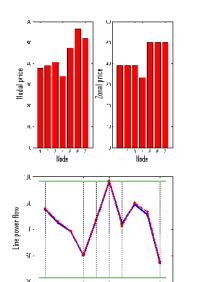
Cost function of generator at node *i*: $C_i(p_i) = a_i p_i^2 + b_i p_i$

Zonal pricing (market splitting)

Example

Exercise 7 (on next slide)





Congestion management approaches

Zonal pricing (flow-based market coupling)

CWE FB market coupling

CWE = Central Western Europe

NWE = North-West Europe

The market coupling evolved from market splitting.

In EU, price zones already exist (national networks).

Goal: coupling of price zones (pan-EU market).

- Available Transfer Capacity (ATC) based market coupling: in 2010 for NWE
- Flow-based market coupling: parallel run and testing for CWE region
 - estimated increase in day-head market welfare: 95M Euro / year (report 9 May 2014)

Zonal pricing (flow-based market coupling)

CWE FB market coupling

Market coupling

- matching orders on several power exchanges (market operators)
- implicit (transfer) capacity allocation mechanism
- market prices and net positions of the connected markets simultaneously determined
- goal: efficient and safe usage of transmission system under coupled markets

Andrei Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014.

.4. 103 / 18

From aggregated zonal bids $\beta_{\mathcal{Z}_i}(p_{\mathcal{Z}_i})$ deduce objective functions $J_i(p_{\mathcal{Z}_i})$. $p_{\mathcal{Z}} := (p_{\mathcal{Z}_1}, \dots, p_{\mathcal{Z}_K})^\top$, $p_{\mathcal{Z}_i} \in \mathbb{R}$ (not sign restricted, possible net import and net export) $\lambda_{\mathcal{Z}} := (\lambda_{\mathcal{Z}_1}, \dots, \lambda_{\mathcal{Z}_K})^\top$, $\lambda_{\mathcal{Z}_i} \in \mathbb{R}$, $s_{\mathcal{C}}$ is vector of reliability margins

Market coupling problem

$$egin{aligned} \min_{p_{\mathcal{Z}},\lambda_{\mathcal{Z}}} & \sum_{i=1}^K J_{\mathcal{Z}_i}(p_{\mathcal{Z}_i}) \ & ext{subject to} & eta_{\mathcal{Z}}(p_{\mathcal{Z}}) = \lambda_{\mathcal{Z}} \ & \sum_{i=1}^K p_{\mathcal{Z}_i} = 0 \ & \sum_{i=1}^K p_{\mathcal{Z}_i} = 0 \ & + \boxed{ ilde{\Psi}M(p_{\mathcal{Z}} - p_{\mathcal{Z}}^{ref})} + s_{\mathcal{C}} - \overline{e}_{\mathcal{C}} \leq 0 \end{aligned}$$

Market coupling problem .

$$\begin{aligned} \min_{p_{\mathcal{Z}},\theta,\lambda_{\mathcal{Z}}} \quad & \sum_{i=1}^{K} J_{\mathcal{Z}_{i}}(p_{\mathcal{Z}_{i}}) \\ \text{subject to} \quad & \beta_{\mathcal{Z}}(p_{\mathcal{Z}}) = \lambda_{\mathcal{Z}} \\ & \boxed{Mp_{\mathcal{Z}}} - B\theta = 0 \\ & \underbrace{e_{\mathcal{C}}^{ref} + L\theta}_{e_{\mathcal{C}}} + s_{\mathcal{C}} - \overline{e}_{\mathcal{C}} \leq 0 \end{aligned}$$

boxed parts = relaxation of difficult part for zonal pricing (origin of nonconvexity).

citation:"...due to convexity pre-requisite of the flow based domain, the GSK must be linear..."

There is more structure in \clubsuit formulation (possible to exploit).

Zonal pricing (flow-based market coupling)

CWE FB market coupling

 $\begin{array}{ll} \mathbf{e}_{\mathcal{C}} \in \mathbb{R}^{T} & \text{vector power flows in } T \text{ congestion critical lines} \\ \mathbf{e}_{\mathcal{C}}^{\textit{ref}} \in \mathbb{R}^{T} & \text{vector of predicted (reference) line power flows in congestion critical lines} \\ \mathbf{p}_{\mathcal{Z}_{i}} \in \mathbb{R} & \text{aggregated prosumption in zone } i \\ \mathbf{\Psi} \in \mathbb{R}^{T \times K} & \text{matrix of "zonal" Power Transfer Distribution Factors (PTDF)} \end{array}$

$$p_{\mathcal{Z}} := ig(p_{\mathcal{Z}_1}, \dots, p_{\mathcal{Z}_K}ig)^ op, \ p_{\mathcal{Z}}^{\mathsf{ref}} := ig(p_{\mathcal{Z}_1}^{\mathsf{ref}}, \dots, p_{\mathcal{Z}_K}^{\mathsf{ref}}ig)^ op$$

$$e_{\mathcal{C}} = e_{\mathcal{C}}^{ref} + \Psi(p_{\mathcal{Z}} - p_{\mathcal{Z}}^{ref})$$

Generation Shift Key (GSK)

$$\Psi = \tilde{\Psi} \underbrace{\mathsf{diag}(\mathit{M}_1, \ldots, \mathit{M}_{\mathit{K}})}_{\mathit{M}}$$

 $M_i \in \mathbb{R}^{R_i} = \text{Generation Shift Key (GSK)} = \text{mapping from aggregated zone power variation (scalar value) into variations of <math>R_i$ nodal "market active" power injections in that zone.

 $ilde{\Psi} \in \mathbb{R}^{ au imes (R_1 + \ldots + R_K)} = \mathsf{matrix} \ \mathsf{of} \ \text{``standard''} \ \mathsf{PTDF} \ \mathsf{factors}$

Andrej Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014. 104

ongestion management

Congestion management approaches

Zonal pricing (flow-based market coupling)

CWE FB market coupling

Remarks

- "a critical branch is considered to be significantly impacted by CWE cross border trade, if its maximum CWE zone-to-zone PTDF is larger then 5%"
- regularly updated (D-2 days) detailed transmission system model and parameters estimation in detailed model used for PTDF calculation
- regular cooperation of all TSO's in gathering data
- ullet reliability margins $s_{\mathcal{C}}$: to capture uncertainties, among others from GSK approximation

Andrej Jokić (FSB, University of Zagreb)

Power system econor

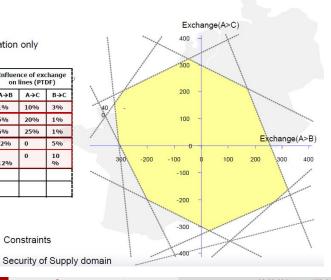
03.02.2014.

Zonal pricing (flow-based market coupling)

CWE FB market coupling

Numbers are for illustration only

Monit ored	Outage	Margin left	Influence o on lines			
Lines	scenario	(MW)	A→B	A→C	B→C	
Line 1	No outage	150	1%	10%	3%	
	Outage 1	120	5%	20%	1%	
	Outage 2	100	6%	25%	1%	
Line 2	No outage	150	-2%	0	5%	
	Outage 3	100	- 12%	0	10 %	
Line 3	No outage					
	Outage 4					

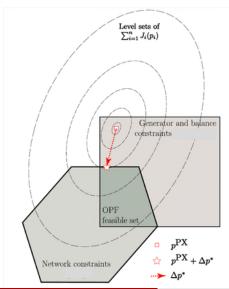


Constraints

Congestion management approaches

Alleviation methods

Illustration of optimal redispatch



- 1) Clear energy market ignoring (internal) line flow limits $\rightarrow (p^{PX}, \theta^{PX})$
- 2) Redispatch if a line flow limit violated

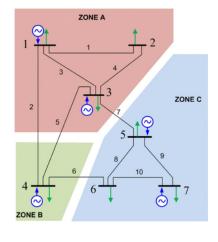
$$\min_{\Delta p,\Delta heta} \; \sum_i J_i(\Delta p_i)$$
 subject to $\Delta p - B\Delta heta = 0$

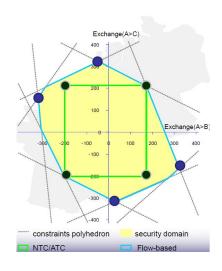
 $L(\theta^{PX} + \Delta \theta) \leq \overline{e}_{\mathcal{E}}$

3) Based on Δp^* , the TSO pays $J_i(\Delta p_i)$ to *i*-th prosumer

Zonal pricing (flow-based market coupling)

CWE FB market coupling





03.02.2014.

Using full AC model

Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based control

Convexification of OPF

Bus injection model

 $\mathbf{v_k}, \mathbf{i_k}, \mathbf{s_k} = \text{voltage, current, power (all complex) at node } k$ Y admittance matrix

 e_k column vector with 1 in the k-th entry, zero elsewhere

$$\mathbf{s_k} = p_k + iq_k$$

$$\mathbf{s_k} = \mathbf{v_k} \mathbf{i_k}^* = (e_k^{\top} \mathbf{v}) (e_k^{\top} \mathbf{Y} \mathbf{v})^* = \operatorname{tr} (\mathbf{Y}^* e_k e_k^{\top}) \mathbf{v} \mathbf{v}^*$$

with
$$\mathbf{Y}_{\mathbf{k}} = e_k e_k^{\top} \mathbf{Y}$$
, $\Phi_k := \frac{1}{2} (\mathbf{Y}_{\mathbf{k}}^* + \mathbf{Y}_{\mathbf{k}})$, $\Psi_k := \frac{1}{2i} (\mathbf{Y}_{\mathbf{k}}^* - \mathbf{Y}_{\mathbf{k}})$, $J_k := e_k e_k^{\top}$

$$p_k = \operatorname{tr} \Phi_k \mathbf{v} \mathbf{v}^*$$

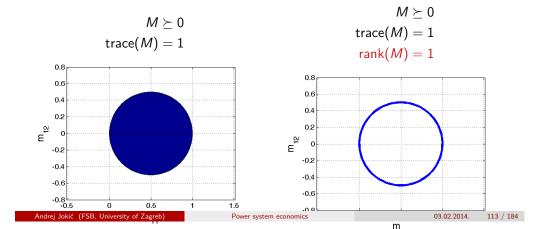
$$q_k = \operatorname{tr} \Psi_k \mathbf{v} \mathbf{v}^*$$

$$|\mathbf{v_k}|^2 = \operatorname{tr} J_k \mathbf{vv}^*$$

Convexification of OPF

Example. Rank constraint as origin of nonconvexity.

