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2020 was the first year that Renewables surpassed either
Nuclear or Coal in energy generation in the US.

The US Ener
gy U.S. electricity generation by major energy source, 1950-2020
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® petroleum and other @ renewables @ nuclear @ naturalgas @ coal

Note: Electricity generation from utility-scale facilities.
6 Source: U.S. Energy Information Administration, Monthly Energy Review, Table 7.2a, January 2021 and Electric
€1’ Power Monthly, February 2021, preliminary data for 2020
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The US Energy U.S. electricity generation from renewable energy sources, 1950-2020

Supply iS Shifting billion kilowatthours
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In 2020, 20% of annual 500
electricity was from 400
renewable sources. %00
200
* 8.5% Wind In 2020, wind
100

produces more

7.3% Hydro energy than hydro
2.3% Solar

1.4% Biomass solar @ wind @ geothermal @ biomass @ hydroelectric
0.4% Geothermal

0
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Note: Electricity generation from utility-scale facilities. Hydroelectric is conventional hydropower.
‘6 Source: U.S. Energy Information Administration, Monthly Energy Review, Table 7.2a, January 2021 and Electric
€14’ Power Monthly, February 2021, preliminary data for 2020
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Cost of Renewables Mean Levelized Cost of
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These numbers lower than costs for existing
coal plants and are getting close to installed
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States and Utilities with Significant
Clean Energy Targets

Getting to 100% Clean
Electricity in US by 2035 =
20% Nuclear + 7% Hydro +
10% Clean H2 Fuels +
50-70% Wind & Solar
on an annual basis!!

What was the % Wind and
Solar in 20207 11%

":’q
L2 i e
. % \\ o - What was the % Wind and
Solarin 20217 13%
0

SO0 Utility with 1009 Decarbonization Goal [l State with Clean Energy Mandate = 50%
B State with Clean Energy Mandate

Source: WRI and Smart Electric Power Alliance. NREL | 5
Updated on April 17, 2020. WORLD RESOURCES INSTITUTE



The U.S. is looking at how to get to

100% Clean Electricity
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For more than 25% of the year, the system needs to operate at over 80% inverter-based resources
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Source: Cole et al., Quantifying the challenge of reaching a 100% renewable energy power system for the United States, Joule (2021), https://doi.org/10.1016/j.joule.2021.05.011
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% Wind and Solar
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% Wind and Solar
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% Wind and Solar
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% Wind and Solar
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NOTE: All systems in this graph are independent synchronous AC power grlds and based on 2021 data
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https://ieeexplore.ieee.org/document/9371251

South Australia — Seeing large

amounts of PV

SA solar (grid and distributed) meets 100% of South Australia’s demand for the first time
South Australia operational demand by time of day - 11 October 2020
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100.0%

from 30% to 70%

going

Wind % in Ireland (2018)

75.0%

Limited to 65% instantaneous in 2018

50.0%

AS13u3 puip Jo %

25.0%

0.0%
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Wind Power/ Load (%)
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Ireland All-Island Wind Penetration Duration Curve

Number of 15 min time periods with various levels of wind penetration

Based on Actual 2018 Data (29% wind) and Estimate of 70% wind in 2030
2018 Source Data: http://www.eirgridgroup.com/how-the-grid-works/renewables/

2030 wind was estimated by multiplying 2018 wind availability by 2.1612 to achieve an energy balance of 70% wind.

70% Annual Wind Energy

This data is representative only for Ireland and makes assumptions about new wind placement that may not be true in the future.
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Currently limited to 65%
(2018) for a variety of
reasons including system
inertia and minimum
loading of existing on-line
generation.
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Ireland All-Island Wind Penetration Duration Curve

Number of 15 min time periods with various levels of wind penetration

Based on Actual 2018 Data (29% wind) and Estimate of 70% wind in 2030
2018 Source Data: http://www.eirgridgroup.com/how-the-grid-works/renewables/

2030 wind was estimated by multiplying 2018 wind availability by 2.1612 to achieve an energy balance of 70% wind.
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SPP Forecast vs. Actual for 2022-02-25 12:50:00 (Central Time)

https://marketplace.spp.org/pages/forecast-vs-actual

I short-Term Load Forecast [ Mid-Term Load Forecast Il Actual Load - Short-Term Wind Forecast
- Mid-Term Wind Forecast [ Actual Wind [l Short-Term Solar Forecast _ Mid-Term Solar Forecast I Actual Solar

