TUTORIAL SESSION: Synchronization in Coupled Oscillators: Theory and Applications

Florian Dörfler & Francesco Bullo

Alexandre Mauroy, Pierre Sacré, & Rodolphe J. Sepulchre

Murat Arcak

51st IEEE Conference on Decision and Control, Maui, HI

Sync in Complex Oscillator Networks

Exploring Synchronization in Complex Oscillator Networks

Florian Dörfler and Francesco Bullo

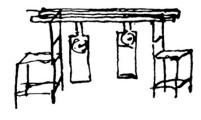
Center for Control, Dynamical Systems, & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

51st IEEE Conference on Decision and Control, Maui, HI

A Brief History of Sync how it all began

- Christiaan Huygens (1629 1695)
 - physicist & mathematician
 - engineer & horologist

observed "an odd kind of sympathy" between coupled & heterogeneous clocks [Letter to Royal Society of London, 1665]



Recent reviews, experiments, & analysis [M. Bennet et al. '02, M. Kapitaniak et al. '12]

F. Dörfler and F. Bullo (UCSB)

 Nuygens'
 V.'
 clocks

 1665.
 1665.

 (Pie.75)')
 Debas a us borologiorum duoram novemni nguba catenular (Pie.75, Julia)

 Image: State of the stat

CDC 2012

A Brief History of Sync the odd kind of sympathy is still fascinating

watch movie online here:

http://www.youtube.com/watch?v=JWToUATLGzs& list=UUJIyXclKY8FQQwaKBaawl_A&index=3

Sync of 32 metronomes at Ikeguchi Laboratory, Saitama University, 2012

A Brief History of Sync a field was born

- Sync in mathematical biology [A. Winfree '80, S.H. Strogatz '03, ...]
- Sync in physics and chemistry [Y. Kuramoto '83, M. Mézard et al. '87...]
- $\bullet~Sync~in~neural~networks$ [F.C. Hoppensteadt and E.M. Izhikevich '00, \ldots]
- $\bullet~$ Sync in complex networks [C.W. Wu '07, S. Bocaletti '08, \ldots]
- ... and countless technological applications (reviewed later)

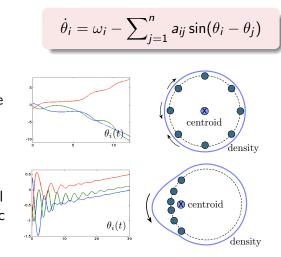
Phenomenology and Challenges in Synchronization

Synchronization is a **trade-off:** coupling vs. heterogeneity

coupling small & $|\omega_i - \omega_j|$ large \Rightarrow incoherence & no sync

coupling large & $|\omega_i - \omega_j|$ small \Rightarrow coherence & frequency sync

Some central questions: (still after 45 years of work)



- proper notion of sync & phase transition
- quantify "coupling" vs. "heterogeneity"
- interplay of network & dynamics

Coupled Phase Oscillators

 \exists various models of oscillators & interactions

Today: canonical coupled oscillator model [A. Winfree '67, Y. Kuramoto '75]

Coupled oscillator model:

$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

- *n* oscillators with phase $\theta_i \in \mathbb{S}^1$
- **non-identical** natural frequencies $\omega_i \in \mathbb{R}^1$
- elastic **coupling** with strength $a_{ij} = a_{ji}$
- undirected & connected graph $G = (\mathcal{V}, \mathcal{E}, A)$
- F. Dörfler and F. Bullo (UCSB)

Applications of the Coupled Oscillator Model

Sync in Complex Oscillator Networks

Coupled oscillator model:

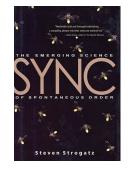
$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

Some related applications:

- Sync in a population of fireflies [G.B. Ermentrout '90, Y. Zhou et al. '06, ...]
- Deep-brain stimulation and neuroscience [N. Kopell et al. '88, P.A. Tass '03, ...]
- Sync in coupled Josephson junctions
 [S. Watanabe et. al '97, K. Wiesenfeld et al. '98, ...]
- Countless other sync phenomena in physics, biology, chemistry, mechanics, social nets etc.
 [A. Winfree '67, S.H. Strogatz '00, J. Acebrón '01, ...]