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{pmatrix}$$



Convexification of OPF

OPF problem (QCQP)

$$\begin{split} \min_{\mathbf{v}} \quad & \sum_{k} \operatorname{tr} \ C_{k} \mathbf{v} \mathbf{v}^{*} \\ \text{subjet to} \\ & \underline{p}_{k} \leq \operatorname{tr} \ \Phi_{k} \mathbf{v} \mathbf{v}^{*} \leq \overline{p}_{k} \\ & q_{\nu} \leq \operatorname{tr} \ \Psi_{k} \mathbf{v} \mathbf{v}^{*} \leq \overline{q}_{k} \end{split}$$

 $\mathbf{v_k}^2 < \operatorname{tr} J_k \mathbf{vv}^* < \overline{\mathbf{v}_k}^2$

SDP formulation of the OPF problem

$$\min_{\mathbf{v}} \quad \sum_{k} \operatorname{tr} C_{k} \mathbf{W}$$

subjet to

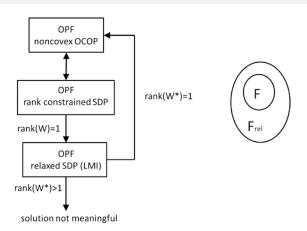
$$\begin{split} & \underline{p}_k \leq \operatorname{tr} \, \Phi_k W \leq \overline{p}_k \\ & \underline{q}_k \leq \operatorname{tr} \, \Psi_k W \leq \overline{q}_k \\ & \underline{\mathbf{v}_k}^2 \leq \operatorname{tr} \, J_k W \leq \overline{\mathbf{v}_k}^2 \\ & W \succeq 0 \\ & \operatorname{rank}(W) = 1 \end{split}$$

SDP relaxation of the OPF problem

Omit the constraint rank(W) = 1

Using full AC model

Convex relaxation of OPF



- Radial networks: ∃ (mild) sufficient conditions for exactness of relaxation
- ullet Branch flow model: radial net o exact
- Mesh networks: convexification via phase shifters
- When exact: strong duality

Andrej Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014.

Convex relaxation of OPF

Mesh network

OPF Problem	SDP Relaxation of OPF
$\begin{array}{c} \text{Minimize } \sum\limits_{k \in \mathcal{G}} f_k(P_{G_k}) \text{ over } \mathbf{P}_G, \mathbf{Q}_G, \mathbf{V} \\ \text{Subject to:} \end{array}$	$\begin{array}{l} \text{Minimize } \sum\limits_{k\in\mathcal{G}} f_k(P_{G_k}) \text{ over } \mathbf{P}_G, \mathbf{Q}_G, \mathbf{W} \in \mathbb{H}^n_+ \\ \text{Subject to:} \end{array}$
1- A capacity constraint for each line $(l,m)\in\mathcal{L}$	1- A convexified capacity constraint for each line
2- The following constraints for each bus $k \in \mathcal{N}$:	2- The following constraints for each bus $k \in \mathcal{N}$:
$P_{G_k} - P_{D_k} = \sum_{l \in \mathcal{N}(k)} \text{Re} \left\{ V_k (V_k^* - V_l^*) y_{kl}^* \right\} \text{(1a)}$ $Q_{G_k} - Q_{D_k} = \sum_{l \in \mathcal{N}(k)} \text{Im} \left\{ V_k (V_k^* - V_l^*) y_{kl}^* \right\} \text{(1b)}$	$P_{G_k} - P_{D_k} = \sum_{l \in \mathcal{N}(k)} \text{Re} \left\{ (W_{kk} - W_{kl}) y_{kl}^* \right\} (2a)$ $Q_{G_k} - Q_{D_k} = \sum_{l \in \mathcal{N}(k)} \text{Im} \left\{ (W_{kk} - W_{kl}) y_{kl}^* \right\} (2b)$
$P_k^{\min} \le P_{G_k} \le P_k^{\max} \tag{1c}$	$P_k^{\min} \le P_{G_k} \le P_k^{\max} \tag{2c}$
$Q_k^{\min} \le Q_{G_k} \le Q_k^{\max}$ (1d)	$Q_k^{\min} \le Q_{G_k} \le Q_k^{\max}$ (2d)
$V_k^{\min} \le V_k \le V_k^{\max} \tag{1e}$	$(V_k^{\min})^2 \le W_{kk} \le (V_k^{\max})^2 \tag{2e}$

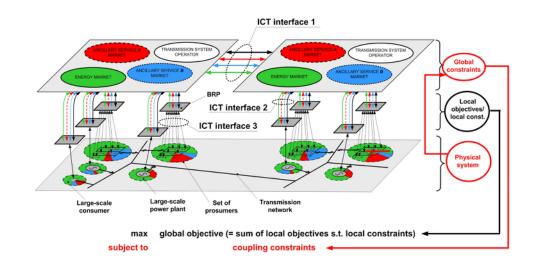
Capacity constraint for line $(l, m) \in \mathcal{L}$		Convexified capacity constraint for line (l, m)	$\in \mathcal{L}$
$ \theta_{lm} = \angle V_l - \angle V_m \le \theta_{lm}^{\max}$	(3a)	$\operatorname{Im}\{W_{lm}\} \leq \operatorname{Re}\{W_{lm}\} \tan(\theta_{lm}^{\max})$	(4a)
$ P_{lm} = \text{Re}\{V_l(V_l^* - V_m^*)y_{lm}^*\} \le P_{lm}^{\text{max}}$	(3b)	$Re\{(W_{ll} - W_{lm})y_{lm}^*\} \le P_{lm}^{max}$	(4b)
$ S_{lm} = V_l(V_l^* - V_m^*)y_{lm}^* \le S_{lm}^{max}$	(3c)	$ (W_{ll} - W_{lm})y_{lm}^* \le S_{lm}^{max}$	(4c)
$ V_l - V_m \le \Delta V_{lm}^{ ext{max}}$	(3d)	$W_{ll} + W_{mm} - W_{lm} - W_{ml} \le (\Delta V_{lm}^{\max})^2$	(4d)

Congestion management Using full AC model

Solution architecture: Some challenges and potentials

- do not use PTDF easier to decompose on Interface 1
- Keeping voltage phase angles preserves the structure
- Interface 1 in reality replaced with higher hierarchical level, not reflecting toplogy of the system
- Both interface 1 and 2 require parts of variables of the power flow
- Interface 3 currently hardly exists large potentials
- Full AC with uncertainties robust solutions, conservatism? Stohastic settings...

Solution architecture: Some challenges and potentials



Market commodities

Outline

- Market-based operation: benefits, problems and basic principles.
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based control

Ancillary services (AS)

Regulated system: AS bundled with energy

Deregulated system: unbundling of AS, creation of competitive markets for AS

Ancillary services

- Real power balancing
- Voltage support (voltage stability)
- Network congestion relief (transmission security)
- Economic dispatch
- Financial trade enforcement
- Black start

Andrej Jokić (FSB, University of Zagreb)

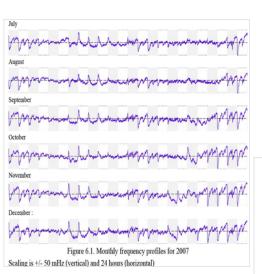
Power system economics

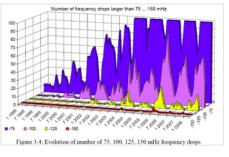
03.02.2014. 120 / 18

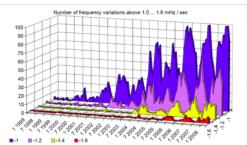
Ancillary services

Market commodities

50Hz Consumption Power Power Secondary control O 30s Time Time







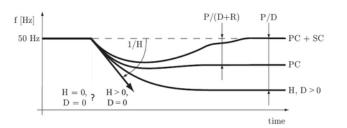
Ancillary service

Market commodities

Commodities

Related AS commodities

- Inertia: not a commodity.
- Primary control (PC) commodities: capacity (usually mapped into control gain (droop). (Control gain as market commodity!)
- Secondary control (SC) commodities: activated energy; allocated capacity (various arrangements)
- Tertiary control commodities: capacity and energy



Some questions: Can one benefit from investing in flywheel? What about inertia in future?

energy

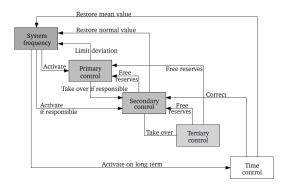
Category.	Function	Reserves
FCR	contain frequency deviations	primary reserves, FCR
FRR	restore nominal frequency	secondary reserves LFC, AR, FADR tertiary reserves
RR	replace used FCR and FRR	tertiary reserves, FADR

ENTSO

FCR = Frequency containment reserves (local, automatic, activation time 30s)

FRR = Frequency restoration reserves (central, automatic or manual, 30s to 15 min)

RR = Replacement reserves (several min to 1 h)

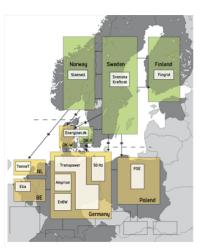


Continental Europe synchronous system

- primary reserve
- secondary reserve
- tertiary reserve

Ancillary services Market commodities

Service objectives and commodities



		DE	NL	BE	DK-W
Primary	capacity	weekly	mandatory	4-yearly	daily
		pay-as-bid	-	bilateral	marginal
	energy	unpaid	unpaid	unpaid	unpaid
		-	-	-	-
Secondary	capacity	weekly	annually	2-yearly	monthly
		pay-as-bid	bilateral	pay-as-bid	pay-as-bid
	energy	weekly	daily	daily	daily
		average	marginal	pay-as-bid	spot-based
Tertiary	capacity	daily	unpaid	4-yearly	daily
		pay-as-bid	-	bilateral	marginal
	energy	daily	daily	daily	daily
		average	marginal	mixed	marginal

Balancing services in continental Europe synchronous system (yellow TSOs in the Fig.) [source: S. Jaehnert, PhD thesis

Remark: from 2014 in TenneT PC capacity is commodity.

