CSHL Biological Data Science 2024

• Raw Nanopore Signals Using a Hash-based Seeding Mechanism

Can Firtina

Maximilian Mordig

Nika Mansouri Ghiasi

Harun Mustafa

Sayan Goswami

Stefano Mercogliano Furkan Eris

Joël Lindegger

Andre Kahles

Onur Mutlu

SAFARI ETHZÜRICH

SAFARI

Executive Summary

Problem: Existing solutions **cannot** interpret raw signals directly **for reference-free applications**

Goal: Enable raw signal analysis **without a reference genome**

Key Contributions:

- **1. Rawsamble: the first mechanism** that can find **overlapping pairs** between raw nanopore signals
- 2. First *de novo* assemblies ever constructed directly from raw signal overlaps **without basecalling**
- 3. A new assembler to build and output the assemblies of signals

Key Results: Across 5 genomes of varying sizes, Rawsamble provides

- Average speedup of 16× compared to Dorado (Fast model) + minimap2
- 37% of overlapping pairs shared with the minimap2 overlaps
- Unitigs up to 400× longer than the average read length

Background

Rawsamble Mechanism

Evaluation

Conclusion

Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology

- Can sequence large fragments of nucleic acid molecules
- Offers high throughput
- Cost-effective
- Enables real-time and portable genome analysis

Nanopore Sequencing – How it Works

Raw Signals: Ionic current measurements generated at a certain throughput

(Real-Time) Analysis: Analyzing raw signals instantly as they are generated

Real-Time Decisions: Stopping sequencing **early** based on real-time analysis

Analyzing Raw Nanopore Signals

Traditional: Translating (**basecalling**) signals to bases **before** analysis

Basecalled sequences are less noisy than raw signals

Costly and power-hungry computational requirements **Recent Works:** Directly analyzing signals without basecalling

Efficient analysis with better scalability and portability

Raw signals retain **more** information than just bases

Lack of established tools for downstream analysis

The State-of-the-Art Raw Signal Mapper

The State-of-the-Art Raw Signal Mapper

Reference Genome

... CTGCGTAGCAGCGTAATAG..

Raw Nanopore Signals

Existing solutions **cannot** analyze raw signals directly **without a reference genome**

Synthetic signals are mainly **free from noise**

A reference genome must exist for mapping

SAFARI

RawHash [Firtina+, ISMB/ECCB'23]; RawHash2 [Firtina+, Bioinformatics'24]

Existing solutions cannot find overlapping reads without basecalling

SAFARI

Challenges with Overlapping Raw Signals

Challenge: Identifying hash matches when both signals are noisy

Challenge: Finding **many** useful overlapping pairs (all-vs-all overlapping)

Challenge: Generating **long paths** from useful overlaps

Background

Rawsamble Mechanism

Evaluation

Conclusion

SAFARI

Goal

Enable raw signal analysis without a reference genome

The first mechanism that can perform all-vs-all overlapping from raw signals

First de novo assemblies ever constructed directly from raw signal overlaps without basecalling

A new assembler to build and output the assemblies from raw signals

Rawsamble Key Ideas

Build on the existing state-of-the-art raw signal mapper: **RawHash2**

Extend RawHash2 to support overlapping

RawHash2 [Firtina+, Bioinformatics'24]

Raw Signal Mapping with RawHash2

Indexing

Integrating Rawsamble into RawHash2

16

Indexing using Raw Signals

- 1. Constructing the hash table index **from raw nanopore signals**
 - Reference-to-signal conversion is mainly free from noise (e.g., stay errors)
 - Indexed raw nanopore signals are not free from noise

2. Aggressively filtering consecutive and similar signals to substantially reduce noise at the cost of data loss

Chaining and Outputting Overlaps

3. Adjusting the minimum chaining score to avoid false chains

- All-vs-all overlapping tends to find a larger number of seed hits than mapping to a reference genome
- Minimum score for a chain during overlapping is set to be ~5× larger than mapping
- All such chains are reported (instead of a single best mapping)

