Signal and System Theory II

This sheet is provided to you for ease of reference only. Do not write your solutions here.

Exercise 1

1	$2(\mathrm{a})$	$2(\mathrm{~b})$	$2(\mathrm{c})$	3(a)	3(b)	Exercise
3	4	4	4	5	5	25 Points

Consider the linear system

$$
\begin{equation*}
\ddot{y}(t)+15 \dot{y}(t)+20 y(t)=25 u(t) . \tag{1}
\end{equation*}
$$

1. Show that the transfer function of the system in (1) is $G(s)=\frac{25}{s^{2}+15 s+20}$.

Next, consider the system in (1) connected to a controller $D(s)$ as shown in Figure 1.

Figure 1: Closed-loop system
2. Consider first the controller $D(s)=K$, where K is a constant gain.
(a) Compute the closed loop transfer function from the reference signal $r(t)$ to the tracking error $e(t)$.
(b) Consider the reference signal $r(t)=1$ for $t \geq 0$ (and $r(t)=0$ for $t<0$). Compute the range of K for which $\lim _{t \rightarrow \infty} e(t)<0.1$.
(c) Find the value of the K for which the closed-loop system has damping ratio $\zeta=0.5$.
3. Consider now a dynamic controller

$$
\begin{equation*}
D(s)=K \frac{s+1.5}{(s+2)(s+12)} \tag{2}
\end{equation*}
$$

where again K is a constant gain. Figure 2 shows the Nyquist plot of $L(s)=$ $G(s) D(s)$ for $K=130$.

Figure 2: Nyquist plot of the open-loop transfer function $L(s)=G(s) D(s)$. The + shows the location of the point $(-1,0)$.
(a) Will the closed-loop system be stable for this value of K ?
(b) How will the stability of the closed-loop system change as K increases?

Exercise 2

1	2	3	4	$5(\mathrm{a})$	$5(\mathrm{~b})$	$5(\mathrm{c})$	Exercise
3	6	4	4	2	3	3	25 Points

Consider the system

$$
\begin{aligned}
& \dot{x}(t)=\underbrace{\left[\begin{array}{cc}
-1 & -2 \\
0 & 1
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
1 \\
\beta
\end{array}\right]}_{B} u(t) \\
& y(t)=\underbrace{\left[\begin{array}{ll}
\gamma & 1
\end{array}\right]}_{C} x(t)
\end{aligned}
$$

where $x(t) \in \mathbb{R}^{2}, u(t) \in \mathbb{R}, y(t) \in \mathbb{R}$ and $\beta, \gamma \in \mathbb{R}$ are constant parameters.

1. Is the system stable when $u(t)=0$ for all t ?
2. For which values of γ is the system observable? For which values of β is it controllable?
3. If you could choose between $\gamma=0$ or $\gamma=1$, which one would you choose and why? Hint: Recall the test rank $\left[\begin{array}{c}C \\ \lambda I-A\end{array}\right]$ for detectability.
4. If you could choose between $\beta=0$ or $\beta=-1$, which one would you choose and why?
5. Consider now the output feedback $u(t)=k y(t)$ where k is a constant. For $\beta=2$ and $\gamma=0$:
(a) Write the closed loop system in the form $\dot{x}(t)=\tilde{A}(k) x(t)$, where $\tilde{A}(k)$ is a function of k.
(b) For which values of k is the closed loop system asymptotically stable?
(c) For which values of k does the system attain its fastest convergence rate.

Exercise 3

1	2	$3(\mathrm{a})$	$3(\mathrm{~b})$	$3(\mathrm{c})$	Exercise
6	4	5	4	6	25 Points

Figure 3: Basic RLC circuit.

Consider the RLC circuit depicted in Figure 3, where the adjustable voltage $u(t) \in \mathbb{R}$ is used to steer the voltage $u_{c}(t) \in \mathbb{R}$ and current $i(t) \in \mathbb{R}$. For simplicity assume that $C=1 F$ and $L=1 H$ and note that the resistance $R(\cdot): \mathbb{R} \rightarrow \mathbb{R}$ is allowed to depend on the current that flows through it.