Category.	Function	Reserves
FCR	contain frequency deviations	primary reserves, FCR
FRR	restore nominal frequency	secondary reserves LFC, AR, FADR tertiary reserves
RR	replace used FCR and FRR	tertiary reserves, FADR

ENTSO

FCR = Frequency containment reserves (local, automatic, activation time 30s)

FRR = Frequency restoration reserves (central, automatic or manual, 30s to 15 min)

RR = Replacement reserves (several min to 1 h)

Nordic synchronous system

FCNR = Frequency controlled normal reserve (automatic, instantaneous; with rapid change to 49.9/50.1 Hz, up/down regulation within 2-3 min)

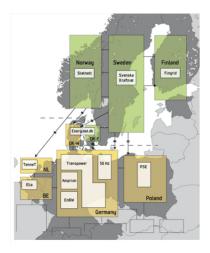
FCDR = Frequency controlled disturbance reserve (automatic, instantaneous; with rapid change to 49.5 Hz, up regulation within 2-3 min)

AR = Automatic reserves

FADR = Fast active disturbance reserve (manual, 15 min)

Ancillary services Market commodities

Service objectives and commodities



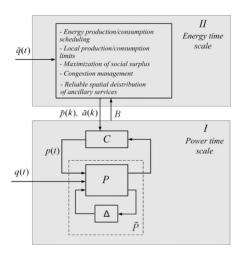
		NO	SE	FI	DK-E	
FCR	capacity	yearly / daily	weekly / hourly	yearly / daily	daily	
		marginal	pay-as-bid	pay-as-bid	pay-as-bid	
	energy	unpaid	unpaid	unpaid	unpaid	
		-	-	-	-	
AR	capacity		to be			
	energy		decided			
FADR	capacity	yearly / weekly	yearly	yearly	daily	
		marginal	bilateral	pay-as-bid	pay-as-bid	
	energy	hourly				
		marginal				

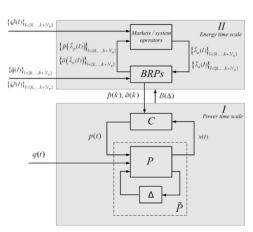
Balancing services in Nordic synchronous system (green TSOs in the Fig.)

Sync. Area	Process	Product	Activation	Local/Central	Dynamic/ Static	Full Activation Time
BALTIC	Frequency Containment	Primary Reserve	Auto	Local	D	30 s
Cyprus	Frequency Containment	Primary Reserve	Auto	Local	D	20 s
Iceland	Frequency Containment	Primary Control Reserve	Auto	Local	D	variable
Ireland	Frequency Containment	Primary operating reserve	Auto	Local	D/S	5 s
Ireland	Frequency Containment	Secondary operating reserve	Auto	Local	D/S	15 s
NORDIC	Frequency Containment	FNR (FCR N)	Auto	Local	D	120 s -180 s
NORDIC	Frequency Containment	FDR (FCR D)	Auto	Local	D	30 s
RG CE	Frequency Containment	Primary Control Reserve	Auto	Local	D	30 s
UK	Frequency Containment	Frequency response dynamic	Auto	Local	D	Primary 10 s / Secondary 30 s
UK	Frequency Containment	Frequency response static	Auto	Local	S	variable
BALTIC	Frequency Restoration	Secondary emergency reserve	Manual	Central	S	15 Min
Cyprus	Frequency Restoration	Secondary Control Reserve	Auto/Manual	Local/Central	D/S	5 Min
Iceland	Frequency Restoration	Regulating power	Manual	Central	S	10 Min
Ireland	Frequency Restoration	Tertiary operational reserve 1	Auto/Manual	Local/Central	D/S	90 s
Ireland	Frequency Restoration	Tertiary operational reserve 2	Manual	Central	S	5 Min
Ireland	Frequency Restoration	Replacement reserves	Manual	Central	S	20 Min
NORDIC	Frequency Restoration	Regulating power	Manual	Central	S	15 Min
RG CE	Frequency Restoration	Secondary Control Reserve	Auto	Central	D	≤ 15 Min
RG CE	Frequency Restoration	Direct activated Tertiary Control Reserve	Manual	Central	S	≤ 15 Min
UK	Frequency Restoration	Various Products	Manual	D/S	N/A	variable
BALTIC	Replacement	Tertiary (cold) reserve	Manual	Central	S	12 h
Cyprus	Replacement	Replacement reserves	Manual	Central	S	20 min
Iceland	Replacement	Regulating power	Manual	Central	S	10 Min
Ireland	Replacement	Replacement reserves	Manual	Central	S	20 Min
NORDIC	Replacement	Regulating power	Manual	Central	S	15 Min
RG CE	Replacement	Schedule activated Tertiary Control Reserve	Manual	Central	S	individual
RG CE	Replacement	Direct activated Tertiary Control Reserve	Manual	Central	S	individual
UK	Replacement	Various Products but the main one is Short Term Operating Reserve (STOR)	Manual	D/S	N/A	from 20 min to 4 h

entso

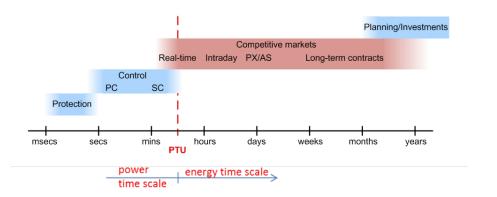
Ancillary services Market commodities





Ancillary services Market commodities

Power balancing ancillary services in time scale



TSO is responsible for balancing within the PTU BRP is responsible for their balance over whole PTU

Power system economics

Actions on power time scale

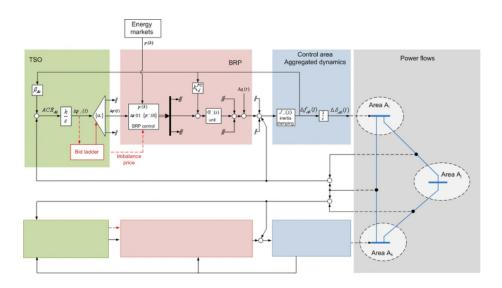
Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based control

03.02.2014.

129 / 184

AS provision



Andrej Jokić (FSB, University of Zagreb)

Power system economics

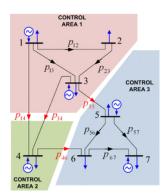
03.02.2014. 1

ices A

ctions on power time scale

AS provision

Exercise 8: show that $ACE_i = 0$, $\forall i \rightarrow \Delta f = 0$ total power exchanges among control areas as at scheduled values. Hint: write down the equations for a simple example (e.g. in the figure), and generalize.

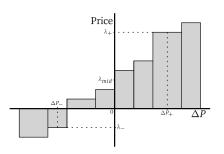


$$ACE_1 = \beta_1 \Delta f_1 + \Delta p_1^{ex}, \quad p_1^{ex} = \Delta p_{14} + \Delta p_{34} + \Delta p_{35}$$

AS provision

Primary control

• Sold capacity (market commodity) mapped into PC control gain (local droop)



Secondary control

- ACE is matched with bidding ladder every 4 seconds
- Bid ladder changes every PTU (changing parameters in SC loop)

Andrej Jokić (FSB, University of Zagreb)

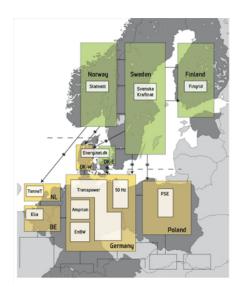
Power system econom

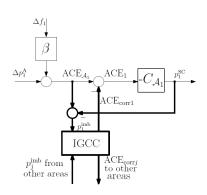
03 02 2014 133 /

Ancillary servi

Actions on power time so

Inter Control Area Cooperation (IGCC)





Outline

- 1 Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- Conclusions

Power system economics

Actions on energy time scale

Imbalance settlement

Example of TenneT NL

state	meaning	occurrence
1	no imbalance in whole PTU	0.14%
-1	the system is long (surplus), requested only negative options	51.77%
0	the system is short (deficit), requested only positive options	38.25%
0	the system has been both long and short within PTU	9.85%

			BSP		BRP			
			Short	0	Long	Short	0	Long
Situation	-1	(long)	$-(\lambda_{-})$	0	n.a.	$-(\lambda_{-}+\lambda_{p})$	0	$\lambda_{-} - \lambda_{p}$
	0		n.a.	0	n.a.	$-\left(\lambda_{mid} + \lambda_{p}\right)$	0	$\lambda_{mid} - \lambda_p$
	1	(short)	n.a.	0	λ_+	$-(\lambda_{+} + \lambda_{p})$	0	$\lambda_+ - \lambda_p$
	2	(both)	$-\left(\lambda_{-} ight)$	0	λ_+	$-\left(\lambda_{+}+\lambda_{p}\right)$	0	$\lambda \lambda_p$

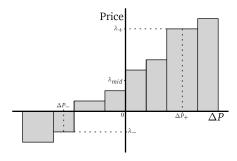
Andrej Jokić (FSB, University of Zagreb)

