ETH zürich

Control in Power-Electronics-Dominated Power Systems

Florian Dörfler

ETH Zürich

Isaac Newton Institute 2023

Acknowledgements & miscellaneous

Verena Häberle

Irina Subotic

Ali Tayyebi

Xiuqiang He

\dots partially ruptured Achilles \rightarrow remote talk

Annual Review of Control, Robotics, and Autonomous Systems

Control of Low-Inertia Power Systems

Florian Dörfler¹ and Dominic Groß² ¹Anonuric Control Laboratory, ETH Zarich, Zarich, Switzerland, email: dorther@etht.ch ¹Department of Electrical and Computer Engineering, University of Wiccostin-Madison, Madron, Wiscostin, USA, email: dominic growthyric-cati

reference for today

Eduardo Prieto

Catalin Arghir

Meng Chen

Dominic Groß

Power-electronics-dominated power systems

- relevant observation: system enabled by ubiquitous actuation, pervasive sensing, & digitalization, i.e., *control*, rather than clever physical design
- ► aggressive integration of technology → system issues: oscillations, lack of inertia (→ RoCoF limits) & reactive power (→ SE Australia outages), ...

Issues are by now broadly recognized

- low-inertia issues were not really on the radar (outside few places, e.g., Ireland) until nine years ago
- $\rightarrow~$ led to rather comical situations \ldots

new challenges: low-inertia stability, gridforming control, & fast frequency support

 \rightarrow industry willing to explore green-field approach & join forces with academia

 since 2015: EU MIGRATE project & successors (OSMOSE, POSYTYF, ...)

across the pond:

Exciting research bridging communities

theory \leftrightarrow practice

device ↔ system

Conclusion: re-visit models/analysis/control/...

Foundations and Challenges of Low-Inertia Systems	Annual Review of Control, Robotics, and Autonomous Systems
(Invited Paper)	Stability and Control of
	Power Grids
Federico Milano Florian Dördler and Gabriela Hug David J. Hill" and Gregor Verbit University College Dublin, Ireland ETH Zürich, Switzerland University of Sydney, Australia email: federico.milan@fucd.ie emails: dorfle@fettz.ch, * also University of Hong Kong	Tao Liu, ^{1,*} Yue Song, ^{1,*} Lipeng Zhu, ^{1,2,*} and David J. Hill ^{1,3}
gnug@ethZ.cn emails: dhill@eee.hku.hk, gregor.verbic@sydney.edu.au	China; eruit tashubteechku.hk; yaoong@eechku.hk; dhif@eechku.hk ² Callege of Heerical and Information Engineering, Hanan University, Changsha, China; eruit ihalupt=MelT26.cen
The later sections contain many suggestions for further work, which can be summarized as follows: • New control methodologies, e.g. new controller to which the high sets of charge of foregroups in large	¹ School of Electrical Engineering and Telecommunications, University of New South Wales, Kensingnee, New South Wiles, Australia
 New models are needed which balance the need to include key features without burdening the model 	
 (whether for analytical or computational work) with uneven and excessive detail; A power converter is a fully actuated, modular, and very fast control system, which are nearly antipodal 	Power systems without fuel
 New stability theory which properly reflects the new devices and time-scales associated with CIG, new loads and use of storage; 	JOSIN A. Laylor ¹⁴⁰ , Salraj V. DhOple ⁻¹ , Duncan S. Callaway ⁻¹ ¹ Enerical and Computer Engineering, University of Enersti, Freeven, Conado ON MESS 364 ¹ Enerst and Computer Engineering, University of Momenta, Messachi, MM 55455, USA ¹ Energy and Resource Group, University of California, Berleing, CA 94720, USA
 Further computational work to achieve sensitivity guidelines including data-based approaches; The tack of inertia in a power system does not need to (and cannot) be fixed by simply "adding inertia back" in the systems. 	
	Annual Review of Control, Robotics, and Autonomous Systems
Fundamentals of power systems modelling in the presence of converter-	Control of Low-Inertia
interfaced generation	Power Systems

