ETH zürich

Control in Low-Inertia Power Systems: from the device level to the system level

Florian Dörfler

ETH Zürich

UNIFI Meeting 2022

Replacing the power system foundation

fuel & synchronous machines

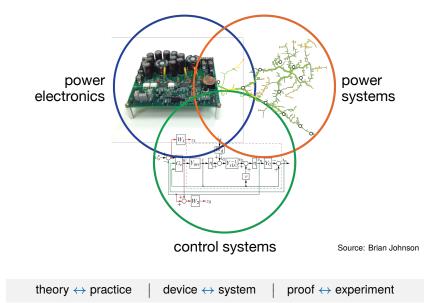
- not sustainable
- central & dispatchable generation
 & ancillary service provision
- + large rotational inertia as buffer
- + self-synchronize through the grid
- + resilient voltage / frequency control
- slow actuation & control

renewables & power electronics

- + sustainable
- distributed & variable generation
 & ancillary service provision
- almost no energy storage
- no inherent self-synchronization
- fragile voltage / frequency control
- + fast/flexible/modular control

Issues are broadly recognized

- low-inertia issues were not really on the radar (outside few places, e.g., Ireland) until eight years ago
- → led to almost comical situations


challenges: low-inertia stability, gridforming control, & fast frequency support

 \rightarrow industry & academia joining forces & willing to explore green-field approach since 2015: EU MIGRATE project & successors (OSMOSE, POSYTYF, ...)

Exciting research bridging communities

Outline

Introduction

Device-Level: Grid-Forming Converter Control

System-Level: Ancillary Services in Low-Inertia Grids

Conclusions

Outline

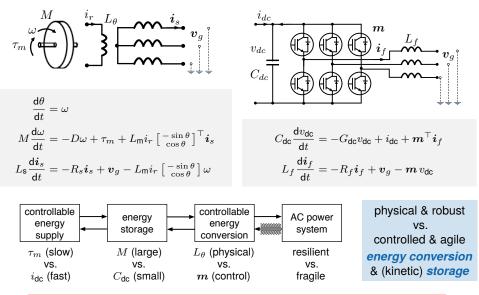
Introduction

Device-Level: Grid-Forming Converter Control

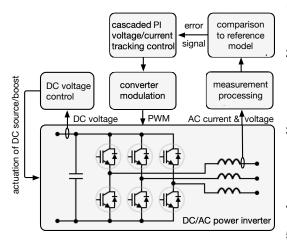
- Salient Characteristics & Specifications
- State-of-the-Art Grid-Forming Controls
- Synopsis & Lessons Learnt

System-Level: Ancillary Services in Low-Inertia Grids

Conclusions


Grid-forming control

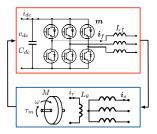
- fact: power systems need XXX% of grid-forming sources
- no universally accepted definition of grid-forming behavior


	grid-following	grid-forming
converter-type	current-controlled &	voltage-controlled &
	frequency-following	frequency-forming
signal causality	$(\omega, \ \boldsymbol{v}\) \longrightarrow (P, Q)$	$(P,Q) \longrightarrow (\omega, \ \boldsymbol{v}\)$
dynamic reachability	needs a stiff grid	blackstart & islanded operation
disturbance sensitivity	filters only low frequencies	smoothens high frequencies

Comparison: storage & conversion mechanisms

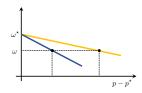
anti-podal characteristics \Longrightarrow do not use a converter to emulate a machine

Cartoon of power electronics control



 plus implementation tricks: saturation via virtual impedance, low-pass filter for dissipation, limiters, dead zones, logic, ...

- 1. acquiring & processing of *AC measurements*
- synthesis of references (voltage/current/power)
 "how would a synchronous generator respond now ?"
- cascaded PI controllers to *track* reference error assumption: no state constraints encountered
- 4. actuation via modulation
- 5. *energy balancing* via DC-side supply (P-control on DC voltage) assumption: unlimited power & instantaneous


Conventional reference behaviors

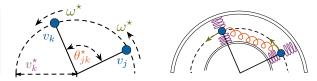
virtual synchronous machine

- reference = machine (order 3,...,12)
- → most commonly accepted solution in industry (¿ backward compatibility ?)
- \rightarrow **poor fit**: converter \neq flywheel
 - good small-signal but poor post-fault performance (reference not realizable)
 - over-parametrized & ignores limits
- \rightarrow emulate only "useful" dynamics