Power system economics

03.02.2014. 138 / 184

Imbalance settlement

Example of TenneT NL



BSP (Balance Service Provider) = BRP asked for active contribution

other BRPs: contribute on their own (passive contribution)

 $\lambda_p = \text{penalty/incentive price}$

•			BSP		BRP			
			Short	0	Long	Short	0	Long
	-1	(long)	$-(\lambda_{-})$	0	n.a.	$-(\lambda_{-}+\lambda_{p})$	0	$\lambda \lambda_p$
Situation	0		n.a.	0	n.a.	$-\left(\lambda_{mid}+\lambda_{p}\right)$	0	$\lambda_{mid} - \lambda_p$
ondation	1	(short)	n.a.		λ_+	$-(\lambda_{+} + \lambda_{p})$	0	$\lambda_+ - \lambda_p$
	2	(both)	$-(\lambda_{-})$	0		$-(\lambda_{+}+\lambda_{p})$		

Or

03.02.2014. 137 / 184

There is a financial result to TenneT's settlement of the volumes (A, B, P, Q, N) at the designated prices. TenneT buys TenneT sells

The basic formula that applies to the financial result is:

(Q * Pdo + B * Pshort) - (N * Pem + P * Pup + A * Psurp)

B * Pshort - A * Psurp + Q * Pdown - P * Pup - N * Pem

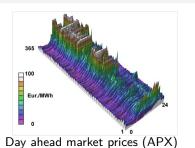
Elaborated per regulation state, this becomes.						
reg. state: 0	B * (Pmid + ic)	- A * (Pmid - ic)				
-1	B * (Pdo + ic)	- A * (Pdo - ic)	+ Q * Pdo - P * Pup			
+1	B * (Pup + ic)	- A * (Pup - ic)	+ Q * Pdo - P * Pup			
2	B * (Pup + ic)	- A * (Pdo - ic)	+ Q * Pdo - P * Pup			
-1, em	B * (Pdo + ic)	- A * (Pdo - ic)	+ Q * Pdo - P * Pup - N * Pem			
+1, em	B * (max(Pem, Pup) + ic)	- A * (max(Pem, Pup) - ic)	+ Q * Pdo - P * Pup - N * Pem			
2, em	B * (max(Pem, Pup) + ic)	- A * (Pdo - ic)	+ Q * Pdo - P * Pup - N * Pem			

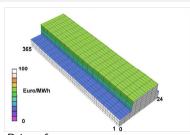
Where Pem > Pup, and after a bit of reshuffling this becomes:

reg. state: 0	(B - A) * Pmid			+ (A + B) * ic
-1	(B - A + Q) * Pdo	- P * Pup		+ (A + B) * ic
+1	(B - A - P) * Pup	+ Q * Pdo		+ (A + B) * ic
2	((A + B) - (P + Q)) * (Pup - Pdo)/2			+ (A + B) * ic
-1, em	(B - A + Q) * Pdo	- (P + N) * Pem	+ P * (Pem-Pup)	+ (A + B) * ic
+1, em	(B - A - P - N) * Pem	+ Q * Pdo	+ P * (Pem-Pup)	+ (A + B) * ic
2, em	((A + B) - (P + N + Q)) * (Pem - Pdo)/2		+ P * (Pem-Pup)	+ (A + B) * ic

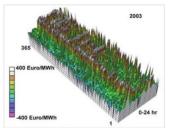
Risk of bidding less or equal than the risk of not bidding Risk of requested action less or equal than risk of unrequested actions

Prices





Prices for consumers

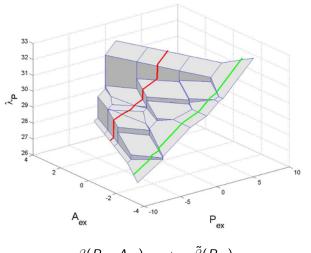


Balancing prices (TenneT)

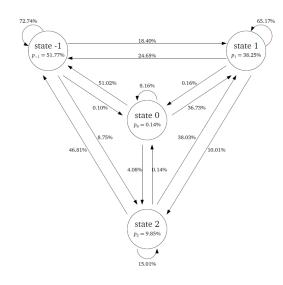
Actions on energy time scale

Bidding

"Behind the interface"; inside BRP



$$eta(P_{\mathsf{ex}}, A_{\mathsf{ex}}) \quad o \quad ilde{eta}(P_{\mathsf{ex}})$$

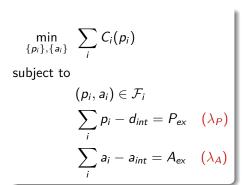


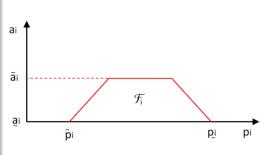
The last info I have:

"Afraid" to announce current situation in real time (delay of one PTU), and close the loop

Actions on energy time scale

Bidding

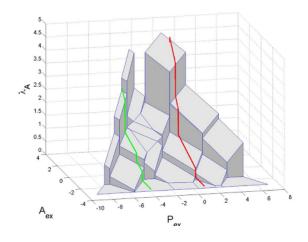




 a_i AS allocated capacity at unit i p_i power production from unit id_{int} internal BRP demand aint internal BRP's request for local AS capacity

Bidding

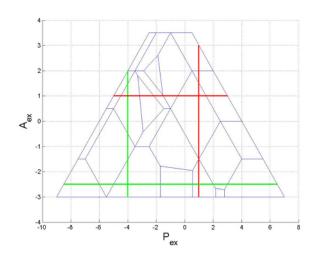
"Behind the interface"; inside BRP



$$\beta(P_{ex}, A_{ex}) \rightarrow \tilde{\beta}(A_{ex})$$

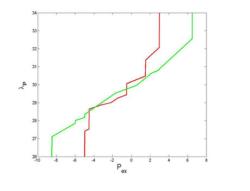
Andrej Jokić (FSB, University of Zagreb)

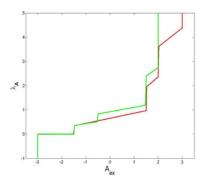
Bidding



Bidding

"for the outside world"





 $\tilde{\beta}(P_{ex})$

 $\tilde{\beta}(A_{ex})$

Actions on energy time scale

Bidding

$$\min \ \ell + \frac{1}{1-\beta} \left(\sum_{s=1}^{L} \pi_s^{AS+} [f_s - \ell]^+ + \sum_{s=L+1}^{2L} \pi_{s-L}^{AS-} [f_i - \ell]^+ \right)$$
 (6.4a)

s.t.
$$f_s = \sum_{j=1}^n \frac{C_j u_{sj}}{M_j \left(a_{2,j} \left(\frac{u_{sj}}{TP_{max,j}}\right)^2 + a_{1,j} \frac{u_{sj}}{TP_{max,j}} + a_{0,j}\right)} + [\lambda_{imb,s} x_{imb,s}]^{-}$$

$$-\lambda_{p}^{PX}x_{p}^{PX} - \lambda_{s}^{AS+}x_{up,s}^{AS}, \ s = 1, \dots, L,$$
 (6.4b)

$$f_{s} = \sum_{j=1}^{n} \frac{C_{j} u_{sj}}{M_{j} \left(a_{2,j} \left(\frac{u_{sj}}{TP_{max,j}}\right)^{2} + a_{1,j} \frac{u_{sj}}{TP_{max,j}} + a_{0,j}\right)} + |\lambda_{imb,s} x_{imb,s}|$$

$$-\lambda_p^{PX} x_p^{PX} + \lambda_{s-L}^{AS} x_{do,s-L}^{AS}, \ s = L+1, \dots, 2L,$$
 (6.4c)

$$-\lambda_{p}^{PX}x_{p}^{PX} + \lambda_{s-L}^{AS-}x_{do,s-L}^{AS}, \ s = L+1, \dots, 2L,$$

$$\underline{u_{j}} \leq u_{sj} \leq \overline{u_{j}}, \ j = 1, \dots, n, \ s = 1, \dots, 2L,$$
(6.4d)

$$\sum_{j=1}^{n} u_{sj} - x_p^{PX} - x_{up,s}^{AS} = x_{imb,s}, \ s = 1, \dots, L,$$
(6.4e)

$$\sum_{j=1}^{n} u_{sj} - x_p^{PX} + x_{do,s-L}^{AS} = x_{imb,s}, \ s = L+1, \dots, 2L,$$
 (6.4f)

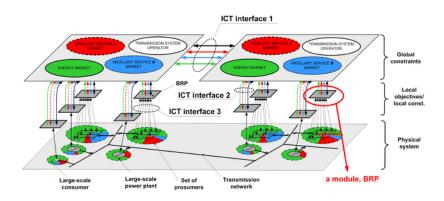
$$\overline{j=1}$$
 $x_{do,s}^{AS} \le x_p^{PX}, \ s = 1, \dots, L,$
(6.4g)

$$c_p^{PX} \ge 0,$$
 (6.4h)

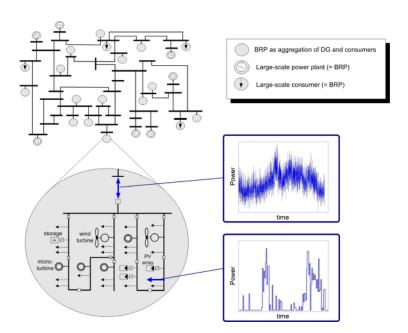
$$x_{up,s}^{AS} \ge 0, \ s = 1, \dots, L,$$
 (6.4i)

$$x_{do,s}^{AS} \ge 0, \ s = 1, \dots, L.$$
 (6.4j)

Bids as well defined protocol



- All that matters are interfaces and protocols on them
- Heterogeneity, local complexities.... all "hidden" behind the interface (Interface 2)
- Interface 2 requires decoupling of coupled problems (e.g. no 2D bids are allowed): enforcing manageable simplicity on the higher level



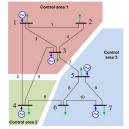
What is the added value of aggregation? Can the rest of network do a better job than my neighbour?