Mario Paolone^{a,*}, Trevor Gaunt^b, Xavier Guillaud^c, Marco Liserre^d, Sakis Meliopoulos^e, Antonello Monti^f, Thierry Van Cutsem⁸, Vijay Vittal^h, Costas Vournasⁱ

Power system stability in the transition to a low carbon grid: A techno-economic perspective on challenges and opportunities

Lasantha Meegahapola¹ ³ | Pierluigi Mancarella^{2,3} ³ | Damian Flynn⁴ ³ | Rodrigo Moreno^{5,6,7} ⁰ Florian Dörfler¹ and Dominic Groß² ¹ Januaric Control Laboratory, FTH Zarich, Zarich, Switzerland, email: dorf ² Desarration of Electrical and Comment Particectine, University of Wisconsi

 Department of Facturea and Computer Engineering, University of Worces Madison, Wisconsin, USA; email: dominic.gross@wisc.edu

On the Inertia of Future More-Electronics Power Systems

> Jingyang Fang^O, Student Member, IEEE, Hongchang Li^O, Member, IEEE, Yi Tang^O, Senior Member, IEEE, and Frede Blaabjerg^O, Fellow, IEEE

focus today: control on device & system level

Outline: a personal journey through the field

Introduction

Device-Level: Grid-Forming Converter Control

System-Level: Ancillary Services in Low-Inertia Grids

Conclusions

Outline: a personal journey through the field

Introduction

Device-Level: Grid-Forming Converter Control

- Salient Characteristics & Specifications
- State-of-the-Art Grid-Forming Controls
- Synopsis & Lessons Learnt

System-Level: Ancillary Services in Low-Inertia Grids

Conclusions

Device-level challenges with inverter-based sources

- primary source: constrained in active/ reactive power, energy, bandwidth, ...
- interlinking converters: master vs. slave
- fragile grid-connection (over-currents)

- assuring time-scale separation & avoiding resonances + oscillations
- ...
- signal causality: following vs. forming

Grid-forming control

- fact: power systems need XXX% of grid-forming sources
- no universally accepted definition of grid-forming behavior

	grid-following	grid-forming
converter-type	current-controlled &	voltage-controlled &
	frequency-following	frequency-forming
signal causality	$(\omega, \ \boldsymbol{v}\) \longrightarrow (P, Q)$	$(P,Q) \longrightarrow (\omega, \ \boldsymbol{v}\)$
dynamic reachability	needs a stiff grid	blackstart & islanded operation
disturbance sensitivity	filters only low frequencies	smoothens high frequencies

Comparison: storage & conversion mechanisms

anti-podal characteristics \Longrightarrow do not use a converter to emulate a machine

Cartoon of power electronics control

 plus *implementation tricks*: saturation via virtual impedance, low-pass filter for dissipation, limiters, dead zones, logic, ...

- 1. acquiring & processing of *AC measurements*
- synthesis of *references* (voltage/current/power)
 "how would a synchronous generator respond now ?"
- cascaded PI controllers to *track* reference error assumption: no state constraints encountered
- 4. actuation via modulation
- energy balancing via dc voltage P-control assumption: unlimited power & instantaneous

Conventional reference behaviors

virtual synchronous machine

- reference = machine (order 3,...,12)
- → most commonly accepted solution in industry (¿ backward compatibility ?)
- \rightarrow **poor fit**: converter \neq flywheel
 - good small-signal but poor post-fault performance (reference not realizable)
 - over-parametrized & ignores limits
- \rightarrow emulate only "useful" dynamics

droop / power-synchronization

- direct control of frequency & voltage via (p,ω) & $(q,\|v\|)$ droop

$$\omega - \omega^{\star} \propto p - p^{\star}$$

 $\frac{d}{dt} \|v\| = -c_1(\|v\| - v^*) - c_2(q - q^*)$

- \rightarrow decoupling \neq true in transients
 - → good small-signal but poor large signal (narrow region of attraction)
 - → main reason: two linear SISO loops for MIMO nonlinear system

→ need "nonlinear & MIMO" droop

Modern reference behaviors: VOC family

reference model: virtual oscillator control (VOC)

