# Signal and System Theory II 

## This sheet is provided to you for ease of reference only.

Do not write your solutions here.

## Exercise 1

| 1 | 2 | 3 | Aufgabe |
| :---: | :---: | :---: | :---: |
| 8 | 6 | 11 | 25 Punkte |



Figure 1: A mechanical accelerometer mounted on a mass $M$.
A mechanical accelerometer is used to measure the acceleration of a moving object as shown in Figure 1. The accelerometer consists of a mass $m$ which is attached to a case by means of a spring of stiffness $k$ and a damper of constant $b$. The accelerometer uses the relative position $x_{2}$ of mass $m$, with respect to the accelerometer case, to estimate the acceleration of the mass $M$. Let $x_{1}$ denote the horizontal position of mass $M$ and $x_{2}$ the
relative position of mass $m$ measured from the equilibrium length of the spring when an external force $F$ is applied on the mass $M$. Assume that the contact between the mass $M$ and the supporting surface is frictionless, the equilibrium length of the spring is $l$ and that mass $m$ is much smaller than mass $M(m \ll M)$, so that the force applied from $m$ to $M$ through the spring and damper can be neglected.

1. Derive a state space model for this system using $u=F$ as the input and $y=x_{2}$ as the output.
2. Derive the transfer function $G(s)$ from the input $u$ to the output $y$. (Hint: You do not have to invert the matrix $(s I-A)$, you can use one of the state equations instead.)
3. A step input of magnitude $F=10 N t$ is applied to the system at time $t=0$. Using the values $M=5 \mathrm{Kg}, \mathrm{m}=1 \mathrm{Kg}, k=4 \mathrm{Nt} / \mathrm{m}$ and $b=4 \mathrm{Kg} / \mathrm{sec}$ calculate the expression of $y(t)$ as a function of time for zero initial condition $\left(x_{1}(0)=\dot{x}_{1}(0)=0\right.$ and $\left.x_{2}(0)=\dot{x}_{2}(0)=0\right)$.

## Exercise 2

| 1 | 2 | 3 | 4 | Exercise |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 5 | 5 | 10 | 25 Points |

Consider the continuous time, linear, time invariant system:

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{cc}
0 & a+1 \\
1 & -3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u  \tag{1}\\
y & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]+u \tag{2}
\end{align*}
$$

where the variable $a$ is a real valued constant.

1. For which values of $a$ is the system controllable?
2. For which values of $a$ is the system observable?
3. Assume that $u(t)=0$ is applied to the system for all time. For which values of $a$ is the resulting system stable? For which values is it asymptotically stable? For which values is it unstable?
4. Consider now a state feedback controller $u=K x=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right] x$. Design a gain matrix $K$ such that the poles of the closed loop system are both at -1 whenever possible. Is this possible for all values of $a$ ? Why?

## Exercise 3

| 1 | 2 | 3 | 4 | Aufgabe |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 5 | 10 | 5 | 25 Punkte |

Consider the following differential equation, where $\alpha \in \mathbb{R}$ is a constant:

$$
\begin{equation*}
\ddot{\theta}=\sin (-\theta+\alpha \dot{\theta}) \tag{3}
\end{equation*}
$$

1. Derive the state-space representation of the system.
2. Determine all the equilibrium points of the system.
3. Using linearization, determine the values of $\alpha$ for which the equilibrium points found in Part 2 are asymptotically stable, or unstable. Are there cases where the linearization is inconclusive?
4. For the case $\alpha=0$, deduce that the equilibrium $\theta=0, \dot{\theta}=0$ is stable by using an appropriate Lyapunov function.

## Exercise 4

| 1 | 2 | 3 | Aufgabe |
| :---: | :---: | :---: | :---: |
| 5 | 10 | 10 | 25 Punkte |

You are given the discrete time, linear, time invariant system:

$$
x_{k+1}=A x_{k} \quad x_{k} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}
$$

1. If matrix $A$ is diagonalizable, show that for $\mathrm{k}=1,2, \ldots$

$$
A^{k}=S \Lambda^{k} S^{-1}
$$

where

$$
\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{n}
\end{array}\right]
$$

and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of the matrix $A$.
2. Show that if the matrix $S$ has columns, $s_{1}, s_{2}, \ldots, s_{n}$ and the matrix $S^{-1}$ has rows $e_{1}^{T}, e_{2}^{T}, \ldots, e_{n}^{T}$, then

$$
\begin{equation*}
A^{k}=\sum_{i=1}^{n} \lambda_{i}^{k} s_{i} e_{i}^{T} \tag{4}
\end{equation*}
$$

3. Discuss in detail the stability of the system as a function of $\lambda_{i}$ using your answer in Part 2. Provide proofs to support your answers.