45000
s0000 Forecast is for 100% of load to be covered by wind
35000
What is in the SPP Queue? | | .
Storage .': l.‘ :-' l"‘ - Solar shown i not actual, but example f 42GW of solar was deployed
13GW , a
'6 Feb 27 Feb 28 Feb 01 Mar 02 Mar 03 Mar 04 Mi;r ‘ 05 Mar

Adding the Solar — Good match with times of low wind
and Adding the Wind...


https://marketplace.spp.org/pages/forecast-vs-actual

Getting to very high instantaneous
levels of inverter-based resources

S e — i

(Balance at very fast time scales (<10s)
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Integrating
Synchronous
Generators with
Inverters

Need to unify the
operation of synchronous

machines and inverter-
based resources at any
scale

B. Kroposki et al., “Achieving a 100% Renewable Grid —
Operating Electric Power Systems with Extremely High
Levels of Variable Renewable Energy,”
http://ieeexplore.ieee.org/document/7866938

Understanding Inertia Video

://www.youtube.com/watch?v=b9JN7kjltso

Hydro, Nuclear, Coal, Natural Gas plants all use
synchronous generators to connect to the grid

synchronous .
generator

generator /generator

grid AC
waveform 50
or 60 Hz

Solar PV and most
Wind use inverters to
connect to the grid

SMART
WIND


http://ieeexplore.ieee.org/document/7866938/
https://www.youtube.com/watch?v=b9JN7kj1tso

System Stability

Western Wind and Solar Integration Study

* Wind power plants: voltage regulation and ride-through
 Utility-scale PV: voltage regulation and ride-through

* Rooftop PV: embedded in composite load model, no controls.

140.0%

1.085

a6e1j0A

Frequency

50.0%
1.20 1.40
Seconds from Start

LARRIVR (Base Case) — LARRIVR (Migh Renewables) — SERRANO
== MONROE

Western Interconnection can survive a major contingency
outage with 30% annual energy of variable renewable energy
(inverter-based).

& .

Source: N.W. Miller et al., WWSIS: Phase 3A, http://www.nrel.gov/docs/fy160sti/64822.pdf NREL | 22



http://www.nrel.gov/docs/fy16osti/64822.pdf

Inverter Based Resources
can Provide Grid Services

30 MW headroom

300'MW PV Plant in California (Photo from First Solar)

Demonstrated that PV plants (and wind power
plants on next slide) can deliver essential grid
services.

NREL/FirStSOIa r/CAISO experiment: 300'MW p|a nt Source: C. Loutan, P. Klauer, S. Chowdhury, S. Hall, M. Morjaria, V. Chadliev, N. Milam, C.

Milan, V. Gevorgian, Demonstration of Essential Reliability Services by a 300-MW Solar

fO”OWing AUtomatic Generator ContrOI (AGC) Signal Photovoltaic Power Plant, http://www.nrel.gov/docs/fy170sti/67799.pdf

SUNShot  wa 1 22



http://www.nrel.gov/docs/fy17osti/67799.pdf

POWER (kW)

Wind Providing Grid

Services

CAISQ, in partnership with Avangrid Renewables,
NREL, and General Electric, conducted tests on the
energy company’s Tule Wind Farm, located in
eastern San Diego County, to demonstrate that a
large, utility- scale wind plants can provide
essential reliability services

60000
50000

40000

Plant following active power
set point Curtailed power

30000

10000 Active Power Control

200 400 600 800 1000 1200 1400
TIME (sec)

——Plant power ——Possible power ——Setpoint

Avangrid Renewables Tule Wind Farm
Demonstration of Capability to Provide Essential Grid Services

http://www.caiso.com/Documents/WindPowerPlantTestResults.pdf

NREL | 24


http://www.caiso.com/Documents/WindPowerPlantTestResults.pdf

Technical

challenges with
higher Inverter-
based resources

Challenges:

* Lower System Inertia
(frequency stability)

* Voltage Stability and
Regulation

* Grid Forming capability

* Black Start capability

* System Protection

* Control system interactions
and resonances

* Cybersecurity

12

Inverter that
disconnects as
quickly as possible |

Source: B. Kroposki et al., “Achieving a 100% Renewable Grid — Operating Electric Power Systems with Extremely

Sync Gen'’s fault
current is 6x rated

“==Sync Gen

“==Inverter

“““Inverter W/ Ride-through

High Levels of Variable Renewable Energy,” http://ieeexplore.ieee.org/document/7866938/