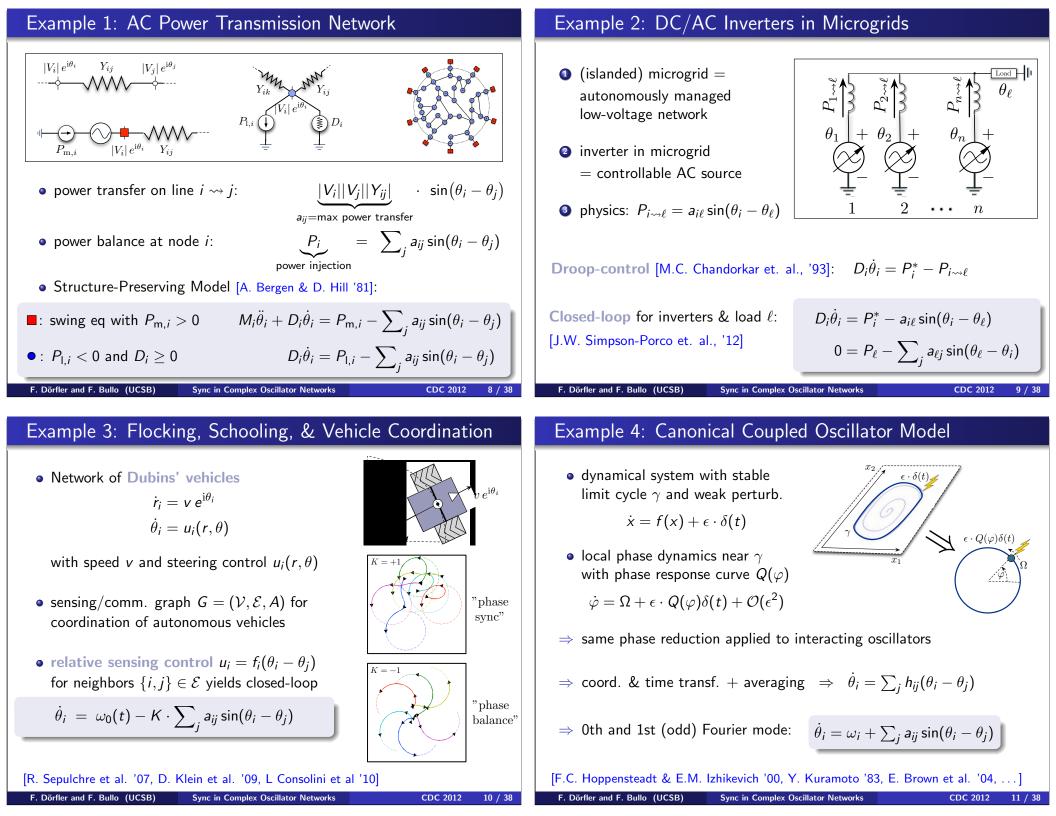
CDC 2012

5 / 38



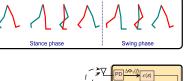
Sync in Complex Oscillator Networks

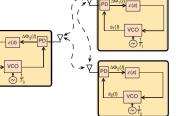
CDC 2012 6 / 38

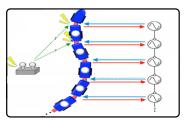


Example 5: Other technological applications

- Particle filtering to estimate limit cycles [A. Tilton & P. Mehta et al. '12]
- Clock synchronization over networks [Y. Hong & A. Scaglione '05, O. Simeone et al. '08, Y. Wang & F. Doyle et al. '12]
- Central pattern generators and robotic locomotion [J. Nakanishi et al. '04, S. Aoi et al. '05, L. Righetti et al. '06]
- Decentralized maximum likelihood estimation [S. Barbarossa et al. '07]
- Carrier sync without phase-locked loops [M. Rahman et al. '11]







CDC 2012

12 / 38

Outline

Introduction and motivation

2 Synchronization notions, metrics, & basic insights

Sync in Complex Oscillator Networks

Sync in Complex Oscillator Networks

- 3 Phase synchronization and more basic insights
- Operation of the second sec
- Synchronization in sparse networks
- Open problems and research directions

Order Parameter (for homogenous coupling $a_{jj} = K/n$)