Outline

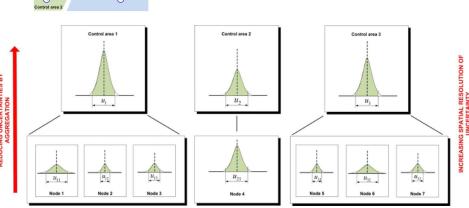
- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- 4 Distributed, real-time, price-based control

Power system economics

Spatial resolution of uncertainty



Spatial distribution of uncertainties is crucial in defining uncertainties in power flows

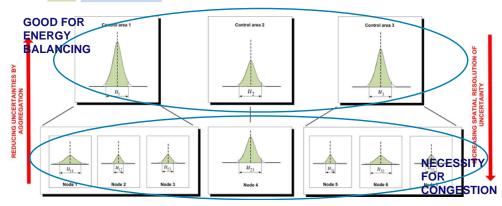


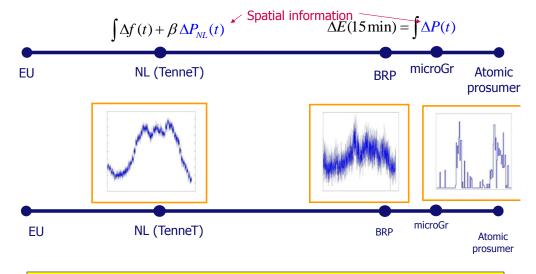
Spatial resolution of uncertainty

Control area 1 1 1 1 2 3 Control area 3 Control area 3

Market power

Spatial distribution of uncertainties is crucial in defining uncertainties in power flows

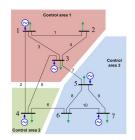




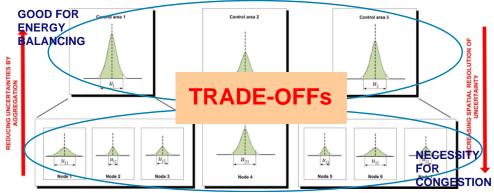
Uncertainty level

Demand for AS

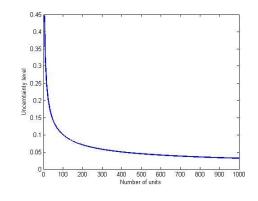
Spatial resolution of uncertainty

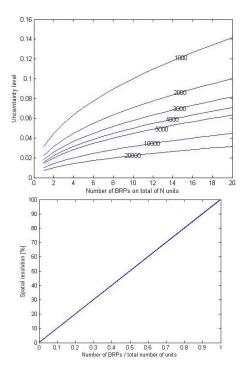


Spatial distribution of uncertainties is crucial in defining uncertainties in power flows

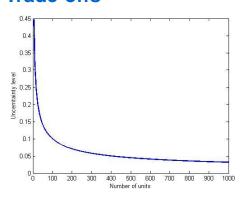


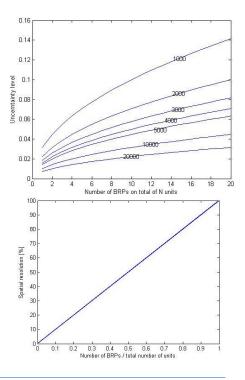
Trade-offs



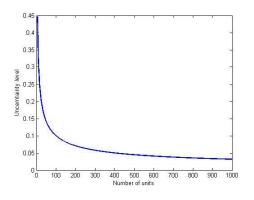


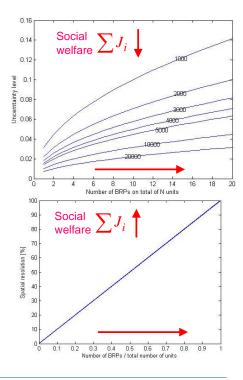
Trade-offs



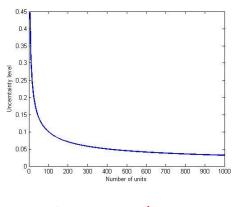


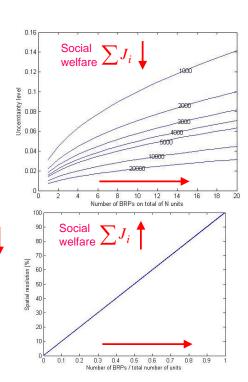
Trade-offs



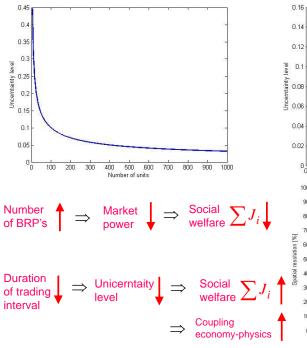


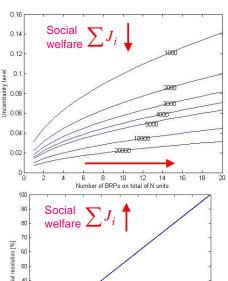
Trade-offs





Trade-offs



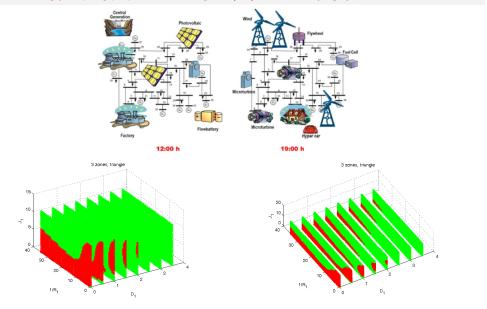


0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Number of BRPs / total number of units

Aggregation and spatial dimension of ancillary services

CHALLENGE

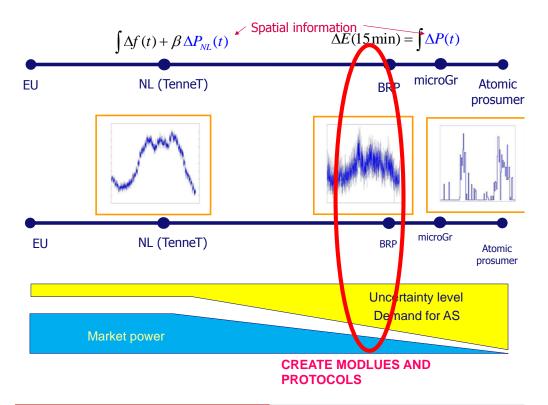
Accumulating /adapting proper amount of gains (AS) for time-varying system



Distributed, real-time, price-based control

Outline

- Market-based operation: benefits, problems and basic principles
 - Basic principles
 - Benefits of deregulation
 - Market power
- 2 Congestion management
 - Basic notions
 - Congestion management approaches
 - Using full AC model
- Markets for ancillary services
 - Market commodities
 - Actions on power time scale
 - Actions on energy time scale
 - Aggregation and spatial dimension of ancillary services
- Distributed, real-time, price-based control
- Conclusions

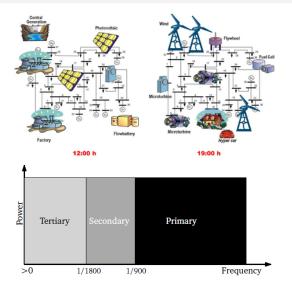


Ancillary services

Aggregation and spatial dimension of ancillary services

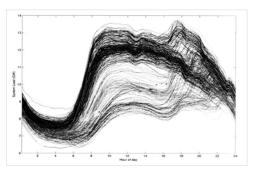
CHALLENGE

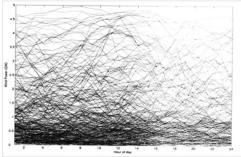
Accumulating /adapting proper amount of gains (AS) for time-varying system



03.02.2014.

151 / 184





NOW

FUTURE

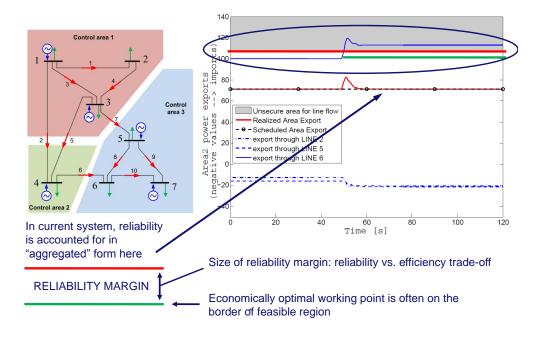
- Increased uncertainties → Tight coupling economy (markets), physics and RT control
- ullet Uncertain spatial distribution of uncertainties o uncertain power flows
- In today's systems efficiency largely relies on repetitiveness
- Put economic optimization in closed loop; care of congestion constraints

Distributed, real-time, price-based control

Distributed, real-time, price-based control

Optimal nodal pricing problem

$$\begin{split} \min_{\lambda,\delta} \sum_{i=1}^n J_i(\gamma_i(\lambda_i)) \\ \text{subject to} \quad \gamma(\lambda) - B\delta + \hat{p} &= 0, \\ b_{ij}(\delta_i - \delta_j) &\leq \overline{p}_{ij}, \ \forall (i,j \in I(N_i)), \end{split}$$



Distributed, real-time, price-based control

Distributed, real-time, price-based control

Optimal power flow problem

$$\min_{p,\delta}\sum_{i}J_{i}(p_{i})$$
 subject to $p-B\delta+\hat{p}=0,$ $L\delta\leq\overline{e}_{c},$ $\underline{p}\leq p\leq\overline{p},$

KKT conditions

$$\begin{aligned} \rho - B\delta + \hat{p} &= 0, \\ B\lambda + L^{\top}\mu &= 0, \\ \nabla J(p) - \lambda + \nu^{+} - \nu^{-} &= 0, \\ 0 &\leq (-L\delta + \overline{e}_{c}) \perp \mu \geq 0, \\ 0 &\leq (-p + \overline{p}) \perp \nu^{+} \geq 0, \\ 0 &\leq (p + \underline{p}) \perp \nu^{-} \geq 0, \end{aligned}$$

