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Consider the linear system

ÿ(t) + 15ẏ(t) + 20y(t) = 25u(t). (1)

1. Show that the transfer function of the system in (1) is G(s) = 25
s2+15s+20

.

Next, consider the system in (1) connected to a controller D(s) as shown in Figure 1.

Figure 1: Closed-loop system

2. Consider first the controller D(s) = K, where K is a constant gain.

(a) Compute the closed loop transfer function from the reference signal r(t) to the
tracking error e(t).

(b) Consider the reference signal r(t) = 1 for t ≥ 0 (and r(t) = 0 for t < 0).
Compute the range of K for which limt→∞ e(t) < 0.1.

(c) Find the value of the K for which the closed-loop system has damping ratio
ζ = 0.5.

3. Consider now a dynamic controller

D(s) = K
s+ 1.5

(s+ 2)(s+ 12)
(2)
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where again K is a constant gain. Figure 2 shows the Nyquist plot of L(s) =
G(s)D(s) for K = 130.
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Figure 2: Nyquist plot of the open-loop transfer function L(s) = G(s)D(s). The + shows
the location of the point (−1, 0).

(a) Will the closed-loop system be stable for this value of K?

(b) How will the stability of the closed-loop system change as K increases?
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Consider the system

ẋ(t) =

[
−1 −2
0 1

]
︸ ︷︷ ︸

A

x(t) +

[
1
β

]
︸︷︷︸
B

u(t)

y(t) =
[
γ 1

]︸ ︷︷ ︸
C

x(t)

where x(t) ∈ R2, u(t) ∈ R, y(t) ∈ R and β, γ ∈ R are constant parameters.

1. Is the system stable when u(t) = 0 for all t?

2. For which values of γ is the system observable? For which values of β is it control-
lable?

3. If you could choose between γ = 0 or γ = 1, which one would you choose and why?

Hint: Recall the test rank

[
C

λI −A

]
for detectability.

4. If you could choose between β = 0 or β = −1, which one would you choose and
why?

5. Consider now the output feedback u(t) = ky(t) where k is a constant. For β = 2
and γ = 0:

(a) Write the closed loop system in the form ẋ(t) = Ã(k)x(t), where Ã(k) is a
function of k.

(b) For which values of k is the closed loop system asymptotically stable?

(c) For which values of k does the system attain its fastest convergence rate.
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Figure 3: Basic RLC circuit.

Consider the RLC circuit depicted in Figure 3, where the adjustable voltage u(t) ∈ R
is used to steer the voltage uc(t) ∈ R and current i(t) ∈ R. For simplicity assume that
C = 1F and L = 1H and note that the resistance R(·) : R → R is allowed to depend on
the current that flows through it.

1. Derive a state-space model for the circuit in Figure 3 using y(t) = i(t) as the output,

x(t) =

[
uc(t)
i(t)

]
as the state, and u(t) as the input.

2. Under what conditions on the resistance function R(i) is the system linear?

3. Consider now the resistance function R(i) = − sin(i)
i (where R(0) = limi→0R(i)).

(a) Find all equilibria of the system and determine their stability using linearisation.

(b) Discuss the role of R(i) using the power balance of the circuit when the mag-
nitude of i(t) is small. Hint: Recall that the power is an instantaneous energy
change.

(c) Assume that the output controller u(t) = f(y(t)) + Ky(t) is applied to the
system. Derive an expression for the function f and a range of values for K so
that the closed loop system is linear and asymptotically stable.
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Consider the optimization problem

min
x

g(x) (3)

where g : Rn → R is a twice continuously differentiable function. Recall that the gradient
vector, ∇g(x), and Hessian matrix, ∇2g(x) are defined as

∇g(x) =


∂g
∂x1

(x)
...

∂g
∂xn

(x)

 and ∇2g(x) =


∂2g
∂2x1

(x) . . . ∂2g
∂x1∂xn

(x)
...

. . .
...

∂2g
∂x1∂xn

(x) . . . ∂2g
∂2x1

(x)

 .
Let x ∈ Rn be a minimizer of g (that is g(x) = minx g(x)) and recall that the gradient
vanishes at the minimizer (that is ∇g(x) = 0). Finally, consider the dynamical system
defined by

ẋ(t) = f(x(t)) = −α∇g(x(t)), (4)

where α > 0 is a constant parameter.

1. Show that the minimizer x is an equilibrium of (4).

2. Assume that ∇2g(x) ∈ Rn×n is a positive definite matrix. Show that x is locally
asymptotically stable. Hint: Use Lyapunov’s first method.

3. Consider the function V (x) = 1
2‖x− x‖2.

(a) Argue that V (x) ≥ 0 for all x ∈ Rn, V (x) = 0 if and only if x = x, and
V (x)→∞ whenever ‖x‖ → ∞.

(b) Show that d
dtV (x(t)) = −α∇g(x(t))T (x(t)− x̄).

(c) Assume that the gradient satisfies (∇g(x)−∇g(y))T (x−y) ≥ m‖x−y‖2 for all
x, y ∈ Rn and some m > 0. Show that in this case d

dtV (x(t)) < 0 for all x 6= x.
Hence argue that x is globally asymptotically stable using Lyapunov’s second
method.
Hint: Recall that ∇g(x) = 0.
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