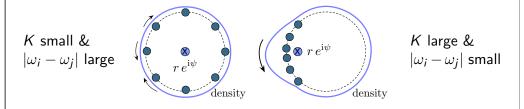
F. Dörfler and F. Bullo (UCSB)

Define the order parameter (centroid) by
$$re^{i\psi} = \frac{1}{n} \sum_{j=1}^{n} e^{i\theta_j}$$
, then

$$\dot{\theta}_i = \omega_i - \frac{\kappa}{n} \sum_{j=1}^n \sin(\theta_i - \theta_j)$$

$$\dot{ heta}_i = \omega_i - Kr\sin(heta_i - \psi)$$

Intuition: synchronization = entrainment by mean field $re^{i\psi}$



 \Leftrightarrow

Sync in Complex Oscillator Networks

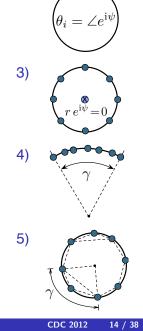
 \Rightarrow analysis based on concepts from statistical mechanics & cont. limit: [Y. Kuramoto '75, G.B. Ermentrout '85, J.D. Crawford '94, S.H. Strogatz '00, J.A. Acebrón et al. '05, E.A. Martens et al. '09, H. Yin et al. '12, ...]

Synchronization Notions & Metrics

1) frequency sync: $\dot{\theta}_i(t) = \dot{\theta}_i(t) \forall i, j$ $\Leftrightarrow \dot{\theta}_i(t) = \omega_{\text{sync}} \ \forall i \in \{1, \dots, n\}$

F. Dörfler and F. Bullo (UCSB)

- 2) phase sync: $\theta_i(t) = \theta_i(t) \forall i, j$ $\Leftrightarrow r = 1$
- 3) phase balancing: r = 0(e.g., splay state = uniform spacing on \mathbb{S}^1)
- 4) arc invariance: all angles in $\overline{\operatorname{Arc}}_n(\gamma)$ (closed arc of length γ) for $\gamma \in [0, 2\pi]$
- 5) phase cohesiveness: all angles in $\bar{\Delta}_{G}(\gamma) = \left\{ \theta \in \mathbb{T}^{n} : \max_{\{i,j\} \in \mathcal{E}} |\theta_{i} - \theta_{j}| \leq \gamma \right\}$ for some $\gamma \in [0, \pi/2[$