 $\Delta p_L = L\delta - \overline{e}_c$

Nodal pricing controller

$$\begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \end{pmatrix} = \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \end{pmatrix} + \begin{pmatrix} -K_{f} & 0 \\ 0 & K_{p} \end{pmatrix} \begin{pmatrix} \Delta f \\ \Delta p_{L} + w \end{pmatrix},$$

$$0 \leq w \perp K_{o}x_{\mu} + \Delta p_{L} + w \geq 0,$$

$$\lambda = \begin{pmatrix} I_{n} & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \end{pmatrix},$$

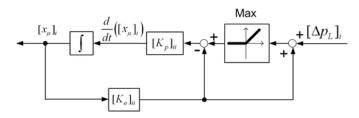
$$\begin{aligned} p - B\delta + \hat{p} &= 0, \\ B\lambda + L^{\top}\mu &= 0, \\ \nabla J(p) - \lambda + \nu^{+} - \nu^{-} &= 0, \\ 0 &\leq \ (-L\delta + \overline{e}_{c}) \ \perp \ \mu \geq 0, \\ 0 &\leq \ (-p + \overline{p}) \ \perp \ \nu^{+} \geq 0, \\ 0 &\leq \ (p + p) \ \perp \ \nu^{-} \geq 0, \end{aligned} \qquad \Longrightarrow \Delta f = 0, \ B\lambda + L^{\top}\mu = 0 \\ \Longrightarrow \Delta f = 0, \ B\lambda + L^{\top}\mu = 0 \end{aligned}$$

Distributed, real-time, price-based control

 $\Delta p_L = L\delta - \overline{e}_c$

Nodal pricing controller

$$\begin{split} \begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \end{pmatrix} &= \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \end{pmatrix} + \begin{pmatrix} -K_{f} & 0 \\ 0 & K_{p} \end{pmatrix} \begin{pmatrix} \Delta f \\ \Delta \rho_{L} + w \end{pmatrix}, \\ 0 &\leq w & \perp & K_{o}x_{\mu} + \Delta p_{L} + w & \geq 0, \\ \lambda &= \begin{pmatrix} I_{n} & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \end{pmatrix}, \end{split}$$



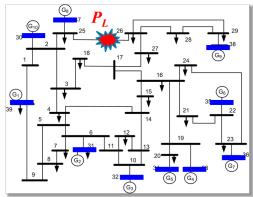
max-based complementarity integrator

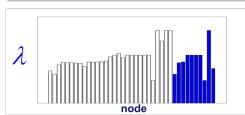
Distributed, real-time, price-based control

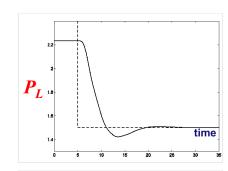
 $\Delta p_I = L\delta - \overline{e}_c$

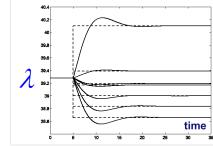
Nodal pricing controller

- no knowledge of cost/benefit functions of producers/consumers required
- required no knowledge of actual power injections
- required: B and L
- preserves the structure of B and L

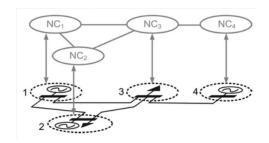








REAL-TIME MARKET AND CONGESTION CONTROL



 $B\lambda + L^{T}\mu = 0$, λ prices for local balance, μ prices for not overloanding the lines

$$\begin{pmatrix} b_{12,13} & -b_{12} & -b_{13} & 0 & b_{12} & b_{13} \\ -b_{12} & b_{12,23} & -b_{23} & 0 & -b_{12} & 0 \\ -b_{13} & -b_{23} & b_{13,23,34} & -b_{34} & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \\ \hline \mu_{12} \\ \mu_{13} \end{pmatrix} = 0,$$

Distributed, real-time, price-based control

Distributed, real-time, price-based control

SEPARATING BALANCING PRICING FROM CONGESTION PRICING

$$B = \begin{pmatrix} * & * \\ * & B_{\Delta} \end{pmatrix} \quad L = \begin{pmatrix} * & L \end{pmatrix}$$

Modified price-based controller

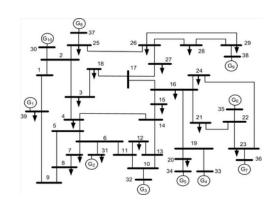
$$\begin{pmatrix} \dot{x}_{\lambda_0} \\ \dot{x}_{\Delta\lambda} \\ \dot{x}_{\mu} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -K_{\Delta}B_{\Delta} & -K_{\Delta}L_{\Delta}^{\top} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda_0} \\ x_{\Delta\lambda} \\ x_{\mu} \end{pmatrix} + \begin{pmatrix} -k_f \mathbf{1}_n^{\top} & 0 \\ 0 & 0 \\ 0 & K_p \end{pmatrix} \begin{pmatrix} \Delta f \\ \Delta p_L + w \end{pmatrix},$$

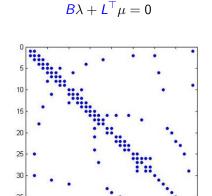
$$0 \leq w \perp K_o x_{\mu} + \Delta p_L + w \geq 0,$$

$$\lambda = \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{1}_{n-1} & I_{n-1} & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda_0} \\ x_{\Delta\lambda} \\ x_{\mu} \end{pmatrix},$$

Distributed, real-time, price-based control

REAL-TIME MARKET AND CONGESTION CONTROL

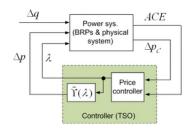




Distributed, real-time, price-based control

Distributed, real-time, price-based control

PROVISION OF ANCILLARY SERVICES



Optimality conditions

$$\beta(p^*) - \lambda^* = 0$$

$$p^* - B\theta^* = 0$$

$$B\lambda^* + L^{\top}\mu^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \quad \perp \quad \mu^* \ge 0$$

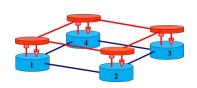
Real-time nodal price based SC controller (each control area balanced separately)

$$\begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \\ \dot{x}_{\sigma} \end{pmatrix} = \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & K_{\mu} \\ -K_{\sigma} & 0 \end{pmatrix} \begin{pmatrix} ACE \\ \Delta p_{C} \end{pmatrix} + \begin{pmatrix} 0 \\ K_{\mu}w \\ 0 \end{pmatrix},$$

$$0 \leq w \perp K_{0}x_{\mu} + \Delta p_{C} + w \geq 0,$$

$$\lambda = \begin{pmatrix} I & 0 & E \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix}, \qquad \Delta p = \tilde{\Upsilon}(\lambda)$$
The lattice of Target and Target and Target are consistent.

PROVISION OF ANCILLARY SERVICES



Optimality conditions

$$\beta(p^*) - \lambda^* = 0$$

$$p^* - B\theta^* = 0$$

$$B\lambda^* + L^{\top}\mu^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \quad \perp \quad \mu^* \ge 0$$

Real-time nodal price based SC controller (each control area balanced separately)

$$\begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \\ \dot{x}_{\sigma} \end{pmatrix} = \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & K_{\mu} \\ -K_{\sigma} & 0 \end{pmatrix} \begin{pmatrix} ACE \\ \Delta p_{C} \end{pmatrix} + \begin{pmatrix} 0 \\ K_{\mu}w \\ 0 \end{pmatrix},$$

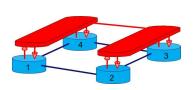
$$0 \leq w \perp K_{0}x_{\mu} + \Delta p_{C} + w \geq 0,$$

$$\lambda = (\boxed{I} \quad 0 \quad E) \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix}, \qquad \Delta \rho = \tilde{\Upsilon}(\lambda)$$

Distributed, real-time, price-based control

Distributed, real-time, price-based control

PROVISION OF ANCILLARY SERVICES



Optimality conditions

$$\beta(p^*) - \lambda^* = 0$$

$$p^* - B\theta^* = 0$$

$$B\lambda^* + L^{\top}\mu^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \quad \perp \quad \mu^* \ge 0$$

Real-time zonal price based SC controller (each control area balanced separately)

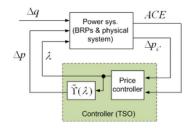
$$\begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \\ \dot{x}_{\sigma} \end{pmatrix} = \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & K_{\mu} \\ -K_{\sigma} & 0 \end{pmatrix} \begin{pmatrix} ACE \\ \Delta p_{C} \end{pmatrix} + \begin{pmatrix} 0 \\ K_{\mu}w \\ 0 \end{pmatrix}$$

$$0 \leq w \perp K_{0}x_{\mu} + \Delta p_{C} + w \geq 0$$

$$\lambda_{\mathcal{Z}} = \left(\boxed{F(\cdot)} \quad 0 \quad E \right) \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix}, \qquad \Delta p = \Upsilon(\lambda_{\mathcal{Z}})$$

Distributed, real-time, price-based control

PROVISION OF ANCILLARY SERVICES



Optimality conditions

$$\beta(p^*) - \lambda^* = 0$$

$$p^* - B\theta^* = 0$$

$$B\lambda^* + L^{\top}\mu^* = 0$$

$$0 \le (-L\theta^* + \overline{e}_{\mathcal{E}}) \perp \mu^* \ge 0$$

Real-time zonal price based SC controller (each control area balanced separately)

$$\begin{pmatrix} \dot{x}_{\lambda} \\ \dot{x}_{\mu} \\ \dot{x}_{\sigma} \end{pmatrix} = \begin{pmatrix} -K_{\lambda}B & -K_{\lambda}L^{\top} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & K_{\mu} \\ -K_{\sigma} & 0 \end{pmatrix} \begin{pmatrix} ACE \\ \Delta p_{C} \end{pmatrix} + \begin{pmatrix} 0 \\ K_{\mu}w \\ 0 \end{pmatrix}$$