Inverter that
provides 7 cycles
of ride-through

NREL | 25



http://ieeexplore.ieee.org/document/7866938/

Running a 100% Inverter-based Grid
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Operations of a
100% Wind-Solar-
Battery Power Grid

including Blackstart

e 1.5MW Wind turbine, 450kW
PV system, and 1IMW/1MWh
Battery

« NREL operated a 100% Wind- 1:22 e et 'y
PV-Battery Grid for 72 Hours _
during a site outage % b | — - Vi
£ —200
« Demonstrating new control -
techniques for these types of Kt e e i T
systems A 1p.m. 4pm. 7p.m. 10 p.m. 1am. 4am. 7am.

ource: [sland Powe

A Hioke, V- Gevorgian. . Shah, P Koalewics, . Kenyon, 5 Kraposks IEE Hectrfcation Magasine, March 2021 24-hour operation of Wind-PV-Battery System at NREL’s Flatiron Campus ~ NReL | 28



https://ieeexplore.ieee.org/document/9371251

Working to unify the
integration of inverters and
synchronous machines

W 4
universal interoperability
for grid-forming inverters

Co-led by NREL, Univ. of e
Washington, and EPRI consor t ium

9

Forum to address fundamental
challenges in seamless
integration of GFM technologies
into power systems of the
future

L\

research &
development

PN

Conduct research and
development, demo concepts at
scale, author best practices and

demonstration &
commercialization

future grids with GFM IBRs (4.

standards, train next-generation ® ©6 © © © © O'
workforce G/_
000
[
stakeholders: academia, industry, labs, outreach &

utilities, operators training NREL | 29




Dealing with Variability and
Uncertainty of Solar and Wind

)

(Balancing at longer time scales >10sec)
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. . Relative Economics of Integration Options
Options for Dealing - T
with Variability and i " -

Yy = |

Uncertainty o
-Creating System Flexibility —— |

Residential Transmission Thermal Storage
Expanded Balancing ) Demand Response A nd CCG Reinforcement &
Footprint/Joint Gas Rampin

SOIUtiOI’\S: System Operation
Utilize geographic diversity

Upward Reserve
Improve renewable resource and load

Increased Use of = Hydro Ramping
fO recaStlng Economic Dispatch Com:::’csi‘ar;;'esr‘nand ‘

Cost

Fuel Storage/Flexible
e
1 H D d R Management
Increase sharing among balancing e S Responise
. ub-hourly
authority areas Scheduling and l B

Q Dispatch
Enhance VRE services ok
Coordinate flexible loads (active Option costs are system-dependent
demand response) and evolving over time

Utilize flexible conventional generation =
A SYSTEM SERVICES FROM
LOA
Tvpe of | -

Curtail excess VRE production

I nteract Wlth Oth er ene rgy carriers Source: Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

P. Denholm, J. Novacheck, J. Jorgenson, and M. O’Connell, National Renewable Energy Laboratory, NREL/TP-6A20-
66854, December 2016, https://www.nrel.gov/docs/fy170sti/66854.pdf

Type of Invention

Add electrical storage

NREL | 32



https://www.nrel.gov/docs/fy17osti/66854.pdf

Using Generation to
Address Integration Issues




Projected Demand Response

Capacity (MW)

250,000

200,000

150,000 -

100,000

50,000

Demand Response

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Feldman, Brett, and Bob Lockhart. 2014. “Demand Response: Commercial & Industrial DR,
Residential DR, and DR Management Systems: Global Market Analysis and Forecasts.”
Navigant Research.

How do you control millions of
generators, storage, loads?

Residential
Demand Response

Industrial &
Commercial Demand
Response

Residential™
: /“7‘

Transportation™ f-:;
==

S===—— NREL | 34



What about massive distributed

nergy resource (DER) deployment?

If every customer in the San Francisco Bay Area had
PV, storage batteries, Electric Vehicles, Smart
Thermostats and Smart Appliances you may have
10-20 Million controllable devices in this area.
--- Autonomous Energy Grids---

Il Rural 12.47 <
B Rural 25 kv |
B Urban 12.47 k
B Urban 4 kv

. Urban Delta


https://www.nrel.gov/grid/autonomous-energy.html




Autonomo

v

@ SolarPV
@ Building Load
@ EV Charger

Developed complex multi-
domain energy system

simulation of SF Bay Area

Evaluation of distributed,
hierarchal controls operating
at 1 sec with millions of

controllable assets

@ EV with passenger

« EVidle



https://www.nrel.gov/grid/autonomous-energy.html

Using System Operations and

Assets to Address Integration Issues

Interconnection Seam Study

Evaluated the benefits and costs of options for continental Expansion
U.S. electric grid.

