Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Summer 2009 10.08.2009

# Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

## Exercise 1

| 1 | <b>2</b> | 3 | Exercise  |
|---|----------|---|-----------|
| 9 | 7        | 9 | 25 Points |

Consider the discrete time linear system

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k + Du_k \end{cases}$$
(1)

where  $x_k \in \mathbb{R}^n$ ,  $u_k \in \mathbb{R}^m$ ,  $y_k \in \mathbb{R}^p$ ,  $A \in \mathbb{R}^{n \times n}$ ,  $B \in \mathbb{R}^{n \times m}$ ,  $C \in \mathbb{R}^{p \times n}$ , and  $D \in \mathbb{R}^{p \times m}$ .

1. A discrete time observer constructs an estimate  $\hat{x}_k$  of the state  $x_k$  of the form

$$\begin{cases} \hat{x}_{k+1} = A\hat{x}_k + Bu_k + L(y_k - \hat{y}_k) \\ \hat{y}_k = C\hat{x}_k + Du_k \end{cases}$$

starting with  $\hat{x}_0 = 0$ . Derive the dynamics of the error  $e_k = x_k - \hat{x}_k$ . Under what conditions will  $\hat{x}_k$  converge to  $x_k$  as k tends to infinity?

2. Consider now the system (1) with

$$A = \begin{bmatrix} 0 & 0 & -8\\ 1 & 0 & -12\\ 0 & 1 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$$
(2)

$$C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \qquad D = 0$$

Is the system observable? Is it controllable? Is the system with  $u_k = 0$  for all  $k = 0, 1, \ldots$  stable?

3. Design an observer of the form given in part 1 for the system in part 2. What dimensions should the matrix L have? Select the entries of the matrix L so that the error dynamics have all eigenvalues equal to 0.5.

## Exercise 2

| 1 | 2 | 3 | 4 | 5 | Exercise  |
|---|---|---|---|---|-----------|
| 3 | 5 | 6 | 7 | 4 | 25 Points |

Consider the dynamical system

$$\ddot{y}(t) + \dot{y}(t) + y^{3}(t) - y(t) = \gamma \cos(\omega t)$$
(3)

The parameter  $\gamma$  is constant.

- 1. Is the system autonomous? Is it linear? What is the dimension of the system? Justify your answers.
- 2. Write the system in state space form using  $x_1 = y$  and  $x_2 = \dot{y}$  as states.
- 3. Determine all equilibria of the system when  $\gamma = 0$ .
- 4. Using linearization determine the stability of all equilibria computed in part 3.
- 5. Based on the eigenvalues of the linearization computed in part 4 try to guess what the phase plane plot  $(x_1(t) x_2(t))$  parameterized by t) of the system may look like. Take  $\gamma = 0$ .

#### Exercise 3

| 1 | <b>2</b> | 3 | 4 | Exercise  |
|---|----------|---|---|-----------|
| 5 | 7        | 6 | 7 | 25 Points |

Consider the following continuous-time linear, time invariant system:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{4}$$

$$y(t) = Cx(t), (5)$$

with

$$A = \begin{bmatrix} -2.5 & 0.5\\ 0.5 & -2.5 \end{bmatrix}, B = \begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 0 & 1 \end{bmatrix}.$$

Let  $T \in \mathbb{R}^{2 \times 2}$  be an invertible matrix. Define  $\hat{x}(t) = Tx(t)$  and consider also the system

$$\dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t) \tag{6}$$

$$y(t) = \hat{C}\hat{x}(t). \tag{7}$$

- 1. Compute  $\hat{A}, \hat{B}, \hat{C}$  as a function of A, B, C and T.
- 2. Find a matrix T such that  $\hat{A}$  is a diagonal matrix  $\hat{A} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$ . Justify why this calculation is possible. What will be the values of  $d_1$  and  $d_2$ ?
- 3. Using your answer in part 2, determine whether the system (6)-(7) is controllable and observable, without calculating the controllability and observability matrices. What can you conclude about the controllability and observability of the original system?
- 4. How should the initial condition x(0) of the system (4)-(5) be chosen, so that the zero input response is  $x(t) = x(0)e^{d_1t}$ ? (Hint: Base your answer on part 2).

### Exercise 4

| 1 | <b>2</b> | 3 | 4 | Exercise  |
|---|----------|---|---|-----------|
| 7 | 6        | 5 | 7 | 25 Points |

Consider the following system:



Figure 1: Electrical circuit with switch.

- 1. Using  $u = V_i$  as an input and  $y = V_0$  as an output derive the state space equations of the system when the switch s is open. Repeat for the case where s is closed.
- 2. Is the system observable with the switch open? Is it observable with the switch closed? Justify your answers both mathematically and intuitively.
- 3. Is the system controllable with the switch open? Is it controllable with the switch closed? An intuitive explanation is sufficient.
- 4. Assume that  $R_1 = R_2 = \frac{2}{3}\Omega$ , C = 1F and  $L = \frac{1}{2}H$ ,  $V_i(t) = 0V$  for all  $t \ge 0$ ,  $V_c(0) = 1V$  and  $i_L(0) = 1A$ . Compute the system response starting at t = 0 assuming that the switch remains open until t = 1 and then closes and remains closed for all t > 1.