
Published as a conference paper at ICLR 2019

OPTIMAL TRANSPORT MAPS FOR DISTRIBUTION
PRESERVING OPERATIONS ON LATENT SPACES OF
GENERATIVE MODELS

Eirikur Agustsson, Alexander Sage, Radu Timofte & Luc Van Gool
Computer Vision Lab
ETH Zurich
Switzerland
{aeirikur,sagea,timofter,vangool}@vision.ee.ethz.ch

ABSTRACT

Generative models such as Variational Auto Encoders (VAEs) and Generative
Adversarial Networks (GANs) are typically trained for a fixed prior distribution in
the latent space, such as uniform or Gaussian. After a trained model is obtained,
one can sample the Generator in various forms for exploration and understanding,
such as interpolating between two samples, sampling in the vicinity of a sample or
exploring differences between a pair of samples applied to a third sample. How-
ever, the latent space operations commonly used in the literature so far induce a
distribution mismatch between the resulting outputs and the prior distribution the
model was trained on. Previous works have attempted to reduce this mismatch
with heuristic modification to the operations or by changing the latent distribution
and re-training models. In this paper, we propose a framework for modifying
the latent space operations such that the distribution mismatch is fully eliminated.
Our approach is based on optimal transport maps, which adapt the latent space
operations such that they fully match the prior distribution, while minimally mod-
ifying the original operation. Our matched operations are readily obtained for
the commonly used operations and distributions and require no adjustment to the
training procedure.

1 INTRODUCTION & RELATED WORK

Generative models such as Variational Autoencoders (VAEs) (Kingma & Welling, 2013) and Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2014) have emerged as popular techniques
for unsupervised learning of intractable distributions. In the framework of Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014), the generative model is obtained by jointly training a
generator G and a discriminator D in an adversarial manner. The discriminator is trained to classify
synthetic samples from real ones, whereas the generator is trained to map samples drawn from a
fixed prior distribution to synthetic examples which fool the discriminator. Variational Autoencoders
(VAEs) (Kingma & Welling, 2013) are also trained for a fixed prior distribution, but this is done
through the loss of an Autoencoder that minimizes the variational lower bound of the data likelihood.
For both VAEs and GANs, using some data X we end up with a trained generator G, that is supposed
to map latent samples z from the fixed prior distribution to output samples G(z) which (hopefully)
have the same distribution as the data.

In order to understand and visualize the learned model G(z), it is a common practice in the literature
of generative models to explore how the output G(z) behaves under various arithmetic operations
on the latent samples z. However, the operations typically used so far, such as linear interpola-
tion (Goodfellow et al., 2014), spherical interpolation (White, 2016), vicinity sampling and vector
arithmetic (Radford et al., 2015), cause a distribution mismatch between the latent prior distribution
and the results of the operations. This is problematic, since the generator G was trained on a fixed
prior and expects to see inputs with statistics consistent with that distribution.

To address this, we propose to use distribution matching transport maps, to obtain analogous latent
space operations (e.g. interpolation, vicinity sampling) which preserve the prior distribution of
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Figure 1: We show examples of distribution mismatches induced by the previous interpolation
schemes when using a uniform prior in two dimensions. Our matched interpolation avoids this with a
minimal modification to the linear trajectory, traversing through the space such that all points along
the path are distributed identically to the prior.

the latent space, while minimally changing the original operation. In Figure 1 we showcase how
our proposed technique gives an interpolation operator which avoids distribution mismatch when
interpolating between samples of a uniform distribution. The points of the (red) matched trajectories
are obtained as minimal deviations (in expectation of l1 distance) from the the points of the (blue)
linear trajectory.

1.1 DISTRIBUTION MISMATCH AND RELATED APPROACHES

In the literature there are dozens of papers that use sample operations to explore the learned models
(Bengio et al. (2013); Goodfellow et al. (2014); Dosovitskiy et al. (2015); Reed et al. (2016); Brock
et al. (2016); Reed et al. (2016) to name a few), but most of them have ignored the problem of
distribution mismatch. Kingma & Welling (2013) and Makhzani et al. (2015) sidestep the problem
when visualizing their models, by not performing operations on latent samples, but instead restrict
the latent space to 2-d and uniformly sample the percentiles of the distribution on a 2-d grid. This
way, the samples have statistics that are consistent with the prior distribution. However, this approach
does not scale up to higher dimensions - whereas the latent spaces used in the literature can have
hundreds of dimensions.