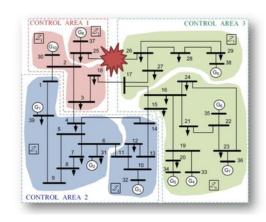
$$0 \leq w \perp K_{0}x_{\mu} + \Delta p_{C} + w \geq 0$$

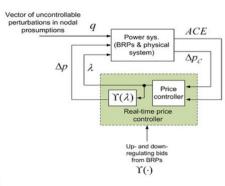
$$\lambda_{\mathcal{Z}} = \left(\boxed{F(\cdot)} \quad 0 \quad E \right) \begin{pmatrix} x_{\lambda} \\ x_{\mu} \\ x_{\sigma} \end{pmatrix}, \qquad \Delta p = \Upsilon(\lambda_{\mathcal{Z}})$$

$$\sum_{\text{Power system economics}} 03.02.2014, \qquad 167 / 184$$

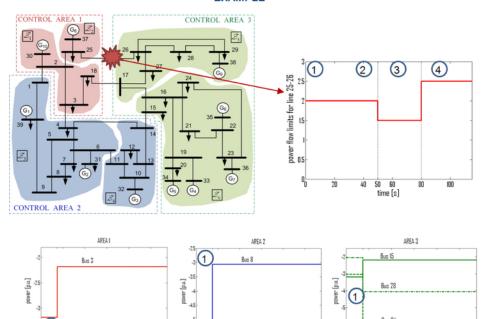
Distributed, real-time, price-based control

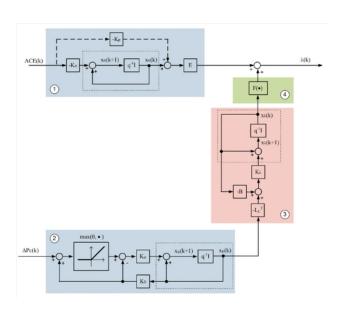
Distributed, real-time, price-based congestion control

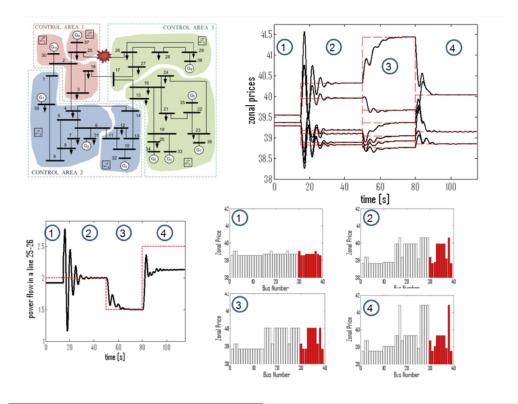




EXAMPLE



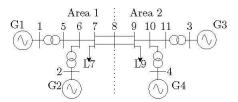


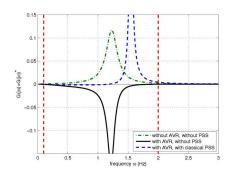


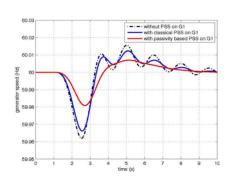
Distributed, real-time, price-based control

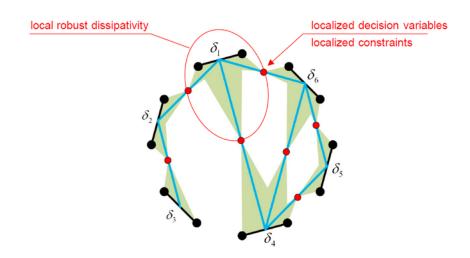
More on real-time distributed control

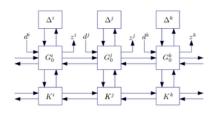
Andrei Jokić (ESR University of Zagreh)
Power system economics 03.02.2014

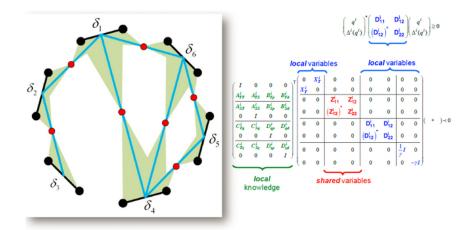






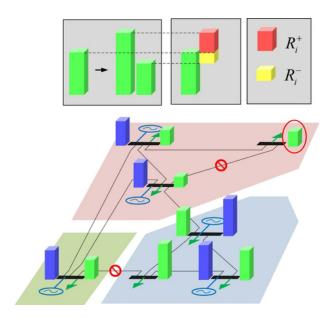


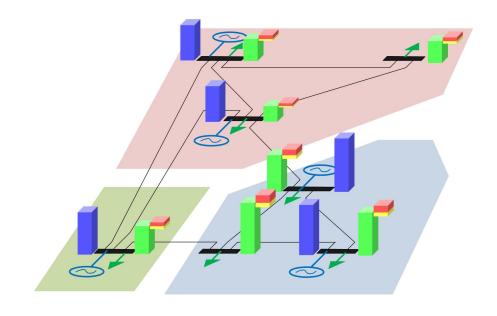


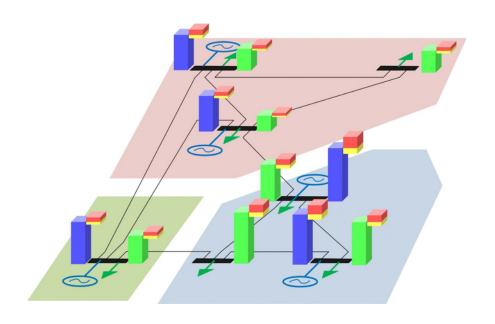


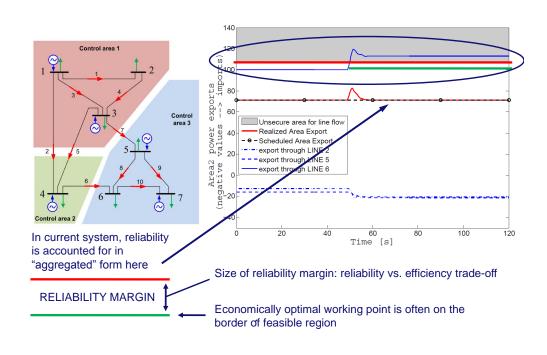
Market-based robust spatial distribution of ancillary services

Andrej Jokić (FSB, University of Zagreb) Power system economics 03.02.2014. 177 / 184









The participation function

$$f(t) = \gamma(\tilde{a}^+(k), \tilde{a}^-(k), q(t))$$

 $\tilde{a}^+(k)$ = purchased and allocated up-regulating AS

 $\tilde{a}^{-}(k)$ = purchased and allocated down-regulating AS

 $\tilde{a}^+(k)$ and $\tilde{a}^-(k)$ are vectors defining spatial distribution of AS

Uncertainty model

$$q(t) \in \tilde{\mathcal{Q}}(k) = \{ \ q \mid \ q = \tilde{R}(k)w, \ w \in \tilde{\mathcal{W}}(k) \subset \mathbb{R}^m \}$$

 $\tilde{\mathcal{W}}(k) = \operatorname{conv}\{\tilde{w}_1(k), \dots, \tilde{w}_T(k) \}, \qquad 0 \in \tilde{\mathcal{W}}(k)$

Robust congestion constraints

$$\begin{split} L\delta & \leq \Delta \tilde{I}(k) \qquad \text{for all} \quad \delta \in \tilde{\mathcal{D}}(k) \text{ where} \\ \tilde{\mathcal{D}}(k) & := \{\delta \mid \quad \frac{\tilde{R}(k)w + \gamma\left(\tilde{\mathbf{a}}^+(k), \tilde{\mathbf{a}}^-(k), \tilde{R}(k)w\right) = B\delta,}{w \in \tilde{\mathcal{W}}(k)} \; \} \end{split}$$

Andrej Jokić (FSB, University of Zagreb)

ower system economic

03.02.2014.

03.02.2014: 170 / 10

Distributed, real-time, price-based control

AS market clearing problem

For a time instant k on energy time scale Input

- AS bids: $\beta_i^+(a_i^+, k)$, $\beta_i^-(a_i^-, k) \rightarrow \text{deduce objective functions}$
- Uncertainties (spatial distribution): Q(k)

Market clearing problem (optimal spatial distribution of AS)

$$\min_{a^+,a^-,\{\delta_t\}_{t\in\{1,...,T\}}} \quad \sum_{i=1}^N \left(J_i^+(a_i^+) + J_i^-(a_i^-)\right), \qquad \text{(max socail welfare)}$$

subject to

$$\gamma(a^+(k), a^-(k), q_t) + q_t = B\delta_t, \ t = 1, \dots, T$$
 (spatial info.)

$$L\delta_t \leq \Delta I, \quad t = 1, \dots, T$$
 (robust congestion constraints)

$$\sum a_i^+ = r^+$$
 (required AS+ accomulation)

$$\sum_{i} a_{i}^{-} = r^{-}$$
 (required AS- accomulation)

Distributed real-time price-based contro

The participation function $f(t) = \gamma(\tilde{a}^+(k), \tilde{a}^-(k), q(t))$

- structure: defined by the real-time secondary control scheme
- parameters: defined by $\tilde{a}^+(k)$, $\tilde{a}^-(k)$ = the AS market clearing results

Example

Participation vectors:

$$\tilde{\alpha}^+(k) := \tilde{a}^+(k) \frac{1}{\sum_i \tilde{a}_i^+(k)}, \quad \tilde{\alpha}^-(k) := \tilde{a}^-(k) \frac{1}{\sum_i \tilde{a}_i^-(k)}$$

Real-time SC controller of a area:

$$f_{\mathcal{A}_i}(t) = \begin{cases} -\tilde{\alpha}_{\mathcal{A}_i}^+ k_l \int ACE_i(t) dt & \text{for } \int ACE_i(t) dt \leq 0 \\ -\tilde{\alpha}_{\mathcal{A}_i}^- k_l \int ACE_i(t) dt & \text{for } \int ACE_i(t) dt > 0 \end{cases}$$

The participation function

$$f(t) = \gamma(\tilde{\boldsymbol{a}}^+(k), \tilde{\boldsymbol{a}}^-(k), q(t)) = -\tilde{\alpha}^+(k) \min(\boldsymbol{1}^\top q(t), 0) + \tilde{\alpha}^-(k) \max(\boldsymbol{1}^\top q(t), 0)$$

Andrei Jokić (FSB, University of Zagreb

Power system economic

03 02 2014

03.02.2014.