Transmission

Transmission
Expanded Balancing Reinforcement
Footprint/Joint

System Operation

Flexibility Reserves

Increased Use of

Economic Dispatch ’ No increase in transmission Increasing capacity at

X Advanced Network
capacity between the existing back-to-back ties Management
interconnections ¥
i 2

Sub-hourly
Scheduling and
Dispatch

RE Forecasting

2R Increasing existing back-to-back Nationwide HVDC TRANSMISSION
OPERATION .
capacity and add three long-

distance HVDC ties https://www.nrel.gov/analysis/seams.html NREL | 38
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https://www.nrel.gov/analysis/seams.html

Energy Storage

L -

Gateway Energy Storage Project
San Diego, California, USA
250MW for 1hr (250MWAh) Li-ion Battery

Since wind and solar have
relatively low capacity factors
(20-50%) there will be increasing
needs for energy storage

Chemical Storage

Pumped Hydro
Storage

Thermal Storage

Fuel Storage/Flexible
Scheduling

STORAGE

i 0 Il

Upper Reservoir

Lower
Reservoir

Photo: Google Maps

Pumped Hydro Storage Facility
Bath County, Virginia, USA
3GW for 11 Hrs (24-30GWh)

Informative video on this Pumped Hydro System

https://www.youtube.com/watch?v=ppPlUdBdvhU NREL | 39



https://www.youtube.com/watch?v=ppPlUdBdvhU

Energy Storage

Summary of the Four Phases of Storage Deployment

National Deployment Potential

Phase Primary Services (Capacity) in Each Phase
Deployment  Peaking capacity, energy 23 gigawatts of pumped storage
prior to time-shifting and hydropower
2010 operating reserves
1 Operating reserves <30 gigawatts
2 Peaking capacity 30-100 gigawatts, strongly linked to
photovoltaics deployment
3 Diurnal capacity and 100+ gigawatts. Depends on both Phase
energy time shifting 2 and deployment of variable renewable
energy resources
4 Multiday to seasonal Zero to more than 250 gigawatts
capacity and energy
time-shifting

Duration

Mostly

8-12hr

<1hr

2-6 hr

4-12hr

>12 hr

Response
Speed

Varies

Milliseconds
to seconds

Minutes

Minutes

Minutes

Source: P. Denholm, W. Cole, W. Frazier, K. Podkaminer, and N. Blair. 2021. The Four Phases of Storage
Deployment: A Framework for the Expanding Role of Storage in the U.S. Power System. Golden, CO:

National Renewable Energy Laboratory. NREL/TP-6A20-77480,
https://www.nrel.gov/docs/fy210osti/77480.pdf

Pumped-

Storage

Plant Rgs‘;‘r’vel;ir Lithium-lon
Battery
System

Turbine/Generator

\ Lower Reservoir

Li-ion Battery

Pumped Hydro
Hydrogen
Storage

Flow Battery
System

Electrolyte
Storage

[ Fuel Celi\ _ Turbine

< I Power
Plant ‘

|

Underground
Cavern

Hydrogen Storage

Flow Battery


https://www.nrel.gov/docs/fy21osti/77480.pdf

The Need for Long-Term Energy

Storage at Very High Levels of RE

Texas (ERCOT): 92% actual California: 94% actual
45% PV / 45% wind / 2% other RE 48% PV / 28% wind / 18% other RE
i Need for Power e

Diurnal storage would

40% add aImost no value
20%
N ‘ [ l | MWIL |.. J

40%

20%

\, 4 J-““Ml”
i

o . b
=T

Diurnal storage

o

-40%

Daily RE Deficit
(Fraction of Average Daily Demand)
(Fraction of Average Daily Demand)

_60N°
60% might help here
-60% -80%
Excess Renewables ’
-80% -100%
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Source: “The challenges of achieving a 100% renewable electricity system in the United States”, P. Denholm, D. Arent, S. Baldwin, D. Bilello, G. Brinkman, J.
Cochran, W. Cole, B. Frew, V. Gevorgian, J. Heeter, B. Hodge, B. Kroposki, T. Mai, M. O’Malley, B.Palmintier, D. Steinberg, and Y. Zhang, Joule, May 2020, NREL | 41
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Summary

* The power industry is seeing a shift towards 100%
clean energy goals and each region has a variety of
resources to tap into to meet these goals

* One way to address these goals is increasing use of
variable renewable energy like solar and wind

* The favorable economics of solar and wind are driving
new installations and deployments
* There are two main challenges with integrating very
high levels of solar and wind in power systems:
* The inverter challenge of adding more power

electronics-based technologies and removing
synchronous generators

* The balancing challenge of maintaining the
supply/demand balance at all time scales by
increasing system flexibility

* These are solvable challenges that will take working
together to meet!
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