Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Winter 2020/2021 19.02.2021

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1	1	2 (a)	2(b)	2(c)	3(a)	3(b)	Exercise
	3	4	4	4	5	5	25 Points

Consider the linear system

$$\ddot{y}(t) + 15\dot{y}(t) + 20y(t) = 25u(t).$$
(1)

1. Show that the transfer function of the system in (1) is $G(s) = \frac{25}{s^2 + 15s + 20}$.

Next, consider the system in (1) connected to a controller D(s) as shown in Figure 1.

Figure 1: Closed-loop system

- 2. Consider first the controller D(s) = K, where K is a constant gain.
 - (a) Compute the closed loop transfer function from the reference signal r(t) to the tracking error e(t).
 - (b) Consider the reference signal r(t) = 1 for $t \ge 0$ (and r(t) = 0 for t < 0). Compute the range of K for which $\lim_{t\to\infty} e(t) < 0.1$.
 - (c) Find the value of the K for which the closed-loop system has damping ratio $\zeta = 0.5$.
- 3. Consider now a dynamic controller

$$D(s) = K \frac{s+1.5}{(s+2)(s+12)}$$
(2)
1

where again K is a constant gain. Figure 2 shows the Nyquist plot of L(s) = G(s)D(s) for K = 130.

Figure 2: Nyquist plot of the open-loop transfer function L(s) = G(s)D(s). The + shows the location of the point (-1, 0).

- (a) Will the closed-loop system be stable for this value of K?
- (b) How will the stability of the closed-loop system change as K increases?

Signals and Systems II, BSc, Spring Term 2020

Exercise 2

1		2	3	4	5(a)	5(b)	5(c)	Exercise
3	;	6	4	4	2	3	3	25 Points

Consider the system

$$\begin{split} \dot{x}(t) &= \underbrace{\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 \\ \beta \end{bmatrix}}_{B} u(t) \\ y(t) &= \underbrace{\begin{bmatrix} \gamma & 1 \end{bmatrix}}_{C} x(t) \end{split}$$

where $x(t) \in \mathbb{R}^2$, $u(t) \in \mathbb{R}$, $y(t) \in \mathbb{R}$ and $\beta, \gamma \in \mathbb{R}$ are constant parameters.

- 1. Is the system stable when u(t) = 0 for all t?
- 2. For which values of γ is the system observable? For which values of β is it controllable?
- 3. If you could choose between $\gamma = 0$ or $\gamma = 1$, which one would you choose and why? **Hint:** Recall the test rank $\begin{bmatrix} C \\ \lambda I - A \end{bmatrix}$ for detectability.
- 4. If you could choose between $\beta = 0$ or $\beta = -1$, which one would you choose and why?
- 5. Consider now the output feedback u(t) = ky(t) where k is a constant. For $\beta = 2$ and $\gamma = 0$:
 - (a) Write the closed loop system in the form $\dot{x}(t) = \tilde{A}(k)x(t)$, where $\tilde{A}(k)$ is a function of k.
 - (b) For which values of k is the closed loop system asymptotically stable?
 - (c) For which values of k does the system attain its fastest convergence rate.

Signals and Systems II, BSc, Spring Term 2020

Exercise 3

1	2	3 (a)	3(b)	3(c)	Exercise
6	4	5	4	6	25 Points

Figure 3: Basic RLC circuit.

Consider the RLC circuit depicted in Figure 3, where the adjustable voltage $u(t) \in \mathbb{R}$ is used to steer the voltage $u_c(t) \in \mathbb{R}$ and current $i(t) \in \mathbb{R}$. For simplicity assume that C = 1F and L = 1H and note that the resistance $R(\cdot) : \mathbb{R} \to \mathbb{R}$ is allowed to depend on the current that flows through it.

- 1. Derive a state-space model for the circuit in Figure 3 using y(t) = i(t) as the output, $x(t) = \begin{bmatrix} u_c(t) \\ i(t) \end{bmatrix}$ as the state, and u(t) as the input.
- 2. Under what conditions on the resistance function R(i) is the system linear?
- 3. Consider now the resistance function $R(i) = -\frac{\sin(i)}{i}$ (where $R(0) = \lim_{i \to 0} R(i)$).
 - (a) Find all equilibria of the system and determine their stability using linearisation.
 - (b) Discuss the role of R(i) using the power balance of the circuit when the magnitude of i(t) is small. **Hint:** Recall that the power is an instantaneous energy change.
 - (c) Assume that the output controller u(t) = f(y(t)) + Ky(t) is applied to the system. Derive an expression for the function f and a range of values for K so that the closed loop system is linear and asymptotically stable.

Signals and Systems II, BSc, Spring Term 2020

Exercise 4

1	2	3 (a)	3(b)	3(c)	Exercise
4	5	4	6	6	25 Points

Consider the optimization problem

$$\min_{x} \quad g(x) \tag{3}$$

where $g : \mathbb{R}^n \to \mathbb{R}$ is a twice continuously differentiable function. Recall that the gradient vector, $\nabla g(x)$, and Hessian matrix, $\nabla^2 g(x)$ are defined as

$$\nabla g(x) = \begin{bmatrix} \frac{\partial g}{\partial x_1}(x) \\ \vdots \\ \frac{\partial g}{\partial x_n}(x) \end{bmatrix} \text{ and } \nabla^2 g(x) = \begin{bmatrix} \frac{\partial^2 g}{\partial^2 x_1}(x) & \dots & \frac{\partial^2 g}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 g}{\partial x_1 \partial x_n}(x) & \dots & \frac{\partial^2 g}{\partial^2 x_1}(x) \end{bmatrix}.$$

Let $\overline{x} \in \mathbb{R}^n$ be a minimizer of g (that is $g(\overline{x}) = \min_x g(x)$) and recall that the gradient vanishes at the minimizer (that is $\nabla g(\overline{x}) = 0$). Finally, consider the dynamical system defined by

$$\dot{x}(t) = f(x(t)) = -\alpha \nabla g(x(t)), \tag{4}$$

where $\alpha > 0$ is a constant parameter.

- 1. Show that the minimizer \overline{x} is an equilibrium of (4).
- 2. Assume that $\nabla^2 g(\overline{x}) \in \mathbb{R}^{n \times n}$ is a positive definite matrix. Show that \overline{x} is locally asymptotically stable. **Hint:** Use Lyapunov's first method.
- 3. Consider the function $V(x) = \frac{1}{2} ||x \overline{x}||^2$.
 - (a) Argue that $V(x) \ge 0$ for all $x \in \mathbb{R}^n$, V(x) = 0 if and only if $x = \overline{x}$, and $V(x) \to \infty$ whenever $||x|| \to \infty$.
 - (b) Show that $\frac{d}{dt}V(x(t)) = -\alpha \nabla g(x(t))^T (x(t) \bar{x}).$
 - (c) Assume that the gradient satisfies $(\nabla g(x) \nabla g(y))^T (x y) \ge m ||x y||^2$ for all $x, y \in \mathbb{R}^n$ and some m > 0. Show that in this case $\frac{d}{dt}V(x(t)) < 0$ for all $x \neq \overline{x}$. Hence argue that \overline{x} is globally asymptotically stable using Lyapunov's second method.

Hint: Recall that $\nabla g(\overline{x}) = 0$.