VOC dynamics realizable via fully decentralized control & set-points

• polar coordinates reveal nonlinear & multivariable droop control

$$\frac{d}{dt}\theta_{k} = \omega^{\star} + c_{2}\left(\frac{p_{k}^{\star}}{v_{k}^{\star 2}} - \frac{p_{k}}{\|v_{k}\|^{2}}\right) \underset{\|v_{k}\|\approx 1}{\approx} \omega^{\star} + c_{2}\left(p_{k}^{\star} - p_{k}\right) (p - \omega \text{ droop})$$

$$\frac{d}{dt}\|v_{k}\| \underset{\|v_{k}\|\approx 1}{\approx} c_{1}\left(v_{k}^{\star} - \|v_{k}\|\right) + c_{2}\left(q_{k}^{\star} - q_{k}\right) (q - \|v\| \text{ droop})$$

strong certificates (interconnected stability) & excellent ac performance

Experimental validation @NREL (often replicated, varied, & extended)

black start of inverter #1 under 500 W load (making use of almost global stability)

250 W to 750 W load transient with two inverters active

connecting inverter #2 while inverter #1 is regulating the grid under 500 W load

change of setpoint: p^* of inverter #2 updated from 250 W to 500 W

Duality & matching of synchronous machine conversion

$$\begin{aligned} \frac{\mathrm{d}\delta}{\mathrm{d}t} &= \eta \cdot v_{\mathrm{dc}} \\ C_{\mathrm{dc}} \frac{\mathrm{d}v_{\mathrm{dc}}}{\mathrm{d}t} &= -G_{\mathrm{dc}}v_{\mathrm{dc}} + i_{\mathrm{dc}} + m_{\mathrm{ampl}} \begin{bmatrix} -\sin\delta \\ \cos\delta \end{bmatrix}^{\mathrm{T}} \! i_{f} \\ L_{f} \frac{\mathrm{d}i_{f}}{\mathrm{d}t} &= -R_{f}i_{f} + v_{g} - m_{\mathrm{ampl}} \begin{bmatrix} -\sin\delta \\ \cos\delta \end{bmatrix} v_{\mathrm{dc}} \end{aligned}$$

1. modulation in polar coordinates:

 $m{m} = m_{ ext{ampl}} \left[egin{array}{c} -\sin\delta \ \cos\delta \end{array}
ight]$ & $\dot{\delta} = m_{ ext{freq}}$

 \rightarrow *duality*: $C_{dc} \sim M$ is equivalent inertia

2. *matching*:
$$m_{\text{freq}} = \eta v_{\text{dc}}$$
 with $\eta = \frac{\omega^{\star}}{v_{\text{dc}}^{\star}}$

- *dc frequency*/imbalance signal $\omega \equiv v_{dc}$
- *dc inertia* $M \equiv C_{dc} \equiv$ fast dc source
- structural (not quantitative) similarities
- simple & robust but slow ac behavior

Experimental validation @ETH (concept often replicated with variations)

High-level comparison of grid-forming control

droop control

- + good performance near steady state
- relies on decoupling & small attraction basin

virtual synchronous machine

- + backward compatible in nominal case
- not resilient under large disturbances

virtual oscillator control

+ excellent large-signal behavior + local droop
- voc, droop, & vsm need strong dc source

matching control & duality

- + simple & robust
- slow ac performance

Detailed comparison(s) (stopped collecting references at mid 2020)

- identical steady-state & similar small-signal behavior (after tuning)
- ▶ virtual synchronous machine has poor transients (converter ≠ flywheel)
- VOC has best large-signal behavior : stability, post-fault-response, ...
- matching control $\omega \sim v_{dc}$ is most robust though with slow AC dynamics
- ... comparison suggests multivariable control (e.g., VOC + matching)

Abstract perspective on converter controls

(1) droop control = 3 decoupled SISO loops

2 virtual machine = droop + filters + ...