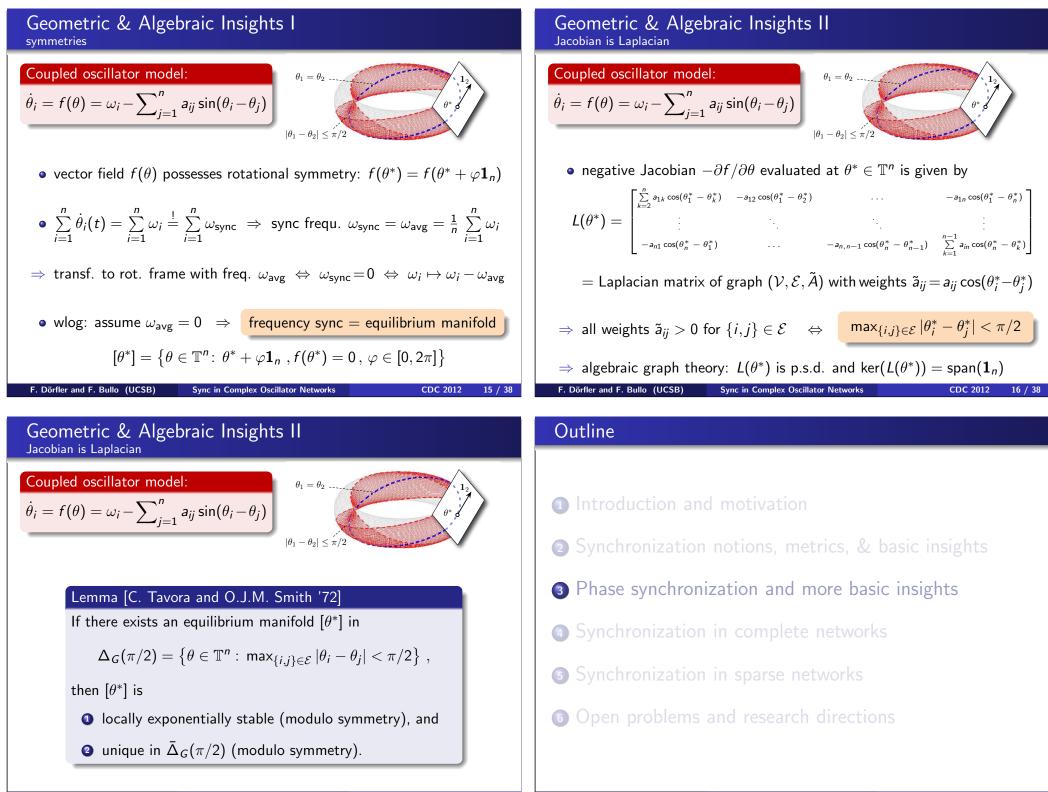
CDC 2012

2)

12 / 38

F. Dörfler and F. Bullo (UCSB)

CDC 2012 13 / 38



Phase Synchronization a forced gradient system

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j) \quad \{\text{phase sync}\} = \{\theta \in \mathbb{T}^n \colon \theta_i = \theta_j \; \forall \; i, j\}$$

Classic intuition [P. Monzon et al. '06, Sepulchre et al. '07]:

- Coupled oscillator model is forced gradient flow $\dot{\theta}_i = \omega_i \nabla_i U(\theta)$, where $U(\theta) = \sum_{\{i,i\} \in \mathcal{E}} a_{ij} (1 - \cos(\theta_i - \theta_j))$ (spring potential)
- assume that $\omega_i = 0 \quad \forall i \in \{1, \dots, n\} \Rightarrow$ gradient flow $\dot{\theta} = -\nabla U(\theta)$
- ⇒ global convergence to critical points { $\nabla U(\theta) = \mathbf{0}$ } ⊇ {phase sync}
- \Rightarrow previous Jacobian arguments: {phase sync} is local minimum & stable

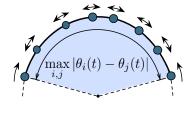
Sync in Complex Oscillator Networks

Phase Synchronization further insights when all $\omega_i = 0$

F. Dörfler and F. Bullo (UCSB)

$$\dot{\theta}_{i} = \omega_{i} - \sum_{j=1}^{n} a_{ij} \sin(\theta_{i} - \theta_{j}) \quad \{\text{phase sync}\} = \{\theta \in \mathbb{T}^{n} \colon \theta_{i} = \theta_{j} \forall i, j\}$$

- Convexity simplifies life:
- if all oscillators in open semicircle $Arc_n(\pi)$
- $\Rightarrow \text{ convex hull } \max_{i,j \in \{1,...,n\}} |\theta_i(t) \theta_j(t)|$ is contracting
- [L. Moreau '04, Z. Lin et al. '08]



CDC 2012

18 / 38

• Phase balancing:

F. Dörfler and F. Bullo (UCSB)

- inverse gradient flow (ascent) $\dot{\theta} = +\nabla U(\theta)$
- \Rightarrow phase balancing for circulant graphs
- [L. Scardovi et al. '07, Sepulchre et al. '07]

Sync in Complex Oscillator Networks

Phase Synchronization

 $\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j) \quad \{\text{phase sync}\} = \{\theta \in \mathbb{T}^n \colon \theta_i = \theta_j \; \forall \, i, j\}$

2 There exists a locally exp. stable phase synchronization manifold.

Proof of " \Rightarrow ": wlog in rot. frame: $\omega_i = \omega_i = 0 \Rightarrow$ follow previous args

Proof of " \Leftarrow ": phase sync'd solutions satisfy $\theta_i = \theta_i \& \dot{\theta}_i = \dot{\theta}_i \Rightarrow \omega_i = \omega_i$

(trees, cmplt., short cycles) [P. Monzon, E.A. Canale et al. '06-'10, A. Sarlette '09]

Theorem: [P. Monzon et al. '06, Sepulchre et al. '07]

• For all $\{i, j\} \in \{1, \ldots, n\}$, we have that $\omega_i = \omega_i$; and