White (2016) experimentally observe that there is a distribution mismatch between the norm for
points drawn from uniform or Gaussian distribution and points obtained with linear interpolation
(SLERP), and (heuristically) propose to use a so-called spherical linear interpolation to reduce the
mismatch, obtaining higher quality interpolated samples.

While SLERP has been subjectively observed to produce better looking samples than linear inter-
polation and is now commonly, its heuristic nature has limited it from fully replacing the linear
interpolation. Furthermore, while perhaps possible it is not obvious how to generalize it to other
operations, such as vicinity sampling, n-point interpolation and random walk. In Section 2 we
show that for interpolation, in high dimensions SLERP tends to approximately perform distribution
matching the approach taken by our framework which can explain why it works well in practice.

Kilcher et al. (2018) further analyze the (norm) distribution mismatch observed by White (2016) (in
terms of KL-Divergence) for the special case of Gaussian priors, and propose an alternative prior
distribution with dependent components which produces less (but still nonzero) distribution mismatch
for linear interpolation, at the cost of needing to re-train and re-tune the generative models.

In contrast, we propose a framework which allows one to adapt generic operations, such that they
fully preserve the original prior distribution while being faithful to the original operation. Thus the
KL-Divergence between the prior and the distribution of the results from our operations is zero.

The approach works as follows: we are given a ‘desired’ operation, such as linear interpolation
y = tz1 + (1− t)z2, t ∈ [0, 1]. Since the distribution of y does not match the prior distribution of z,
we search for a warping f : Rd → Rd, such that ỹ = f(y) has the same distribution as z. In order to
have the modification ỹ as faithful as possible to the original operation y, we use optimal transform
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Operation Expression
2-point interpolation y = tz1 + (1 � t)z2 , t 2 [0; 1]
n-point interpolation y =

P n
i =1 t i z i with

P
i t i = 1

Vicinity sampling y j = z1 + � u j for j = 1 ; � � � ; k
Analogies y = z3 + ( z2 � z1)

Table 1: Examples of interesting sample operations which need to be adapted ('matched') if we want
the distribution of the resulty to match the prior distribution.

maps (Santambrogio, 2015; Villani, 2003; 2008) to �nd a minimal modi�cation ofy which recovers
the prior distributionz.

This is illustrated in Figure 1a, where each point~y of the matched curve is obtained by warping a
corresponding pointy of the linear trajectory, while not deviating too far from the line.

2 FROM DISTRIBUTION MISMATCH TO OPTIMAL TRANSPORT

With implicit models such as GANs (Goodfellow et al., 2014) and VAEs (Kingma & Welling, 2013),
we use the dataX , drawn from an unknown random variablex , to learn a generatorG : Rd 7! Rd0

with respect to a �xed prior distributionpz , such thatG(z) approximatesx . Once the model is
trained, we can sample from it by feeding latent samplesz throughG.

We now bring our attention tooperationson latent samplesz1; � � � ; zk from pz , i.e. mappings

� : Rd � � � � � Rd ! Rd: (1)

We give a few examples of such operations in Table 1.

Since the inputs to the operations are random variables, their outputy = � (z1; � � � ; zk ) is also a
random variable (commonly referred to as astatistic). While we typically perform these operations
on realized(i.e. observed) samples, our analysis is done through the underlying random variabley .
The same treatment is typically used to analyze other statistics over random variables, such as the
sample mean, sample variance and test statistics.

In Table 1 we show example operations which have been commonly used in the literature. As
discussed in the Introduction, such operations can provide valuable insight into how the trained
generatorG changes as one creates related samplesy from some source samples. The most common
such operation is the linear interpolation, which we can view as an operation

y t = tz1 + (1 � t)z2; (2)

wherez1; z2 are latent samples from the priorpz andy t is parameterized byt 2 [0; 1].