Distributed, real-time, price-based con-

Nodal prices solution

Lagrangian

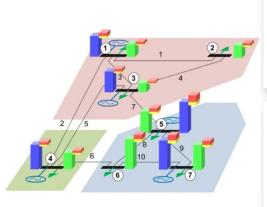
$$egin{aligned} \mathcal{L} &= \sum_{i=1}^{N} \left(J_i^+(a_i^+) + J_i^-(a_i^-)
ight) \ &+ \sum_{t=1}^{T} \mu_t^ op \left(L \delta_t - \Delta I
ight) + \sum_{t=1}^{T} au_t^ op \left(\gamma(a^+(k), a^-(k), q_t) + q_t - B \delta_t
ight) \ &+ (\sigma^+)^ op \left(\sum_i a_i^+ - r^+
ight) + (\sigma^-)^ op \left(\sum_i a_i^- - r^-
ight) \end{aligned}$$

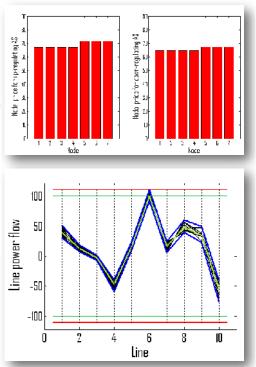
Optimal AS nodal prices

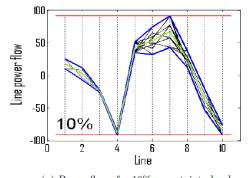
$$\overline{q}^+ := \min \big(\{ \boldsymbol{1}^\top q_t \}_{t=1,\dots,T}, 0 \big), \ \ \overline{q}^- := \max \big(\{ \boldsymbol{1}^\top q_t \}_{t=1,\dots,T}, 0 \big), \ \ z_t^+ := \boldsymbol{1}_{\frac{\overline{q}^+}{r^+}}, \quad z_t^- := \boldsymbol{1}_{\frac{\overline{q}^-}{r^-}}$$

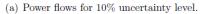
$$\lambda^+ = -\mathbf{1} ilde{\sigma}^+ + \sum_{t=1}^T ilde{ au}_t \circ z_t^+, \quad \lambda^- = -\mathbf{1} ilde{\sigma}^- + \sum_{t=1}^T ilde{ au}_t \circ z_t^-$$

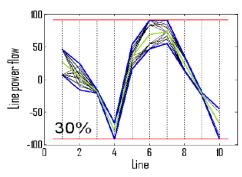
Robustly optimal AS spatial distribution: $\beta^+(a^+) = \lambda^+, \quad \beta^-(a^-) = \lambda^-.$



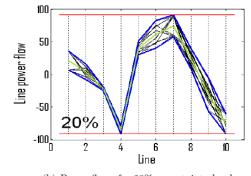




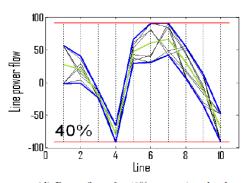




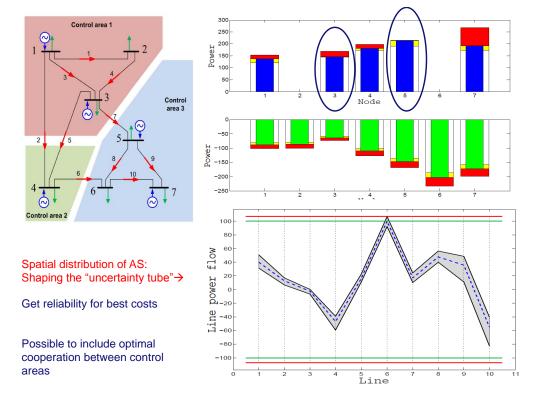
(c) Power flows for 30% uncertainty level.



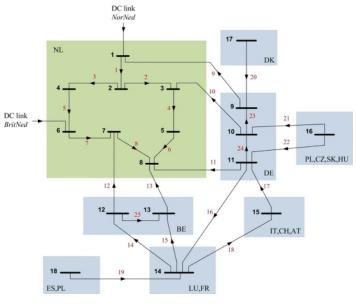
(b) Power flows for 20% uncertainty level.



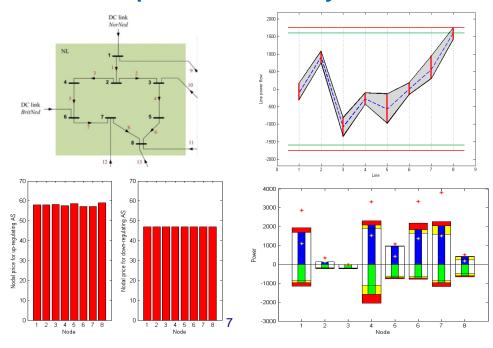
(d) Power flows for 40% uncertainty level.



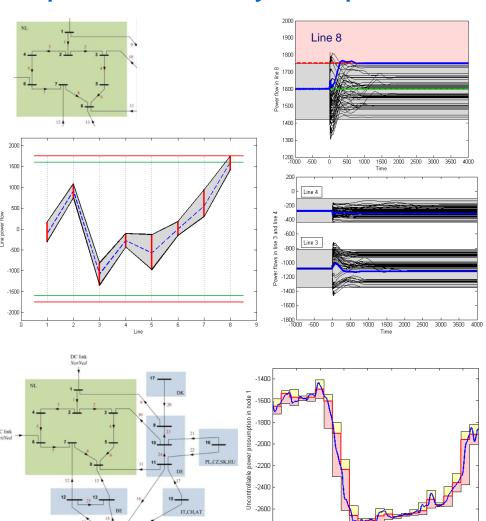
The E-Price benchmark model

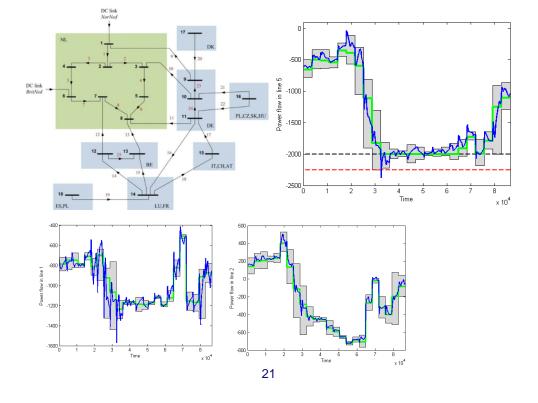


Locational prices for ancillary services

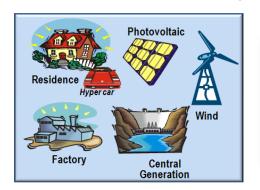


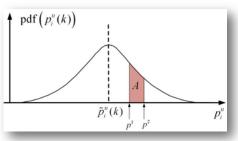
Optimized uncertainty in line power flows

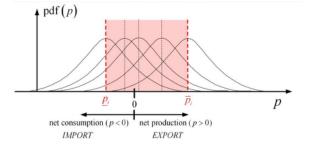




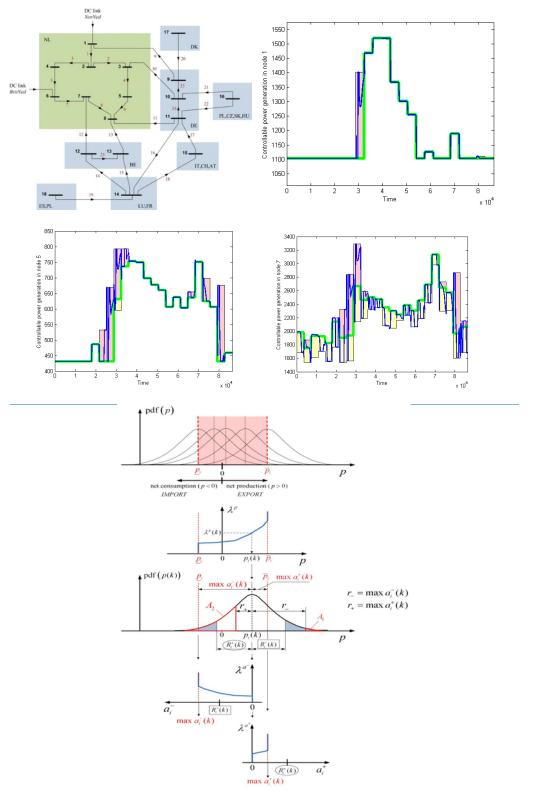
Double sided Ancillary Services (AS) markets







- Employ controllable prosumers in its own portfolio for keeping up the contracted prosumption level
- Buy/sell options on double-sided AS markets



Conclusions and messages

- Today's robustness: partly due to conservative engineering
- Future: increased complexity. Robustness (fragility?), efficiency, scalability?
- Exploit the networking! (often neglected in research)
- smart? better understood, explained: hidden (technology), invisible (hand of market)
- think in terms of modules (plug and play), protocols and architecture
- Optimization (duality!): holistic approach to market (and control)
- Huge area for important research (exciting parallel research in control systems field)

Andrej Jokić (FSB, University of Zagreb)

www.e-price-project.eu

www.fsb.hr/ConDis