Institut für Automatik ETH Zürich Prof. J. Lygeros

11.02.2010

11.02.2010

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

1 Exercise 1

1	2	3	4	Exercise
5	5	8	7	25 Points

Consider the continuous time, linear, time invariant system:

$$\begin{aligned} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{aligned}$$

where

$$A = \begin{bmatrix} 1 & \alpha \\ 0 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

and $\alpha \in \mathbb{R}$.

- 1. Determine for which α the system is controllable.
- 2. Determine for which α the system is observable.
- 3. Let $\alpha = 5$ and set u(t) = Kx(t) where $K = \begin{bmatrix} k_1 & k_2 \end{bmatrix} \in \mathbb{R}^{1 \times 2}$. Determine the values of k_1, k_2 for which the poles of the resulting system are equal to -1 and -7.
- 4. Is the resulting system in part 3 stable? Justify your answer.

2 Exercise 2

1	2	3	4	Exercise
5	5	5	10	25 Points

Consider the following discrete time system:

$$m\phi_{k+2} + d\phi_{k+1} - (\nu+1)\phi_k = b\mu_k$$

where m, d, and b are real, positive, constant parameters and $\nu \in \mathbb{R}$ is a design parameter.

- 1. Write the system in state space form using $x_k = \begin{bmatrix} \phi_k & \phi_{k+1} \end{bmatrix}^T$ as the state vector and $u_k = \mu_k$ as the input.
- 2. What is the dimension of the system? Is the system autonomous? Is it linear?
- 3. Consider m = 2, d = 1, and b = 3. Is the system stable for $\nu = -1$? Is the system stable for $\nu = 0$? Is the system stable for $\nu = 2$?
- 4. Consider m = 2, d = 1, b = 3, and $\nu = 2$. Show that setting $u_k = \begin{bmatrix} -1 & \frac{1}{3} \end{bmatrix} x_k$ results in $x_k = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$ for all $k \ge 2$, for any $x_0 \in \mathbb{R}^2$.

Exercise

25 Points

3 Exercise 3

Consider the electric circuit of Figure 1:

1 | 2 | 3

9 8 8

Figure 1: Electric circuit

- 1. Provide the state space representation of the system, with $x = [i_{L_1} \ i_{L_2}]^T$ as states, V_i as input and V_0 as output.
- 2. Let $R_1 = R_2 = 1\Omega$ and $L_1 = L_2 = 1H$. Is the system controllable? Is it observable?
- 3. Compute the zero input response of the system $(V_i = 0)$, if $x(0) = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$.

4 Exercise 4

1	2	3	Exercise
8	9	8	25 Points

Consider the following linear, time invariant systems:

 $\dot{x}(t) = \begin{array}{c} \text{System (1)} & \text{System (2)} \\ A_1x(t) + Bu(t) & \dot{x}(t) = \begin{array}{c} A_2x(t) + Bu(t) \\ \text{System (3)} & \text{System (4)} \end{array}$

$$\dot{x}(t) = (A_1 + A_2)x(t) + Bu(t)$$
 $\dot{x}(t) = A_1A_2x(t) + Bu(t)$

Assume that in all cases $x(t) \in \mathbb{R}^2$, $u(t) \in \mathbb{R}$, $A_1, A_2 \in \mathbb{R}^{2 \times 2}$ and $B \in \mathbb{R}^{2 \times 1}$.

- 1. Assume that systems (1) and (2) are both controllable. Show that system (3) is not necessarily controllable. (It suffices to provide an example)
- 2. Assume that system (1) is controllable and system (2) is uncontrollable. Show that system (3) is controllable.
- 3. Assume that systems (1) and (2) are both controllable. Show that system (4) is not necessarily controllable. (It suffices to provide an example)