Now, assumez1 andz2 are i.i.d, and letZ1; Z2 be their (scalar) �rst components with distribution
pZ . Then the �rst component ofy t is Yt = tZ 1 + (1 � t)Z2, and we can compute:

Var[Yt ] = Var[tZ 1 + (1 � t)Z2] = t2Var[Z1] + (1 � t)2Var[Z2] = (1 + 2 t(t � 1))Var[Z ]: (3)

Since(1 + 2 t(t � 1)) 6= 1 for all t 2 [0; 1]n f 0; 1g, it is in general impossible fory t to have the same
distribution asz, which means that distribution mismatch isinevitablewhen using linear interpolation.
A similar analysis reveals the same for all of the operations in Table 1.

This leaves us with a dilemma: we have various intuitive operations (see Table 1) which we would
want to be able to perform on samples, but their resulting distributionpy t is inconsistent with the
distributionpz we trainedG for.

Due to thecurse of dimensionality, as empirically observed by White (2016), this mismatch can
be signi�cant in high dimensions. We illustrate this in Figure 2, where we plot the distribution of
the squared normky t k2 for the midpointt = 1=2 of linear interpolation, compared to the prior
distributionkzk2. With d = 100 (a typical dimensionality for the latent space), the distributions
are dramatically different, having almost no common support. Kilcher et al. (2018) quantify this
mismatch for Gaussian priors in terms of KL-Divergence, and show that it grows linearly with the
dimensiond. In Appendix A (see Supplement) we expand this analysis and show that this happens
for all prior distributions with i.i.d. entries (i.e. not only Gaussian), both in terms of geometry and
KL-Divergence.

2.1 DISTRIBUTION MATCHING WITH OPTIMAL TRANSPORT

In order to address the distribution mismatch, we propose a simple and intuitive framework for
constructing distribution preserving operators, via optimal transport:
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Figure 2: Distribution of the squared normkyk2 of midpoints for two prior distributions in100
dimensions: (a) components uniform on[� 1; 1] and (b) components GaussianN (0; 1), for linear
interpolation, our proposed matched interpolation and the spherical interpolation proposed by White
(2016). Both linear and spherical interpolation introduce a distribution mismatch, whereas our
proposed matched interpolation preserves the prior distribution for both priors.

Strategy 1(Optimal Transport Matched Operations).

1. We construct an 'intuitive' operatory = � (z1; � � � ; zk ).

2. We analytically (or numerically) compute the resulting (mismatched) distributionpy

3. We search for a minimal modi�cation~y = f (y ) (in the sense thatEy [c( ~y ; y )] is minimal
with respect to a costc), such that distribution is brought back to the prior, i.e.p~y = pz .

The cost function in step 3 could e.g. be the euclidean distancec(x; y) = kx � yk, and is used to
measure how faithful the modi�ed operator,~y = f (� (z1; � � � ; zk )) is to the original operatork.
Finding the mapf which gives a minimal modi�cation can be challenging, but fortunately it is a well
studied problem from optimal transport theory. We refer to the modi�ed operation~y as thematched
version ofy , with respect to the costc and prior distributionpz .

For completeness, we introduce the key concepts of optimal transport theory in a simpli�ed setting, i.e.
assuming probability distributions are in euclidean space and skipping measure theoretical formalism.
We refer to Villani (2003; 2008) and Santambrogio (2015) for a thorough and formal treatment of
optimal transport.

The problem of step(3) above was �rst posed by Monge (1781) and can more formally be stated as:

Problem 1(Santambrogio (2015) Problem 1.1). Given probability distributionspx ; py , with domains
X ; Y respectively, and a cost functionc : X � Y ! R+ , we want to minimize

inf
n

Ex � px [c(x ; f (x ))]
�
�
� f : X ! Y ; f (x ) � py

o
(MP)

We refer to the minimizerf � X ! Y of (MP) (if it exists), as the optimal transport map frompx to
py with respect to the costc.