Remark: "almost global phase sync" for certain topologies

F. Dörfler and F. Bullo (UCSB) Sync in Complex Oscillator Networks

Introduction and motivation

The following statements are equivalent:

main result

Outline

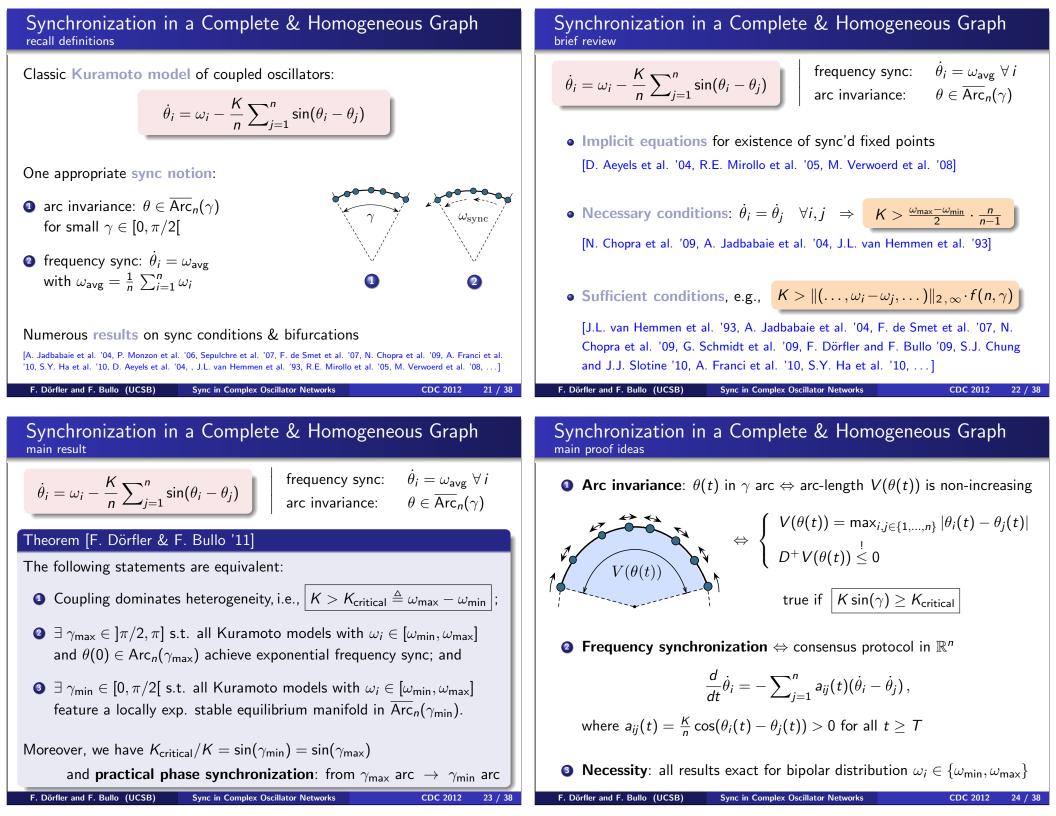
Synchronization in complete networks

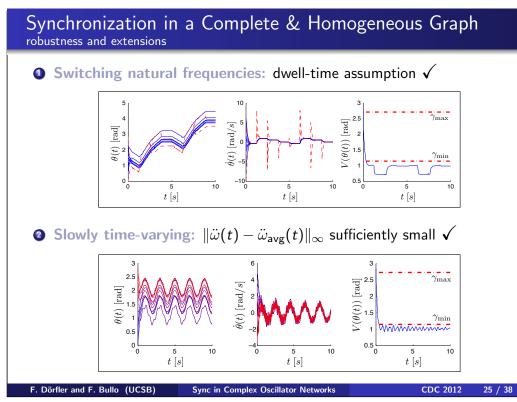
Open problems and research directions

Synchronization in sparse networks

2 Synchronization notions, metrics, & basic insights

CDC 2012





Outline

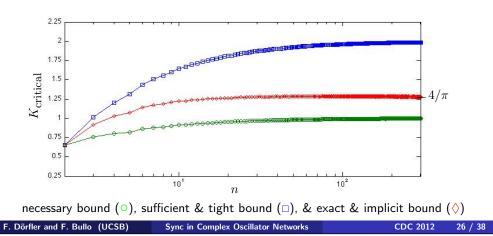
- Introduction and motivation
- 2 Synchronization notions, metrics, & basic insights
- Phase synchronization and more basic insights
- Synchronization in complete networks
- 5 Synchronization in sparse networks
- Open problems and research directions

