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Consider the following circuit:

Ry

Vvin (t) 02 R2 Cl :: Cle (t) RS ‘/out (t)

| | Z’RQ (t) Z.R3 (t) -

VCy(t)

Figure 1: Electrical circuit

1. Using z(t) = [ve, (t)  ve, (t)]T as a state vector, u(t) = Vin(t) as an input and y(t) =
Vout (t) as an output, describe the system in state-space form by finding the matri-
ces A, B,C, D in

z(t) = Az(t) + Bu(t),

y(t) = Cx(t) + Duf(t). S

2. Assume now that Ry = 1, Re = R3 = 2 and Cy = Cy = 1. Argue from physical
intuition that the system is asymptotically stable. Verify this by analyzing the state
equations derived in Part 1.

3. For the system parameters given in Part 2 propose a matrix @) for a quadratic
Lyapunov function

V(a(t) = o) Qr(t)
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that can be used to verify that the system is asymptotically stable. Compute the
matrix R that satisfies the Lyapunov equation

ATQ+QA=-R (2)
and confirm that () and R satisfy the conditions that ensure asymptotic stability.

. By setting f(z(t)) = Axz(t) verify that your Lyapunov function from Part 3 also
satisfies the conditions of the more general Lyapunov theorem for nonlinear systems.

. You build the circuit, but discover that due to a manufacturing defect resistor Ro
has been short-circuited (Rg = 0). Is the circuit still asymptotically stable? Is it
observable? You can argue from physical intuition without re-deriving the state
equations.
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. Write down the controllability matrix and determine whether the system is control-
lable.

. Would controllability change if the second entry of B was 0?7 Argue either mathe-
matically or using the dependencies between the states.

. Is the system stable? Is it asymptotically stable?

. Your friend from EPFL argues that three states is too much and wants to remove
one of the states. He proposes to either remove x; since “it only has a coefficient of
0.01”, or to remove z9 since “it does not depend on other states”. He hence comes
up with two new models with two states each:

F(t) = [ . _J Z(t) + [_11] a(t) (4)

and
(5)

For each of the two systems (4) and (5), argue why they are a poor approximation
of the original system (3).
2
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D.

If your friend would have picked the more standard approach of changing the state
using an invertible transform () = Tz (t) with T € R3*3 and invertible (i.e. with-
out removing any states), could any of the problems you detected in part 4 have
occurred? Justify your answers.
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Consider the continuous-time system

&1(t) = —w1(t) + x1(t)22(t) (6)
Ta(t) = —wa(?)

where z1(t) € R and z5(t) € R.

1.

2.

Is the system linear? Is it autonomous? Is it time-invariant?

Show that the system has a unique equilibrium at the origin. Determine its stability
using linearization.

. Consider the function

Vi(zy,29) = 23 + 3.

Show that there exists € > 0 such that the Lie derivative of V; along (6) is negative
for all points in the set

S = {(x1,22) € R*| 2% + 23 < ¢, (x1,22) # (0,0)}.

What can you conclude about the stability of (6) from this? What can you conclude
about the domain of attraction of the equilibrium?

. For the function V1, show that there exist points (z1,x2) € R? where the Lie deriva-

tive of V7 along (6) is positive. Does this mean that the origin is not globally
asymptotically stable for system (6)?

. Now consider the function

Va(ar, 02) = In(1 + ai) + a3,
where In(-) represents the natural logarithm.

(a) Show that Va(z1,22) > 0 for all (x1,22) and it is zero only at the equilibrium
point of (6).

(b) Show that the Lie derivative of V5 along (6) is negative for all (z1,z2) € R?
except at the equilibrium of (6). Hint: Use the identity (v1 — x122)% = 23 —
22319 + 2373

(¢) What can you conclude about the asymptotic stability of the origin?

3
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Consider the linear system

given by the matrices

A_[_ld _ﬂ ,B_H ,C=1[0 1] , D=0.

and real numbers d € R and &£ € R.

1. Compute the transfer function G(s) from u(t) to y(¢). For which values of k and d
is the transfer function G(s) stable?

2. For the parameter range for which the system is stable, assume that k& > %dQ and
compute the frequency w* at which the maximum of the magnitude ||G(jw)]|| occurs.

3. Figure 2 shows the zero-state response for four linear time-invariant systems and the
input signal

0 ift <0,
u(t) =
sin(2t) ift > 0.

For each of the three transfer functions

(i) Gi(s) = wreom
.. 2
(ii) Ga(s) = 2((545?
(i) Gs(s) = m

the zero-state response is shown in Figure 2, one plot shows the zero-state response
of a transfer function not given above. Which transfer function corresponds to which
zero-state response? Justify your answer. Hint: Use the magnitudes |G;(jw)]|| for
i ={1,2,3} at a specific frequency.

4. Consider the system ¥; given by the transfer function

1
(s+2)(s—1)(s+10)

Gy, (S) =

connected to a controller X9 : yo(t) = Ke(t) as shown in Figure 3. Moreover, Figure 4
shows the Nyquist diagram of the open-loop system ¥;. For which values of K € R
is the closed-loop system shown in Figure 3 stable? Assume that the curve intersects

itself at the point p = —1(1)—8.
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Zero-state response (a)
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Figure 2: Zero-state-responses for input signal wu(t).
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Ya(t) = ua(t)

Figure 3: Feedback system
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%103 Nyquist Diagram
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Figure 4: Nyquist diagram of the open-loop transfer function of ;.