4. Avoid cyclic overlaps with deterministic comparisons

Background

Rawsamble Mechanism

Evaluation

Conclusion

Evaluation Methodology

- Rawsamble is integrated into RawHash2 [Firtina+, Bioinformatics'24]
- Compared to the **minimap2** [Li, Bioinformatics'18] overlaps (forward strand)
 - Basecalling with Dorado's various models (using CPUs & GPUs)
- **Use case** for raw signal overlapping:
 - De novo assembly construction using **miniasm** [Li, Bioinformatics'16]
 - New exciting directions to be discussed as future work

Evaluation metrics:

- Overall runtime when performing all-vs-all overlapping
- Percentage of shared overlaps between tools
- Assembly statistics

• 5 real datasets with

- Various **coverage** (0.6× 445×) and
- **Genome lengths** (viral to human genomes)

SAFARI

Normalized Runtime Results

Compared to the fastest CPU model (Fast): Average speedup of 16.36×

Compared to the conventional GPU model (HAC): Average speedup of **1.99**×

All-vs-All Overlapping Statistics

Percentage of overlapping pairs that are:

~37% of overlapping pairs are shared with the minimap2 overlaps

How to evaluate the usefulness of these overlaps?

de novo Assemblies from Raw Signals

Future work: Utilize the overlap and assembly information when training and using basecallers

Low-Coverage Human Genome Assembly

- Results are shown relative to the best result from each metric
 - Metrics: auN, longest unitig, largest connected unitigs (component)
 - Coverage: 0.6x

Rawsamble leads to **better contiguity** than using basecalled reads **at a low coverage dataset**

Can **the richer information in raw signals improve assembly quality** where basecalled analysis falls short?

New Directions in Raw Signal Analysis

Utilizing the overlap information for more accurate (and faster) basecalling

Utilizing the constructed assembly for basecalling

Error correction & assembly:

SAFARI

Rawsamble

 <u>Can Firtina</u>, Maximilian Mordig, Harun Mustafa, Sayan Goswami, Nika Mansouri Ghiasi, Stefano Mercogliano, Furkan Eris, Joël Lindegger, Andre Kahles, and Onur Mutlu
<u>"Rawsamble: Overlapping and Assembling Raw Nanopore Signals</u>

using a Hash-based Seeding Mechanism"

arXiv, Oct 2024 [Source Code]

Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a Hash-based Seeding Mechanism

Can Firtina¹ Maximilian Mordig^{1,2} Harun Mustafa^{1,3,4} Sayan Goswami¹ Nika Mansouri Ghiasi¹ Stefano Mercogliano¹ Furkan Eris¹ Joël Lindegger¹ Andre Kahles^{1,3,4} Onur Mutlu¹ ¹ETH Zurich ²Max Planck Institute for Intelligent Systems ³University Hospital Zurich ⁴Swiss Institute of Bioinformatics

Rawasm: Raw Signal Assembler [Beta]

- Slightly modified version of miniasm
 - To output assembled raw signals instead of basecalled sequences
- Supports all major raw signal file formats
 - FAST5, POD5, S/BLOW5 file formats
- Still in a testing phase: Feedback is appreciated!

arawasm (Public)			⊙ Unwatch 4	
💡 main 👻 🐉 1 Branch 🚫 0 Tags	Q Go to file	t Add file 👻	<> Code •	
😭 Granp4sso Update README.md		9864dff · 4 days ago	🕚 16 Commits	
include	rawasm commit		4 days ago	
🖿 lib	rawasm commit		4 days ago	
E patch	rawasm commit		4 days ago	
src	rawasm commit		4 days ago	
	Initial commit		4 days ago	
🗋 Makefile	update Makefile		4 days ago	
TREADME.md	Update README.md		4 days ago	
C code_of_conduct.md	Create code_of_conduct.md		4 days ago	
□ README ⓒ Code of conduct ₫ GPL-3.0 license				