Synchronization in a Complete & Homogeneous Graph scaling & statistical analysis

Kuramoto model with $\omega_i \in [-1,1]$:

$$\dot{\theta}_i = \omega_i - \frac{\kappa}{n} \sum_{j=1}^n \sin(\theta_i - \theta_j)$$

Cont. limit predicts largest $K_{\text{critical}} = 2$ for *bipolar distribution* & smallest $K_{\text{critical}} = 4/\pi$ for *uniform distribution* [Y. Kuramoto '75, G.B. Ermentrout '85]



Primer on Algebraic Graph Theory

Undirected graph $G = (\mathcal{V}, \mathcal{E}, A)$ with weight $a_{ij} > 0$ on edge $\{i, j\}$

- adjacency matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ (induces the graph)
- degree matrix $D \in \mathbb{R}^{n imes n}$ is diagonal with $d_{ii} = \sum_{j=1}^n a_{ij}$
- Laplacian matrix $L = D A \in \mathbb{R}^{n \times n}$, $L = L^T \ge 0$

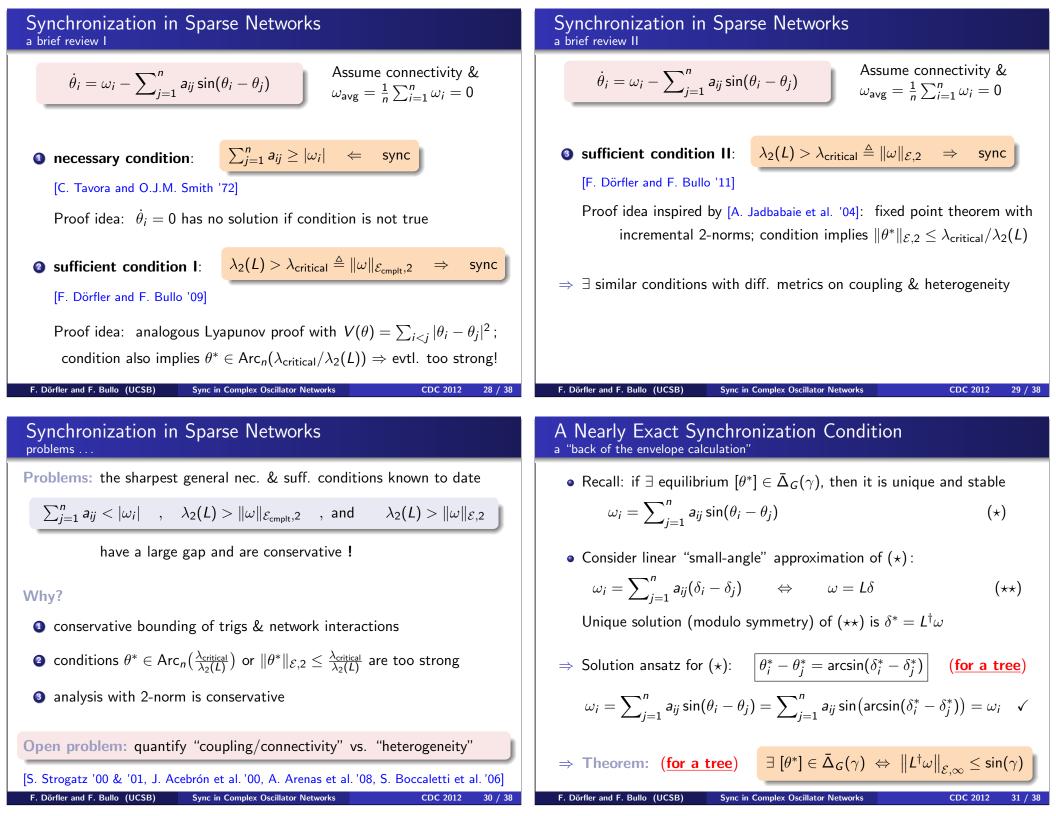
Notions of connectivity

- topological: connectivity, path lengths, degree, etc.
- spectral: 2nd smallest eigenvalue of L is "algebraic connectivity" $\lambda_2(L)$

