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Exercise 1
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Figure 1: A mechanical accelerometer mounted on a mass M .

A mechanical accelerometer is used to measure the acceleration of a moving object as
shown in Figure 1. The accelerometer consists of a mass m which is attached to a case
by means of a spring of stiffness k and a damper of constant b. The accelerometer uses
the relative position x2 of mass m, with respect to the accelerometer case, to estimate the
acceleration of the mass M . Let x1 denote the horizontal position of mass M and x2 the
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relative position of mass m measured from the equilibrium length of the spring when an
external force F is applied on the mass M . Assume that the contact between the mass
M and the supporting surface is frictionless, the equilibrium length of the spring is l and
that mass m is much smaller than mass M (m << M), so that the force applied from m
to M through the spring and damper can be neglected.

1. Derive a state space model for this system using u = F as the input and y = x2 as
the output.

2. Derive the transfer function G(s) from the input u to the output y. (Hint: You
do not have to invert the matrix (sI − A), you can use one of the state equations
instead.)

3. A step input of magnitude F = 10 Nt is applied to the system at time t = 0. Using
the values M = 5 Kg, m = 1 Kg, k = 4 Nt/m and b = 4 Kg/sec calculate the
expression of y(t) as a function of time for zero initial condition (x1(0) = ẋ1(0) = 0
and x2(0) = ẋ2(0) = 0).

2



Signal and System Theory II, BSc, Winter 2009

Exercise 2

1 2 3 4 Exercise
5 5 5 10 25 Points

Consider the continuous time, linear, time invariant system:

ẋ =
[

0 a + 1
1 −3

]
x +

[
0
1

]
u (1)

y =
[

1 1
]
+ u (2)

where the variable a is a real valued constant.

1. For which values of a is the system controllable?

2. For which values of a is the system observable?

3. Assume that u(t) = 0 is applied to the system for all time. For which values of a is
the resulting system stable? For which values is it asymptotically stable? For which
values is it unstable?

4. Consider now a state feedback controller u = Kx =
[

k1 k2

]
x. Design a gain

matrix K such that the poles of the closed loop system are both at −1 whenever
possible. Is this possible for all values of a? Why?
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Exercise 3

1 2 3 4 Aufgabe
5 5 10 5 25 Punkte

Consider the following differential equation, where α ∈ R is a constant:

θ̈ = sin(−θ + αθ̇) (3)

1. Derive the state-space representation of the system.

2. Determine all the equilibrium points of the system.

3. Using linearization, determine the values of α for which the equilibrium points found
in Part 2 are asymptotically stable, or unstable. Are there cases where the lineariza-
tion is inconclusive?

4. For the case α = 0, deduce that the equilibrium θ = 0, θ̇ = 0 is stable by using an
appropriate Lyapunov function.
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Exercise 4

1 2 3 Aufgabe
5 10 10 25 Punkte

You are given the discrete time, linear, time invariant system:

xk+1 = Axk xk ∈ Rn, A ∈ Rn×n

1. If matrix A is diagonalizable, show that for k=1,2,...

Ak = SΛkS−1

where

Λ =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 0 λn




and λ1, λ2, ..., λn are the eigenvalues of the matrix A.

2. Show that if the matrix S has columns, s1, s2, ..., sn and the matrix S−1 has rows
eT
1 , eT

2 , ..., eT
n , then

Ak =
n∑

i=1

λk
i sie

T
i (4)

3. Discuss in detail the stability of the system as a function of λi using your answer in
Part 2. Provide proofs to support your answers.
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