However, the problem remained unsolved until a relaxed problem was studied by Kantorovich (1942):

Problem 2(Santambrogio (2015) Problem 1.2). Given probability distributionspx ; py , with domains
X ; Y respectively, and a cost functionc : X � Y ! R+ , we want to minimize

inf
n

E (x ;y ) � px ; y [c(x ; y )]
�
�
�(x ; y ) � px ;y ; x � px ; y � py

o
; (KP)

where(x ; y ) � px ;y ; x � px ; y � py denotes that(x ; y ) have a joint distributionpx ;y which has
(previously speci�ed) marginalspx andpy .

We refer to the jointpx ;y which minimizes(KP) as the optimal transport plan frompx to py with
respect to the costc.

The key difference is to relax the deterministic relationship betweenx andf (x ) to a joint probability
distributionpx ;y with marginalspx andpy for x andy . In the case of Problem 1, the minimization
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might be over the empty set since it is not guaranteed that there exists a mappingf such thatf (x ) � y .
In contrast, for Problem 2, one can always construct a joint densitypx ;y with px andpy as marginals,
such as the trivial construction wherex andy are independent, i.e.px ;y (x; y) := px (x)py (y).

Note that given a joint densitypx ;y (x; y) overX � Y , we can viewy conditioned onx = x for a
�xed x as a stochastic functionf (x) from X to Y, since given a �xedx do not get a speci�c function
valuef (x) but instead a random variablef (x) that depends onx, with f (x) � y jx = x with density
py (yjx = x) := px ; y (x;y )

px (x ) . In this case we have(x ; f (x )) � px ;y , so we can view the Problem KP
as a relaxation of Problem MP wheref is allowed to be a stochastic mapping.

While the relaxed problem of Kantorovich(KP) is much more studied in the optimal transport litera-
ture, for our purposes of constructing operators it is desirable for the mappingf to be deterministic
as in(MP) (see Appendix C for a more detailed discussion on deterministic vs stochastic operations).

To this end, we will choose the cost functionc such that the two problems coincide and where we can
�nd an analytical solutionf or at least an ef�cient numerical solution.

In particular, we note that the operators in Table 1 are allpointwise, such that if the pointsz i have
i.i.d. components, then the resulty will also have i.i.d. components.

If we combine this with the constraint for the costc to be additive over the components ofx ; y , we
obtain the following simpli�cation:

Theorem 1. Supposepx andpy have i.i.d components andc overX � Y = Rd � Rd decomposes
as

c(x; y) =
dX

i =1

C(x ( i ) ; y( i ) ): (4)

Consequently, the minimization problems(MP) and(KP) turn intod identical scalar problems for
the distributionspX andpY of the components ofx andy :

inf
n

EX � pX [C(X; T (X ))]
�
�
�T : R ! R; T(X ) � pY

o
(MP-1-D)

inf
n

E (X;Y ) � pX;Y [C(X; Y )]
�
�
�(X; Y ) � pX;Y ; X � pX ; Y � pY

o
; (KP-1-D)

such that an optimal transport mapT for (MP-1-D)gives an optimal transport mapf for (MP) by
pointwise application ofT, i.e. f (x)( i ) := T(x ( i ) ), and an optimal transport planpX;Y for (KP-1-D)
gives an optimal transport planpx ;y (x; y) :=

Q d
i =1 pX;Y (x ( i ) ; y( i ) ) for (KP).

Proof. See Appendix.

Fortunately, under some mild constraints, the scalar problems have a known solution:

Theorem 2(Theorem 2.9 in Santambrogio (2015)). Let h : R ! R+ be convex and suppose the
costC takes the formC(x; y) = h(x � y). Given an continuous source distributionpX and a target
distributionpY onR having a �nite optimal transport cost in(KP-1-D), then

Tmon
X ! Y (x) := F [� 1]

Y (FX (x)) ; (5)

de�nes an optimal transport map frompX to pY for (MP-1-D), whereFX (x) :=
Rx

�1 pX (x0)dx0

is the Cumulative Distribution Function (CDF) ofX andF [� 1]
Y (y) := inf f t 2 RjFY (t) � yg is

the pseudo-inverse ofFY . Furthermore, the joint distribution of(X; T mon
X ! Y (X )) de�nes an optimal

transport plan for(KP-1-D).