Overview

Rawasm is the first software tool that enables the construction of genome assembly from raw nanopore signals. It mostly reuses the <u>miniasm</u> features, but adds support to *FAST5, POD5* and *SLOW5* formats. Rawasm can be used in pipelining with <u>RawHash2</u>, using **Rawsamble** overlapping feature.

https://github.com/CMU-SAFARI/rawasm

Background

Rawsamble Mechanism

Evaluation

Conclusion

Key Contributions:

- **1. Rawsamble: the first mechanism** that can find **overlapping pairs** between raw nanopore signals
- 2. First *de novo* assemblies ever constructed directly from raw signal overlaps **without basecalling**
- 3. A new assembler to build and output the assemblies of signals

Key Results: Across 5 genomes of varying sizes, Rawsamble provides

- 16× average speedup compared to Dorado (Fast model) + minimap2
- 37% of overlapping pairs shared with the minimap2 overlaps
- Unitigs up to 400imes longer than the average read length

Many opportunities for analyzing raw nanopore signals:

- Indexing is cheap: Future use cases with the on-the-fly index construction
- We should rethink the algorithms to perform downstream analysis fully using raw signals
- We should rethink the basecalling approaches by integrating raw signal analysis

CSHL Biological Data Science 2024

• Raw Nanopore Signals Using a Hash-based Seeding Mechanism

Can Firtina

Maximilian Mordig

Nika Mansouri Ghiasi

Harun Mustafa

Sayan Goswami

Stefano Mercogliano Furkan Eris

Joël Lindegger

Andre Kahles

Onur Mutlu

SAFARI ETHZÜRICH

SAFARI

Backup Slides

A Common Genome Analysis Pipeline

SAFARI

Minimizer Sketching

Hash-Based Sketching and Seed Matching

SAFARI

Chaining (Two Points)

Chaining (Multiple Points)

- Exact hash value matches: Needed for finding matching regions between a reference genome and a read
- What if there are mutations or errors?

SAFAR

- No hash (seed) match will occur in such positions
- The chaining algorithm links **exact matches in a proximity** even though there are gaps (no seed matches) between them

Nanopore Sequencing

Source of Noise in Nanopore Sequencing

Stochastic thermal fluctuations in the ionic current

• Random ionic movement due to inherent thermal energy (Brownian motion)

Variations in the translocation speed

• Mainly due to the motor protein

Environmental factors

- **Temperature:** Affecting enzymes including the motor protein
- **pH levels:** Affecting charge and the shape of molecules

Maybe: Aging & material-related noise between nanopores

• Their effects potentially can be minimized with normalization techniques

R9 vs. R10 Chemistries

Dual reader head

• Motor protein with more consistent translocation speed in R10

• **Duplex sequencing** in R10

Challenges in Real-Time Analysis

Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

Accurate analysis from noisy raw signal data

Power-efficient computation for scalability and portability

Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected

- Microbiome studies by removing host DNA
- Eliminating known residual DNA or RNA (e.g., mitochondrial DNA)
- High abundance genome removal

Enrichment: Reads **not** mapping to a particular reference genome is ejected

- Removing contaminated organisms
- Targeted sequencing (e.g., to a particular region of interest in the genome)
- Low abundance genome enrichment

SAFARI

Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
 - Preconstructed based on nanopore sequencer characteristics
- Use the k-mer model to convert all k-mers of a reference genome to their expected event values

Enabling Analysis From Electrical Signals

- K many nucleotides (k-mers) sequenced at a time
- Event: A segment of the raw signal
 - Corresponds to a **particular** k-mer

 Observation: Event values generated after sequencing the same k-mer are similar in value (not necessarily the same)

Datasets

	Organism	Device Type	Reads (#)	Bases (#)	Avg. Read Length	Estimated Coverage (×)	SRA Accession
D1	SARS-CoV-2	MinION	10,001	4.02M	402	135×	CADDE Centre
D2	E. coli	GridION	353,948	2,332M	6,588	445×	ERR9127551
D3	Yeast	MinION	50,023	385M	7,698	32×	SRR8648503
D4	Green Algae	PromethION	30,012	622M	20,731	5.6×	ERR3237140
D5	Human	MinION	270,006	1,773M	6,567	0.6×	FAB42260