3 matching = unconventional coupling

(4) nonlinear & coupled preprocessing of control inputs: virtual oscillator control

$$\begin{bmatrix} p \\ q \\ \|v\| \end{bmatrix} \mapsto \begin{bmatrix} p/\|v\|^2 \\ q/\|v\|^2 \\ \|v\| \end{bmatrix} \mapsto \text{control loops} \mapsto u$$

or droop $\mathbf{adapting}$ to impedance angle φ

 $\begin{bmatrix} p \\ q \end{bmatrix} \mapsto \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} p \\ q \end{bmatrix} \mapsto \text{control loops} \mapsto u$

⇒ seek MIMO, dynamic, & nonlinear control

Optimal multivariable grid-forming control

1.02

0.98

7dc (p.u.)

- inputs: modulation, dc-power supply, & inner references
- outputs: (nonlinear) state tracking errors

q (p.u.) 0

-0.2

5

6

- → can *include all other controls* (e.g., droop or VOC) depending on I/O's
- ► optimal/robust linear design via H₂ / H_∞ & nonlinear implementation
- forming / following mode enforced by small-signal Bode characterization
- linear stability under interconnection

7 8

Time (s)

Synopsis & lessons learnt

(1) **converter** \neq **flywheel**: very different actuation & energy storage

- (2) take dc voltage into account: robust imbalance signal akin to frequency
- (3) multivariable design instead of decoupling: simple but results in huge gains
 → based on optimization & account for grid-forming / following specifications
 → motivates architecture-free definitions of grid connection requirements

- (4) open & hard problem: satisfy current constraints & remain stable post-fault
- (5) synchronization is only the beginning: what to do once sync'd? services!

Outline: a personal journey through the field

Introduction

Device-Level: Grid-Forming Converter Control

System-Level: Ancillary Services in Low-Inertia Grids

- System-Level Metrics
- Ancillary Services: Where & How?
- Synopsis & Lessons Learnt

Conclusions

Hook curve & services in conventional system

source: W. Sattinger, Swissgrid

Naive insight: we are loosing inertia

- first-order observation: less inertia M

 steeper RoCoF & lower nadir
- second-order observation: can trade off inertia M with faster actuation T
- more profound observations: the above classic hook curves reflect the physical behavior of a system dominated by synchronous machines
- \rightarrow new physical phenomena \rightarrow new metrics & new ancillary services needed

Fact: no more hook curves in low-inertia systems

source: confidential - but you can make your guesses

Fast frequency response provided by converters

which metric(s) should we optimize when tuning controls?

Historic & revived (but naive !) metrics: damping ratio, RoCoF, nadir, & total inertia

Futility of traditional metrics

traditional metrics ambiguous \rightarrow **discard**

comparison for 100 MW load step at bus 7

More useful metrics: system norms

 from step responses in a conventional power system to more modern (1980) system norms quantifying the effect of shocks on variables of interest

disturbances: impulse (fault), step (loss of generation), stochastic signal (renewables)

performance outputs: signal energy or peak in time / frequency domain of output

- practical: efficiently computable, analysis & design, & captures relevant shocks
- **example:** as a result of fault choose best fast frequency response to minimize $\int_{0}^{\infty} \{\text{frequency deviation}\}^{2} + \{\text{coherency: deviation from COI}\}^{2} + \{\text{control effort}\}^{2} dt$

Case-study: South-East Australian Grid

grid topology

simulation model

Closed-loop with optimal fast frequency response

model & fast frequency response

• replaced some machines with converters & (forming or following) fast frequency response: virtual inertia + damping

frequency =
$$\frac{1}{Ms+D}$$
 power

- choose performance inputs / outputs & optimize response on linearized model
- nonlinear closed-loop simulations: 200 MW disturbance at node 508

observations

- → system-level optimization makes a difference (even at same inertia)
- → forming beats following in nadir, RoCoF, & peak power

Optimal allocation of virtual inertia + damping

node

observations

- both control modes allocate virtual inertia in (blackout & battery) area 5
- grid-following : more reliance on damping (due to PLL-delay in ώ)
- grid-forming : results in a more uniform (thus robust) allocations

conclusions

- \rightarrow total inertia/damping not crucial
- → in comparison spatial allocation & tuning make a big difference
- \rightarrow implications for pricing & markets