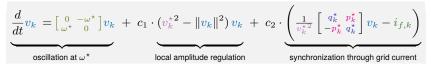
droop / power-synchronization

- direct control of frequency & voltage via (p,ω) & $(q,\|v\|)$ droop

$$\omega - \omega^{\star} \propto p - p^{\star}$$


 $\frac{d}{dt}||v|| = -c_1(||v|| - v^*) - c_2(q - q^*)$

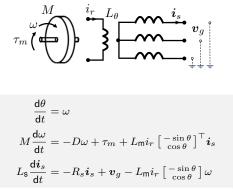
- \rightarrow decoupling \neq true in transients
 - → good small-signal but poor large signal (narrow region of attraction)
 - → main reason: two linear SISO loops for MIMO nonlinear system

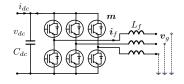

→ need "nonlinear & MIMO" droop

Modern reference behaviors: VOC family

reference model: *virtual oscillator control (VOC)* [Aracil, Torres, Johnson, Dhople, Krein, Colombino, Groß, & Dörfler]

VOC dynamics realizable via fully decentralized control & set-points


• polar coordinates reveal nonlinear & multivariable droop control


$$\frac{d}{dt}\theta_{k} = \omega^{*} + c_{2}\left(\frac{p_{k}^{*}}{v_{k}^{*2}} - \frac{p_{k}}{\|v_{k}\|^{2}}\right) \underset{\|v_{k}\|\approx 1}{\approx} \omega^{*} + c_{2}\left(p_{k}^{*} - p_{k}\right) \quad (p - \omega \text{ droop})$$

$$\frac{d}{dt}\|v_{k}\| \underset{\|v_{k}\|\approx 1}{\approx} c_{1}\left(v_{k}^{*} - \|v_{k}\|\right) + c_{2}\left(q_{k}^{*} - q_{k}\right) \quad (q - \|v\| \text{ droop})$$

strong certificates (interconnected stability) & excellent ac performance

Duality & matching of synchronous machine conversion

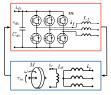
$$\begin{aligned} \frac{\mathrm{d}\delta}{\mathrm{d}t} &= \eta \cdot v_{\mathrm{dc}} \\ C_{\mathrm{dc}} \frac{\mathrm{d}v_{\mathrm{dc}}}{\mathrm{d}t} &= -G_{\mathrm{dc}}v_{\mathrm{dc}} + i_{\mathrm{dc}} + m_{\mathrm{ampl}} \begin{bmatrix} -\sin\delta \\ \cos\delta \end{bmatrix}^{\mathrm{\top}} i_{f} \\ L_{f} \frac{\mathrm{d}i_{f}}{\mathrm{d}t} &= -R_{f}i_{f} + v_{g} - m_{\mathrm{ampl}} \begin{bmatrix} -\sin\delta \\ \cos\delta \end{bmatrix} v_{\mathrm{dc}} \end{aligned}$$

1. modulation in polar coordinates:

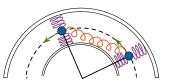

 $m{m} = m_{ ext{ampl}} \left[egin{array}{c} -\sin\delta \ \cos\delta \end{array}
ight]$ & $\dot{\delta} = m_{ ext{freq}}$

 \rightarrow *duality*: $C_{dc} \sim M$ is equivalent inertia

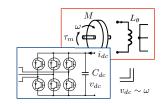
2. *matching*:
$$m_{\text{freq}} = \eta v_{\text{dc}}$$
 with $\eta = rac{\omega^{\star}}{v_{\text{dc}}^{\star}}$


- *dc frequency*/imbalance signal $\omega \equiv v_{dc}$
- *dc inertia* $M \equiv C_{dc} \equiv$ fast dc source
- structural (not quantitative) similarities
- simple & robust but slow ac behavior

High-level comparison of grid-forming control

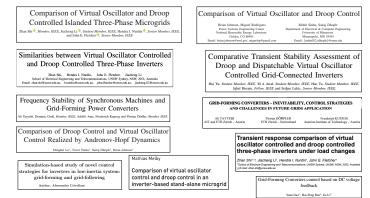

droop control

- + good performance near steady state
- relies on decoupling & small attraction basin


virtual synchronous machine

- + backward compatible in nominal case
- not resilient under large disturbances

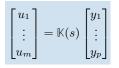
virtual oscillator control


+ excellent large-signal behavior + local droop
- voc, droop, & vsm need strong dc source