1. Derive a state-space model for the circuit in Figure 3 using $y(t)=i(t)$ as the output, $x(t)=\left[\begin{array}{c}u_{c}(t) \\ i(t)\end{array}\right]$ as the state, and $u(t)$ as the input.
2. Under what conditions on the resistance function $R(i)$ is the system linear?
3. Consider now the resistance function $R(i)=-\frac{\sin (i)}{i}$ (where $R(0)=\lim _{i \rightarrow 0} R(i)$).
(a) Find all equilibria of the system and determine their stability using linearisation.
(b) Discuss the role of $R(i)$ using the power balance of the circuit when the magnitude of $i(t)$ is small. Hint: Recall that the power is an instantaneous energy change.
(c) Assume that the output controller $u(t)=f(y(t))+K y(t)$ is applied to the system. Derive an expression for the function f and a range of values for K so that the closed loop system is linear and asymptotically stable.

Exercise 4

1	2	$3(\mathrm{a})$	$3(\mathrm{~b})$	$3(\mathrm{c})$	Exercise
4	5	4	6	6	25 Points

Consider the optimization problem

$$
\begin{equation*}
\min _{x} \quad g(x) \tag{3}
\end{equation*}
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice continuously differentiable function. Recall that the gradient vector, $\nabla g(x)$, and Hessian matrix, $\nabla^{2} g(x)$ are defined as

$$
\nabla g(x)=\left[\begin{array}{c}
\frac{\partial g}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial g}{\partial x_{n}}(x)
\end{array}\right] \text { and } \nabla^{2} g(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} g}{\partial^{2} x_{1}}(x) & \cdots & \frac{\partial^{2} g}{\partial x_{1} \partial x_{n}}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} g}{\partial x_{1} \partial x_{n}}(x) & \cdots & \frac{\partial^{2} g}{\partial^{2} x_{1}}(x)
\end{array}\right] .
$$

Let $\bar{x} \in \mathbb{R}^{n}$ be a minimizer of g (that is $g(\bar{x})=\min _{x} g(x)$) and recall that the gradient vanishes at the minimizer (that is $\nabla g(\bar{x})=0$). Finally, consider the dynamical system defined by

$$
\begin{equation*}
\dot{x}(t)=f(x(t))=-\alpha \nabla g(x(t)), \tag{4}
\end{equation*}
$$

where $\alpha>0$ is a constant parameter.

1. Show that the minimizer \bar{x} is an equilibrium of (4).
2. Assume that $\nabla^{2} g(\bar{x}) \in \mathbb{R}^{n \times n}$ is a positive definite matrix. Show that \bar{x} is locally asymptotically stable. Hint: Use Lyapunov's first method.
3. Consider the function $V(x)=\frac{1}{2}\|x-\bar{x}\|^{2}$.
(a) Argue that $V(x) \geq 0$ for all $x \in \mathbb{R}^{n}, V(x)=0$ if and only if $x=\bar{x}$, and $V(x) \rightarrow \infty$ whenever $\|x\| \rightarrow \infty$.
(b) Show that $\frac{d}{d t} V(x(t))=-\alpha \nabla g(x(t))^{T}(x(t)-\bar{x})$.
(c) Assume that the gradient satisfies $(\nabla g(x)-\nabla g(y))^{T}(x-y) \geq m\|x-y\|^{2}$ for all $x, y \in \mathbb{R}^{n}$ and some $m>0$. Show that in this case $\frac{d}{d t} V(x(t))<0$ for all $x \neq \bar{x}$. Hence argue that \bar{x} is globally asymptotically stable using Lyapunov's second method.
Hint: Recall that $\nabla g(\bar{x})=0$.