Throughput

	D1	D2	D3	D4	D5
	SARS-CoV-2	E. coli	Yeast	Green Algae	Human
Throughput	2,065,764	2,720,702	2,128,800	1,668,065	3,579,472

Performance

Organism	Tool	Elapsed time	CPU time	Peak
		(hh:mm:ss)	(sec)	Mem. (GB)
D1	Rawsamble	0:00:03	33	1.07
SARS-CoV-2	Minimap2	0:00:01 (0.33×)	19 (0.58×)	0.16 (0.15×)
	Minimap2 + Dorado CPU (Fast)	0:01:45 (35.00×)	3,227 (97.79×)	44.93 (41.99×)
	Minimap2 + Dorado CPU (HAC)	0:05:45 (115.00×)	5,457 (165.36×)	57.98 (54.19×)
	Minimap2 + Dorado GPU (HAC)	0:01:41 (33.67×)	NA	0.8 (0.75×)
	Minimap2 + Dorado GPU (SUP)	0:25:47 (515.67×)	NA	1.23 (1.15×)
D2	Rawsamble	1:12:44	132,758	6.72
E. coli	Minimap2	0:14:25 (0.20×)	25,721 (0.19×)	26.73 (3.98×)
	Minimap2 + Dorado CPU (Fast)	7:17:05 (6.01×)	583,358 (4.39×)	50.43 (7.50×)
	Minimap2 + Dorado CPU (HAC)	32:26:12 (26.76×)	1,335,697 (10.06×)	38.0 (5.65×)
	Minimap2 + Dorado GPU (HAC)	0:36:14 (0.50×)	NA	26.73 (3.98×)
	Minimap2 + Dorado GPU (SUP)	1:30:30 (1.24×)	NA	26.73 (3.98×)
D3	Rawsamble	0:01:18	2,241	6.39
Yeast	Minimap2	0:00:21 (0.27×)	290 (0.13×)	5.25 (0.82×)
	Minimap2 + Dorado CPU (Fast)	0:54:04 (41.59×)	71,796 (32.04×)	56.13 (8.78×)
	Minimap2 + Dorado CPU (HAC)	3:13:56 (149.18×)	193,640 (86.41×)	65.43 (10.24×)
	Minimap2 + Dorado GPU (HAC)	0:04:33 (3.50×)	NA	5.25 (0.82×)
	Minimap2 + Dorado GPU (SUP)	0:10:33 (8.12×)	NA	5.92 (0.93×)
D4	Rawsamble	0:07:57	14,064	8.67
Green Algae	Minimap2	0:00:47 (0.10×)	882 (0.06×)	8.7 (1.00×)
	Minimap2 + Dorado CPU (Fast)	1:16:35 (9.63×)	79,606 (5.66×)	50.88 (5.87×)
	Minimap2 + Dorado CPU (HAC)	4:30:07 (33.98×)	286,362 (20.36×)	64.07 (7.39×)
	Minimap2 + Dorado GPU (HAC)	0:06:01 (0.76×)	NA	8.7 (1.00×)
	Minimap2 + Dorado GPU (SUP)	0:14:54 (1.87×)	NA	8.7 (1.00×)
D5	Rawsamble	0:28:56	51,975	6.0
Human	Minimap2	0:01:52 (0.06×)	1,372 (0.03×)	20.21 (3.37×)
	Minimap2 + Dorado CPU (Fast)	6:42:24 (13.91×)	802,983 (15.45×)	81.98 (13.66×)
	Minimap2 + Dorado CPU (HAC)	23:27:18 (48.64×)	1,219,043 (23.45×)	46.12 (7.69×)
	Minimap2 + Dorado GPU (HAC)	0:20:24 (0.71×)	NA	20.31 (3.38×)
	Minimap2 + Dorado GPU (SUP)	1:05:48 (2.27×)	NA	20.21 (3.37×)