Notions of heterogeneity

$$\|\omega\|_{\mathcal{E},\infty} = \max_{\{i,j\}\in\mathcal{E}} |\omega_i - \omega_j|, \qquad \|\omega\|_{\mathcal{E},2} = \left(\sum_{\{i,j\}\in\mathcal{E}} |\omega_i - \omega_j|, - \omega_j|\right)$$

$$\|\omega\|_{\mathcal{E},2} = \left(\sum_{\{i,j\}\in\mathcal{E}} |\omega_i - \omega_j|^2\right)^{1/2}$$



A Nearly Exact Synchronization Condition

Theorem [F. Dörfler, M. Chertkov, and F. Bullo '12]

Under one of following assumptions:

- 1) graph is either tree, homogeneous, or short cycle $(n \in \{3, 4\})$
- 2) natural frequencies: $L^{\dagger}\omega$ is bipolar, small, or symmetric (for cycles)
- 3) arbitrary one-connected combinations of 1) and 2)

 $\left\| \mathcal{L}^{\dagger} \omega \right\|_{\mathcal{E},\infty} \leq \sin(\gamma) \quad \text{where } \gamma < \pi/2$ lf

 $\Rightarrow \exists$ a unique & locally exponentially stable equilibrium manifold in

 $\bar{\Delta}_{\mathcal{G}}(\gamma) = \left\{ \theta \in \mathbb{T}^n \mid \max_{\{i,i\} \in \mathcal{E}} |\theta_i - \theta_i| \leq \gamma \right\}.$

A Nearly Exact Synchronization Condition comments

- Statistical correctness through Monte Carlo simulations: construct nominal randomized graph topologies, weights, & natural frequencies
- sync "for almost all graphs $G(\mathcal{V}, \mathcal{E}, A) \& \omega$ " with high accuracy \Rightarrow

CDC 2012

33 / 38

- Possibly thin sets of degenerate counter-examples for large cycles
- Intuition: the condition $\|L^{\dagger}\omega\|_{\mathcal{E},\infty} \leq \sin(\gamma)$ is equivalent to $\begin{bmatrix} 0 & 0 & \dots & \dots & 0 \\ 0 & \frac{1}{2} & 0 & & 0 \end{bmatrix}$

$$\begin{bmatrix} \text{eigenvectors of L} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{\lambda_2(L)} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & \frac{1}{\lambda_n(L)} \end{bmatrix} \begin{bmatrix} \text{eigenvectors of L} \end{bmatrix}^T \omega \Bigg\|_{\mathcal{E},\infty} \leq \sin(\gamma)$$

Sync in Complex Oscillator Networks

 \Rightarrow includes previous conditions on $\lambda_2(L)$ and degree ($\approx \lambda_n(L)$)

F. Dörfler and F. Bullo (UCSB)

Sync in Complex Oscillator Networks

A Nearly Exact Synchronization Condition statistical analysis for power networks

Randomized power network test cases

with 50 % randomized loads and 33 % randomized generation

Randomized test case	Correctness of condition:	Accuracy of condition:	Phase
(1000 instances)	$\ L^{\dagger}\omega\ _{\mathcal{E},\infty} \leq \sin(\gamma)$	$\max_{\{i,j\}\in\mathcal{E}} \theta_i^* - \theta_j^* $	cohesiveness:
	$\Rightarrow \max_{\{i,j\} \in \mathcal{E}} \theta_i^* - \theta_j^* \le \gamma$	$- \arcsin(\ L^{\dagger}\omega\ _{\mathcal{E},\infty})$	$\max_{\{i,j\}\in\mathcal{E}} \theta_i^*-\theta_j^* $
9 bus system	always true	$4.1218 \cdot 10^{-5}$ rad	0.12889 rad
IEEE 14 bus system	always true	2.7995 · 10 ⁻⁴ rad	0.16622 rad
IEEE RTS 24	always true	$1.7089 \cdot 10^{-3}$ rad	0.22309 rad
IEEE 30 bus system	always true	$2.6140 \cdot 10^{-4}$ rad	0.1643 rad
New England 39	always true	6.6355 · 10 ⁻⁵ rad	0.16821 rad
IEEE 57 bus system	always true	$2.0630 \cdot 10^{-2}$ rad	0.20295 rad
IEEE RTS 96	always true	$2.6076 \cdot 10^{-3}$ rad	0.24593 rad
IEEE 118 bus system	always true	$5.9959 \cdot 10^{-4}$ rad	0.23524 rad
IEEE 300 bus system	always true	$5.2618 \cdot 10^{-4}$ rad	0.43204 rad
Polish 2383 bus system (winter peak 1999/2000)	always true	$4.2183 \cdot 10^{-3}$ rad	0.25144 rad