The mappingTmon
X ! Y (x) in Theorem 2 is non-decreasing and is known as themonotone transport

map from X to Y . It is easy to verify thatTmon
X ! Y (X ) has the distribution ofY , in particular

FX (X ) � Uniform(0; 1) and ifU � Uniform(0; 1) thenF [� 1]
Y (U) � Y .

Now, combining Theorems 1 and 2, we obtain a concrete realization of the Strategy 1 outlined above.
We choose the costc such that it admits to Theorem 1, such asc(x ; y ) := kx � yk1, and use an
operation that is pointwise, so we just need to compute the monotone transport map in(5). That is, if
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Figure 3: We show the monotone transport maps for linear interpolation evaluated att 2
f 0:05; 0:25; 0:5g, to Uniform and Gaussian priors.

z has i.i.d components with distributionpZ , we just need to compute the component distributionpY
of the resulty of the operation, the CDFsFZ ; FY and obtain

Tmon
Y ! Z (y) := F [� 1]

Z (FY (y)) (6)

as the component-wise modi�cation ofy , i.e. ~y ( i ) := Tmon
Y ! Z (y ( i ) ).

In Figure 3 we show the monotone transport map for the linear interpolationy = tz1 + (1 � t)z2
for various values oft. The detailed calculations and examples for various operations are given in
Appendix B, for both Uniform and Gaussian priors.

3 SIMULATIONS

To validate the correctness of the matched operators computed in Appendix B, we numerically
simulate the distributions for toy examples, as well as prior distributions typically used in the
literature.

Priors vs. interpolations in 2-D For Figure 1, we sample 1 million pairs of points in two dimension,
from a uniform prior (on[� 1; 1]2), and estimate numerically the midpoint distribution of linear
interpolation, our proposed matched interpolation and the spherical interpolation of White (2016). It
is reassuring to see that the matched interpolation gives midpoints which are identically distributed to
the prior. In contrast, the linear interpolation condenses more towards the origin, forming a pyramid-
shaped distribution (the result of convolving two boxes in 2-d). Since the spherical interpolation
of White (2016) follows a great circle with varying radius between the two points, we see that the
resulting distribution has a “hole” in it, “circling” around the origin for both priors.

Priors vs. interpolations in 100-D For Figure 2, we sample 1 million pairs of points ind = 100
dimensions, using either i.i.d. uniform components on[� 1; 1] or GaussianN (0; 1) and compute the
distribution of the squared norm of the midpoints. We see there is a dramatic difference between
vector lengths in the prior and the midpoints of linear interpolation, with only minimal overlap.
We also see that the spherical interpolation (SLERP) is approximately matching the prior (norm)
distribution, having a matching �rst moment, but otherwise also induces a distribution mismatch. In
contrast, our matched interpolation, fully preserves the prior distribution and perfectly aligns. We
note that this setting (d = 100, uniform or Gaussian) is commonly used in the literature.

4 EXPERIMENTS

Setup We used DCGAN (Radford et al., 2015) generative models trained on LSUN bedrooms (Yu
et al., 2015), CelebA (Liu et al., 2015) and LLD (Sage et al., 2017; 2018), an icon dataset, to
qualitatively evaluate. For LSUN, the model was trained for two different output resolutions,
providing64 � 64 pixel and a128� 128pixel output images (where the latter is used in �gures
containing larger sample images). The models for LSUN and the icon dataset where both trained on a
uniform latent prior distribution, while for CelebA a Gaussian prior was used. The dimensionality of
the latent space is 100 for both LSUN and CelebA, and 512 for the model trained on the icon model.
Furthermore we use improved Wasserstein GAN (iWGAN) with gradient penalty (Gulrajani et al.,
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Dataset CIFAR-10 LLD-icon LSUN CelebA
Model iWGAN DCGAN DCGAN DCGAN
Prior Gaussian, 128-D Uniform, 100-D Uniform, 100-D Gaussian, 100-D

