Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Winter 2017/2018 27.01.2018

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1

1	2	3	4	5	Exercise
8	5	4	4	4	25 Points

Consider the following circuit:

Figure 1: Electrical circuit

1. Using $x(t) = \begin{bmatrix} v_{C_1}(t) & v_{C_2}(t) \end{bmatrix}^T$ as a state vector, $u(t) = V_{in}(t)$ as an input and $y(t) = V_{out}(t)$ as an output, describe the system in state-space form by finding the matrices A, B, C, D in

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t).$$
(1)

- 2. Assume now that $R_1 = 1$, $R_2 = R_3 = 2$ and $C_1 = C_2 = 1$. Argue from physical intuition that the system is asymptotically stable. Verify this by analyzing the state equations derived in Part 1.
- 3. For the system parameters given in Part 2 propose a matrix ${\cal Q}$ for a quadratic Lyapunov function

$$V(x(t)) = \frac{1}{2}x(t)^T Q x(t)$$

that can be used to verify that the system is asymptotically stable. Compute the matrix R that satisfies the Lyapunov equation

$$A^T Q + Q A = -R \tag{2}$$

and confirm that Q and R satisfy the conditions that ensure asymptotic stability.

- 4. By setting f(x(t)) = Ax(t) verify that your Lyapunov function from Part 3 also satisfies the conditions of the more general Lyapunov theorem for nonlinear systems.
- 5. You build the circuit, but discover that due to a manufacturing defect resistor R_2 has been short-circuited ($R_2 = 0$). Is the circuit still asymptotically stable? Is it observable? You can argue from physical intuition without re-deriving the state equations.

Exercise 2

1	2	3	4	5	Exercise
6	4	4	8	3	25 Points

Consider the following system with $x(t) \in \mathbb{R}^3$, $u(t) \in \mathbb{R}$ and $y(t) \in \mathbb{R}^2$:

$$\dot{x}(t) = \underbrace{\begin{bmatrix} \frac{1}{100} & 2 & 0\\ 0 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}}_{B} u(t)$$
(3)

- 1. Write down the controllability matrix and determine whether the system is controllable.
- 2. Would controllability change if the second entry of B was 0? Argue either mathematically or using the dependencies between the states.
- 3. Is the system stable? Is it asymptotically stable?
- 4. Your friend from EPFL argues that three states is too much and wants to remove one of the states. He proposes to either remove x_1 since "it only has a coefficient of 0.01", or to remove x_2 since "it does not depend on other states". He hence comes up with two new models with two states each:

$$\dot{\tilde{x}}(t) = \begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix} \tilde{x}(t) + \begin{bmatrix} 1\\ -1 \end{bmatrix} \tilde{u}(t)$$

$$\tilde{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \tilde{x}(t),$$
(4)

and

$$\dot{\bar{x}}(t) = \begin{bmatrix} \frac{1}{100} & 0\\ 0 & -1 \end{bmatrix} \bar{x}(t) + \begin{bmatrix} 0\\ -1 \end{bmatrix} \bar{u}(t)$$

$$\bar{y}(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \bar{x}(t).$$
(5)

For each of the two systems (4) and (5), argue why they are a poor approximation of the original system (3).

5. If your friend would have picked the more standard approach of changing the state using an invertible transform $\tilde{x}(t) = Tx(t)$ with $T \in \mathbb{R}^{3\times 3}$ and invertible (i.e. without removing any states), could any of the problems you detected in part 4 have occurred? Justify your answers.

Exercise 3

1	2	3	4	5	Exercise
3	4	5	5	8	25 Points

Consider the continuous-time system

$$\dot{x}_1(t) = -x_1(t) + x_1(t)x_2(t)$$

$$\dot{x}_2(t) = -x_2(t)$$
(6)

where $x_1(t) \in \mathbb{R}$ and $x_2(t) \in \mathbb{R}$.

- 1. Is the system linear? Is it autonomous? Is it time-invariant?
- 2. Show that the system has a unique equilibrium at the origin. Determine its stability using linearization.
- 3. Consider the function

$$V_1(x_1, x_2) = x_1^2 + x_2^2.$$

Show that there exists $\epsilon > 0$ such that the Lie derivative of V_1 along (6) is negative for all points in the set

$$\mathcal{S} = \{ (x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^2 < \epsilon, (x_1, x_2) \neq (0, 0) \}.$$

What can you conclude about the stability of (6) from this? What can you conclude about the domain of attraction of the equilibrium?

- 4. For the function V_1 , show that there exist points $(x_1, x_2) \in \mathbb{R}^2$ where the Lie derivative of V_1 along (6) is positive. Does this mean that the origin is not globally asymptotically stable for system (6)?
- 5. Now consider the function

$$V_2(x_1, x_2) = \ln(1 + x_1^2) + x_2^2,$$

where $\ln(\cdot)$ represents the natural logarithm.

- (a) Show that $V_2(x_1, x_2) \ge 0$ for all (x_1, x_2) and it is zero only at the equilibrium point of (6).
- (b) Show that the Lie derivative of V_2 along (6) is negative for all $(x_1, x_2) \in \mathbb{R}^2$ except at the equilibrium of (6). *Hint: Use the identity* $(x_1 x_1x_2)^2 = x_1^2 2x_1^2x_2 + x_1^2x_2^2$.
- (c) What can you conclude about the asymptotic stability of the origin?

Exercise 4

1	2	3	4	Exercise
4	7	7	7	25 Points

Consider the linear system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

given by the matrices

$$A = \begin{bmatrix} -d & -k \\ 1 & 0 \end{bmatrix} , B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} , C = \begin{bmatrix} 0 & 1 \end{bmatrix} , D = 0.$$

and real numbers $d \in \mathbb{R}$ and $k \in \mathbb{R}$.

- 1. Compute the transfer function G(s) from u(t) to y(t). For which values of k and d is the transfer function G(s) stable?
- 2. For the parameter range for which the system is stable, assume that $k > \frac{1}{2}d^2$ and compute the frequency ω^* at which the maximum of the magnitude $||G(j\omega)||$ occurs.
- 3. Figure 2 shows the zero-state response for four linear time-invariant systems and the input signal

$$u(t) = \begin{cases} 0 & \text{if } t < 0, \\ \sin(2t) & \text{if } t \ge 0. \end{cases}$$

For each of the three transfer functions

- (i) $G_1(s) = \frac{-6s}{s^2+6s+4}$ (ii) $G_2(s) = \frac{2(s^2+4)}{(s+1)^2}$ (...)
- (iii) $G_3(s) = \frac{1}{\frac{1}{4}s^2 + \frac{1}{4}s + 1}$

the zero-state response is shown in Figure 2, one plot shows the zero-state response of a transfer function not given above. Which transfer function corresponds to which zero-state response? Justify your answer. *Hint: Use the magnitudes* $||G_i(j\omega)||$ for $i = \{1, 2, 3\}$ at a specific frequency.

4. Consider the system Σ_1 given by the transfer function

$$G_{\Sigma_1}(s) = \frac{1}{(s+2)(s-1)(s+10)}$$

connected to a controller $\Sigma_2 : y_2(t) = Ke(t)$ as shown in Figure 3. Moreover, Figure 4 shows the Nyquist diagram of the open-loop system Σ_1 . For which values of $K \in \mathbb{R}$ is the closed-loop system shown in Figure 3 stable? Assume that the curve intersects itself at the point $p = -\frac{1}{108}$.

Figure 2: Zero-state-responses for input signal u(t).

Figure 3: Feedback system

Figure 4: Nyquist diagram of the open-loop transfer function of Σ_1 .