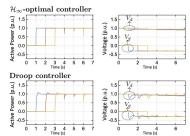
matching control & duality

- + simple & robust
- slow ac performance

Detailed comparison(s) (stopped collecting references at mid 2020)


- identical steady-state & similar small-signal behavior (after tuning)
- ▶ virtual synchronous machine has poor transients (converter ≠ flywheel)
- VOC has best large-signal behavior: stability, post-fault-response, ...
- matching control $\omega \sim v_{dc}$ is most robust though with slow AC dynamics
- ... comparison suggests multivariable control (e.g., VOC + matching)

Synopsis & lessons learnt


(1) **converter** \neq **flywheel**: very different actuation & energy storage

(2) take **dc voltage into account**: robust imbalance signal akin to frequency

③ *multivariable design* instead of decoupling: simple but results in huge gains

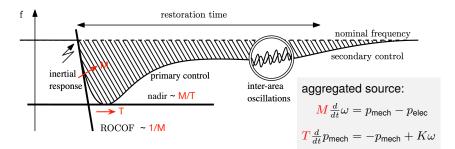
- inputs: modulation, dc-power supply, & inner references
- outputs: (nonlinear) state tracking errors
- blending of VOC + matching controls
- optimal & automated $\mathcal{H}_2\,/\,\mathcal{H}_\infty$ design

4) wide open: meet current constraints & remain stable post-fault

(5) synchronization is only the beginning: what to do once sync'd? services!

Outline

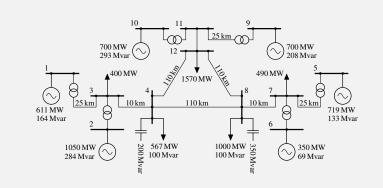
Introduction


Device-Level: Grid-Forming Converter Control

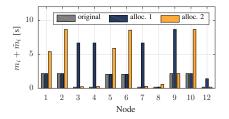
System-Level: Ancillary Services in Low-Inertia Grids

- System-Level Metrics
- Ancillary Services: Where & How?
- Synopsis & Lessons Learnt

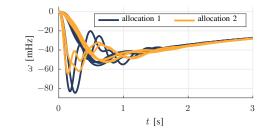
Conclusions

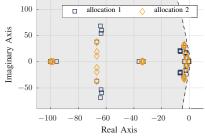

Naive insight: we are loosing inertia

- first-order observation: less inertia M


 steeper RoCoF & lower nadir
- second-order observation: can trade off inertia M with faster actuation T
- more profound observations: the above classic hook curves reflect the physical behavior of a system dominated by synchronous machines
- \rightarrow new physical phenomena \rightarrow new metrics & new ancillary services needed

Illustrative case study: modified Kundur system


- added 3rd area to standard test case & grid-following virtual inertia at all buses
- original inertia 40s: removed 28s of rotational which can be re-allocated as virtual inertia


Futile traditional metrics: RoCoF, spectrum, & inertia

metrics	allocation 1	allocation 2
total inertia	40.85 s	40.85 s
damping ratio RoCoF	0.1190 0.8149 Hz/s	0.1206 0.8135 Hz/s
ω nadir	-84.8 mHz	-65.1 mHz
peak injection	118.38 MW	7.0446 MW
control effort	15.581	2.699

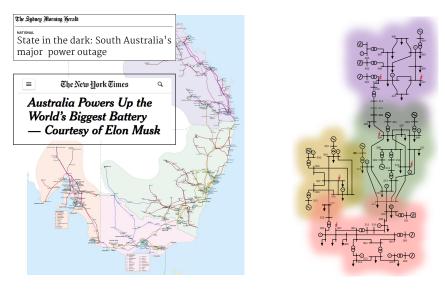
comparison for 100 MW load step at bus 7



More useful metrics: system norms

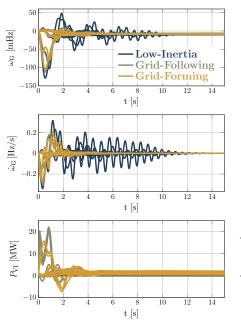
 from step responses in a conventional power system to more modern (1980) system norms quantifying the effect of shocks on variables of interest

disturbances: impulse (fault), step (loss of generation), stochastic signal (renewables)



performance outputs: signal energy or peak in time / frequency domain of output

- versatile setup: stochastic or deterministic (worst-case) settings
- practical: efficiently computable & useful for both analysis & design
- **example:** as a result of fault choose best fast frequency response to minimize $\int_{0}^{\infty} \{\text{frequency deviation}\}^{2} + \{\text{coherency: deviation from COI}\}^{2} + \{\text{control effort}\}^{2} dt$