Overlapping Statistics

	Organism	Unique to Rawsamble (%)	Unique to Minimap2 (%)	Shared Overlaps (%)
D1	SARS-CoV-2	11.55	15.27	73.18
D2	E. coli	8.33	50.62	41.05
D3	Yeast	24.94	35.17	39.89
D4	Green Algae	3.76	78.64	17.61
D5	Human	32.69	56.18	11.13

Assembly Statistics

Dataset	Tool	Total Length (bp)	Largest Comp. (bp)	N50 (bp)	auN (bp)	Longest Unitig (bp)	Unitig Count
D2	Rawsamble	14,525,505	4,841,669	1,535,079	1,309,738	2,722,499	31
E. coli	minimap2	10,434,542	5,207,206	5,204,754	5,194,738	5,207,206	4
	Gold standard	5,235,343	5,235,343	5,235,343	5,235,343	5,235,343	1
D3	Rawsamble	13,898,208	362,050	41,118	48,106	161,883	396
Yeast	minimap2	23,755,455	1,611,876	134,050	150,908	464,054	282
	Gold standard	11,963,521	11,835,059	640,934	623,210	1,073,346	68
D4	Rawsamble	3,448,899	448,422	93,111	108,818	252,038	50
Green Algae	minimap2	2,117,190	198,709	63,310	88,906	198,709	55
	Gold standard	106,479,288	2,255,807	452,774	538,136	1,667,975	420
D5	Rawsamble	1,850,419	493,004	51,300	116,049	364,113	48
Human	minimap2	747,607	65,951	19,476	22,103	48,424	61
	Gold standard	8,365,210	367,305	19,329	29,697	150,470	592

Visualizing the E. coli Assembly Graph

Visualizing the Yeast Assembly Graph

Visualizing the Green Algae Assembly Graph

Visualizing the Human Assembly Graph

HERRO Correction Before and After

Dataset	Coverage Before Correction	Coverage After Correction
D2 E. coli	445×	240×
D3 Yeast	$32 \times$	$12 \times$
D4 Green algae	5.6×	$3.7 \times$
D5 Human	0.6 imes	$0.002 \times$

Parameters

Tool	D1 SARS-CoV-2	D2 E. coli	D3 Yeast	D4 Green Algae	D5 Human		
Rawsamble	-x ava-viral -t 32	-x ava -t 32	-x ava -t 32	-x ava -t 32	-x ava –chain-gap-scale 0.6 -t 32		
Minimap2		-x ava-ont –for-only -t 32					
Dorado CPU (Fast)		basecaller -x cpu dna_r9.4.1_e8_fast@v3.4					
Dorado CPU (HAC)		basecaller -x cpu dna_r9.4.1_e8_hac@v3.3					
Dorado GPU (HAC)	basecaller dna_r9.4.1_e8_hac@v3.3						
Dorado GPU (SUP)	basecaller dna_r9.4.1_e8_sup@v3.3						
Miniasm							

Presets

Preset	Corresponding parameters	Usage
ava-viral	-e 6 -q 4 -w 0 –sig-diff 0.45 –fine-range 0.4 –min-score 20 –min-score2 30 –min-anchors 5	Viral genomes
	-min-mapq 5 -bw 1000 -max-target-gap 2500 -max-query-gap 2500 -chain-gap-scale 1.2 -chain-skip-scale 0.3	
ava	-e 8 -q 4 -w 3 –sig-diff 0.45 –fine-range 0.4 –min-score 40 –min-score2 75	Default case
	–min-anchors 5 –min-mapq 5 –bw 5000 –max-target-gap 2500 –max-query-gap 2500	

Versions

Tool	Version
Rawsamble	2.1
Minimap2	2.24
Dorado	0.7.3
Miniasm	0.3-r179
Rawasm	main
Flye	2.9.5
HERRO	0.1

Future Work

Reverse Complementing Raw Nanopore Signals

• Without reverse complementing, we are missing half of the useful information

Dynamically Building the Hash Table in Real-Time

- Needed for real-time *de novo* assembly construction
- What are the useful applications for real-time *de novo* assembly construction?

SAFARI