29

Services from Dynamic Virtual Power Plant (DVPP)

DVPP: coordinate heterogeneous set of DERs to collectively provide dynamic ancillary services

- heterogenous collection of devices
 - reliable provide services consistently across all power & energy levels and all time scales
 - none of the devices itself is able to do so
- dynamic ancillary services
 - fast response, e.g., inertia for brittle grid, robustly implementable on converter sources
 - specified as desired dynamic I/O response
- coordination aspect
 - decentralized control implementation
 - real-time adaptation to variable DVPP generation & ambient grid conditions

examples

- frequency containment with non-minimum phase hydro & batteries (for fast response)
- wind providing fast frequency response & voltage support augmented with storage
- hybrid power plants, e.g.,
 PV + battery + supercap

Nordic case study

FCR-D service

ightarrow desired behavior

 $\frac{\textit{power}}{\textit{frequency}} = \frac{3100 \cdot (6.5s+1)}{(2s+1)(17s+1)}$

- well-known issue:
 actuation of hydro is
 non-minimum phase
 → initial power surge
 opposes control
 → unsatisfactory response
- discussed solution: augment hydro with on-site batteries for fast response → works but not economic
- better DVPP solution: coordinate hydro & wind to cover all time scales

Enabler: dynamic & adaptive participation factors

- specify desired aggregate DVPP behavior T_{des}(s),
 e.g., a desired fast frequency response p → f
- disaggregate T_{des}(s) into local desired behaviors for each device taking dynamics constraints into account & adapt disaggregation to varying ambient conditions via dynamic & adaptive participation factors

 $T_i(s) = \boldsymbol{m_i(s)} T_{des}(s)$

• decentralized model matching control to achieve $T_i(s)$

Synopsis & lessons learnt

- initial literature was all about inertia ... but we should not extrapolate from the old system: total inertia & conventional metrics might be misleading
- (2) **system norms** are more useful, practical, & sharper metrics for both system analysis & optimal design of fast frequency response
- (3) spatial allocation & tuning of fast frequency response & forming vs. following behavior matters more than total amount of inertia & damping
- 4 dynamic virtual power plants to distribute ancillary services across heterogeneous DERs collectively covering all power levels & time scales
- 5 wide open: **specification of future ancillary services**, e.g., desired input/output responses + **share & location of grid-forming** sources

Preliminary ideas on future ancillary service specs

- decoupling issues with standard services separating $(p, \theta) \& (q, ||v||)$ dynamics
- → recall VOC error coordinates & define normalized power $\tilde{s} = p/||v||^2 + iq/||v||^2$ complex frequency $\tilde{\omega} = \frac{d}{dt} \lg(||v||) + i\frac{d}{dt}\theta$ [Milano, 2022] → VOC = complex droop: $\tilde{\omega} - \tilde{\omega}^* \sim \tilde{s} - \tilde{s}^*$

$$\mathcal{I} \quad \dot{v}(t) = \tilde{\omega}$$
$$\dot{v}_{\perp} = \frac{d}{dt}\theta$$
$$\dot{v}_{\parallel} = \frac{d}{dt} \lg(\|v\|)$$
$$v(t)$$
$$\mathcal{R}$$

- → the right coordinates for analysis & control !?!
- from **static** to **dynamic ancillary service** specifications, including, e.g., roll-off, PD-action, interconnected stability certificates, forming/following specifications, ...
- → ideally seek architecture-free & computationally tractable definitions, e.g.,

minimize $cost(\tilde{\omega}, \tilde{s})$ subject to device & operational constraints

Conclusions

- **do not think only of "inertia"** when designing converter controls, analyzing power systems, or specifying ancillary services
- rather: adopt more system-theoretic & computational mind-set: specify desired responses & use optimization + multivariable control
- grid-forming control is only part of the puzzle: what to do once sync'd? services! who provides them? where? how to disaggregate desired behavior?
- last: free yourself from textbook plots tomorrow's system will be different