Case-study: South-East Australian Grid with B. Poolla & D. Groß

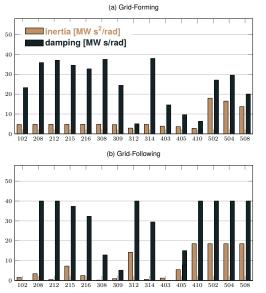
grid topology

simulation model

Closed-loop with optimal fast frequency response

model & fast frequency response

• replaced some machines with converters & (forming or following) fast frequency response: virtual inertia + damping


power
$$= \frac{Ms+D}{Ts+1}$$
 frequency

- choose performance inputs / outputs & optimize response on linearized model
- nonlinear closed-loop simulations: 200 MW disturbance at node 508

observations

- → system-level optimization makes a difference (even at same inertia)
- → forming beats following in nadir, RoCoF, & peak power

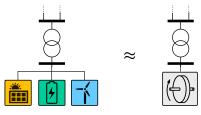
Optimal allocation of virtual inertia + damping

node

observations

- both control modes allocate virtual inertia in (blackout & battery) area 5
- grid-following : more reliance on damping (due to PLL-delay in ώ)
- grid-forming : results in a more uniform (thus robust) allocations

conclusions

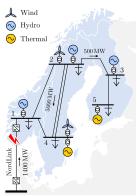

- \rightarrow total inertia/damping not crucial
- → in comparison spatial allocation & tuning make a big difference
- \rightarrow implications for pricing & markets

19

Services from Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate heterogeneous set of DERs to collectively provide dynamic ancillary services

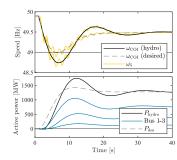
- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so
- dynamic ancillary services
 - fast response, e.g., inertia for brittle grid, robustly implementable on converter sources
 - specified as desired dynamic I/O response
- coordination aspect
 - decentralized control implementation
 - real-time adaptation to variable DVPP generation & ambient grid conditions

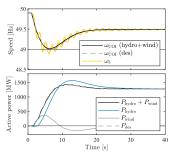


examples

- frequency containment with non-minimum phase hydro & batteries (for fast response)
- wind providing fast frequency response & voltage support augmented with storage
- hybrid power plants, e.g.,
 PV + battery + supercap

Nordic case study

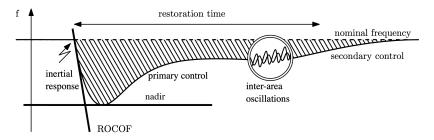

with J. Björk (Svenska kraftnät) & K.H. Johansson (KTH)



- FCR-D service
 - \rightarrow desired behavior

 $\frac{\textit{power}}{\textit{frequency}} = \frac{3100 \cdot (6.5s+1)}{(2s+1)(17s+1)}$

- well-known **issue:** actuation of hydro is non-minimum phase → initial power surge opposes control → unsatisfactory response
- discussed solution: augment hydro with on-site batteries for fast response
 → works but not economic
- better DVPP solution: coordinate hydro & wind to cover all time scales



Synopsis & lessons learnt

- initial literature was all about inertia ... but we should not extrapolate from the old system: total inertia & conventional metrics might be misleading
- (2) **system norms** are more useful, practical, & sharper metrics for both system analysis & optimal design of fast frequency response
- (3) spatial allocation & tuning of fast frequency response & forming vs. following behavior matters more than total amount of inertia & damping
- (4) dynamic virtual power plants to distribute ancillary services across heterogeneous DERs collectively covering all power levels & time scales
- 5 wide open: specification of future ancillary services, e.g., desired input/output responses + % & location of grid-forming sources

Conclusions

- **do not think only of "inertia"** when designing converter controls, analyzing power systems, or specifying ancillary services
- rather: adopt more system-theoretic & computational mind-set: specify desired responses & use optimization + multivariable control
- grid-forming control is only part of the puzzle: what to once sync'd? **services!** who provides them? where? how to disaggregate the desired behavior?
- last: free yourself from textbook plots tomorrow's system will be different