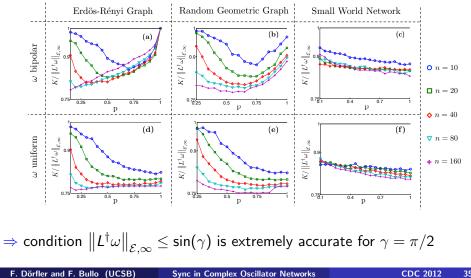
 \Rightarrow condition $\|L^{\dagger}\omega\|_{\mathcal{E}_{\infty}} \leq \sin(\gamma)$ is extremely accurate for $\gamma \leq 25^{\circ}$

A Nearly Exact Synchronization Condition statistical analysis for complex networks

Comparison with exact $K_{critical}$ for

F. Dörfler and F. Bullo (UCSB)

$$\dot{\theta}_i = \omega_i - K \cdot \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$



CDC 2012

Outline

Introduction and motivation

A Synchronization in complete networks

6 Open problems and research directions

Synchronization in sparse networks

Exciting Open Problems and Research Directions

Q: What about networks of second-order oscillators?

$$M_i\ddot{ heta}_i + D_i\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij}\sin(heta_i - heta_j)$$

Apps: mechanics, synchronous generators, Josephson junctions, ... **Problems:** kinetic energy is a mixed blessing for transient dynamics

Q: What about asymmetric interactions?

e.g., directed graphs: $a_{ij} \neq a_{ji}$ or phase shifts: $a_{ij} \sin(\theta_i - \theta_j - \varphi_{ij})$

Apps: sync protocols, lossy circuits, phase/time-delays, flocking, ... **Problems:** algebraic & geometric symmetries are broken

3 Q: How to derive sharper results for heterogeneous networks?

Sync in Complex Oscillator Networks

Exciting Open Problems and Research Directions

2 Synchronization notions, metrics, & basic insights

Q: What about the transient dynamics beyond Arc_n(π), general equilibria beyond Δ_G(π/2), or the basin of attraction?
 Apps: phase balancing, volatile power networks, flocking, ...
 Problems: lack of analysis tools (only for simple cases), chaos, ...

Sync in Complex Oscillator Networks

Q: Beyond continuous, sinusoidal, and diffusive coupling?

$$\begin{split} \dot{\theta}_i \in \ \omega_i - \sum_{\{i,j\} \in \mathcal{E}} f_{ij}(\theta_i, \theta_j) \ , \ \ \theta \in \mathcal{C} \subset \mathbb{T}^n \\ \theta_i^+ \in \ \theta_i + \sum_{\{i,j\} \in \mathcal{E}} g_{ij}(\theta_i, \theta_j) \ , \ \ \theta \in \mathcal{D} \subset \mathbb{T}^n \end{split}$$

Apps: impulsive coupling, relaxation oscillators, neuroscience, ... **Problems:** lack of analysis tools, coping with heterogeneity, ...

Q: Does anything extend from phase to state space oscillators?

Conclusions

F. Dörfler and F. Bullo (UCSB)

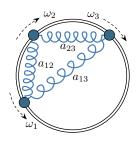
• Coupled oscillator model:

$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n \mathsf{a}_{ij} \sin(heta_i - heta_j)$$

- history: from Huygens' clocks to power grids
- applications in sciences, biology, & technology
- synchronization phenomenology
- network aspects & heterogeneity
- available analysis tools & results

CDC 2012

36 / 38



F. Dörfler and F. Bullo (UCSB)

CDC 2012