Inception scores for midpoints:

random samples 7:90 � 0:11 3:70 � 0:09 3:90 � 0:08 2:05 � 0:04
2-point linear 7:12� 0:08 (-10%) 3:56� 0:06 (-4%) 3:57� 0:07 (-8%) 1:71� 0:02 (-17%)
2-point matched 7:89 � 0:08 3:69 � 0:08 3:89 � 0:08 2:04 � 0:03
4-point linear 5:84� 0:08 (-26%) 3:45� 0:08 (-7%) 2:95� 0:06 (-24%) 1:46� 0:01 (-29%)
4-point matched 7:91 � 0:09 3:69 � 0:10 3:91 � 0:10 2:04 � 0:04

Table 2: Inception scores on LLD-icon, LSUN, CIFAR-10 and CelebA for the midpoints of linear
interpolation and its matched counterpart. Scores are reported as mean� standard deviation (relative
change in %). Our matched variants fully recover from the (up to 29%) score drop of the linear
interpolation, giving the same quality as random samples.

Prior Perturbationk � k2 Perturbationk � k1
Gaussian, 100-D 0.2463 0.2460
Uniform, 100-D 0.2377 0.2477
Gaussian, 128-D 0.2470 0.2460
Uniform, 128-D 0.2384 0.2479

Table 3: We measure over the average (normalized) perturbationk~y � ykp=kykp incurred by our
matched interpolation for the latent spaces used in Table 2, forp = 1 ; 2.

2017) trained on CIFAR-10 at32 � 32 pixels with a 128-dimensional Gaussian prior to compute
inception scores.

4.1 QUANTITATIVE RESULTS

To measure the effect of the distribution mismatch, we quantitatively evaluate using the Inception
score(Salimans et al., 2016). In Table 2 we compare the Inception score of our trained models (i.e.
using random samples from the prior) with the score when sampling midpoints from the 2-point and
4-point interpolations described above, reporting mean and standard deviation with 50,000 samples,
as well as relative change to the original model scores if they are signi�cant. Compared to the
original scores of the trained models (random samples), our matched operations are statistically
indistinguishable (as expected) while the linear interpolation gives a signi�cantly lower score in all
settings (up to 29% lower).

However, this is not surprising, since our matched operations areguaranteedto produce samples that
come from the same distribution as the random samples.

To quantify the effect our matching procedure has on the original operation, in Table 3 we compute
the perturbation incurred when warping the linear interpolationy to the matched counterpart~y for
2-point interpolation on the latent spaces used in Table 2. We compute the normalized perturbation
k ~y t � y t kp=ky t kp (with p = 1 corresponding tol1 distance andp = 2 to l2 distance), over
N = 100000interpolation pointsy t = tz1 + (1 � t)z2 wherez1; z2 are sampled from the prior and
t 2 [0; 1] sampled uniformly. We observe that for all priors and both metrics, the perturbation is in
the range0:23� 0:25, i.e. less than a one fourth ofky t k.

4.2 QUALITATIVE RESULTS
In the following, we will qualitatively show that our matched operations behave as expected, and that
there is a visual difference between the original operations and the matched counterparts. To this end,
the generator output for latent samples produced with linear interpolation, SLERP (spherical linear
interpolation) of White (2016) and our proposed matched interpolation will be compared.

2-point interpolation We begin with the classic example of 2-point interpolation: Figure 4 shows
three examples per dataset for an interpolation between 2 points in latent space. Each example is
�rst done via linear interpolation, then SLERP and �nally matched interpolation. It is immediately
obvious in Figures 4a and 4b that linear interpolation produces inferior results with generally more
blurry, less saturated and less detailed output images.

The SLERP heuristic and matched interpolation are slightly different visually, but we do not observe
a difference in visual quality. However, we stress that the goal of this work is to construct operations
in a principled manner, whose samples are consistent with the generative model. In the case of linear

7




	Introduction & Related Work
	Distribution Mismatch and Related Approaches

	From distribution mismatch to optimal transport
	Distribution matching with optimal transport

	Simulations
	Experiments
	Quantitative results
	Qualitative results

	Conclusions
	On the curse of dimensionality and geometric outliers
	Proof of Theorem 1

	Calculations for Examples
	Deterministic vs stochastic operations
	Additional experiments

