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Exercise 1

1 2 3 Exercise

8 9 8 25 Points

Consider the discrete time linear system

{
xk+1 = Axk +Buk
yk = Cxk +Duk

(1)

where xk ∈ Rn, uk ∈ Rm, yk ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m.

1. A discrete time observer constructs an estimate x̂k of the state xk of the form

{
x̂k+1 = Ax̂k +Buk + L(yk − ŷk)
ŷk = Cx̂k +Duk

starting with x̂0 = 0. Derive the dynamics of the error ek = xk − x̂k. Under what
conditions will x̂k converge to xk as k tends to infinity?

2. Consider now the system (1) with

A =

0 0 −9
1 0 −15
0 1 −7

 B =

0
0
1



C =
[
0 0 1

]
D = 0

(2)

Is the system observable? Is it controllable? Show that the open-loop system has
poles at −1 + j0, −3 + j0, and −3 + j0. What does this mean for the stability of
the system?

3. Design an observer of the form given in part 1 for the system in part 2. What
dimensions should the matrix L have? Select the entries of the matrix L so that the
error dynamics have all eigenvalues equal to 0.5.
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Exercise 2

1 2 3 4 5 Exercise

5 4 4 8 4 25 Points

Figure 1 shows a water storage system consisting of a cylindrical tank which has constant
surface area At. Water flows into the tank at a fixed mass-flow rate qin. The mass-flow
rate at which the water flows out of the tank can be controlled with a valve whose outflow
is given by

qout(t) = ρAv

√
2gh(t) v(t),

where h(t) is the height of water in the tank and

ρ – water density,
Av – cross section area of the fully open valve,
g – acceleration due to gravity

are constants. The valve position v(t) ∈ [0, 1] can be controlled with a servo motor with
the transfer function

G(s) =
V (s)

U(s)
=

2

s+ 30
,

where u(t) is the input voltage to the motor.

qin

qout

G(s)
u

v

h

Figure 1: Water storage system.

1. Show that the system dynamics takes the form

ḣ(t) = f1(h(t), v(t), u(t)) =
qin

ρAt
− Av

At

√
2gh(t) v(t),

v̇(t) = f2(h(t), v(t), u(t)) = −30v(t) + 2u(t).

2. Explain whether the system above is

(a) linear or nonlinear,

(b) time-variant or time-invariant.

3. Compute the valve position v̄ that maintains the water-level at a constant height h̄.
What is the input voltage ū in that case?
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4. Linearize the system around the steady state computed in part 3, i.e. compute the
matrices A and B in

d

dt

([
δh(t)
δv(t)

])
=

[∂f1(h,v,u)
∂h

∂f1(h,v,u)
∂v

∂f2(h,v,u)
∂h

∂f2(h,v,u)
∂v

] ∣∣∣∣∣h=h̄
v=v̄
u=ū︸ ︷︷ ︸

A

[
δh(t)
δv(t)

]
+

[∂f1(h,v,u)
∂u

∂f2(h,v,u)
∂u

] ∣∣∣∣∣h=h̄
v=v̄
u=ū︸ ︷︷ ︸

B

δu(t),

where δh(t) := h(t)− h̄, δv(t) := v(t)− v̄, and δu(t) := u(t)− ū.

5. Is the linearized system stable? What can you infer about the stability of the non-
linear system?

Exercise 3

1 2 3 4 5 Exercise

3 3 7 8 4 25 Points

Consider the following nonlinear differential equation:

ÿ(t) + cẏ(t) + sin(y(t)) = 0, (3)

where y(t) ∈ R for t ≥ 0, and c ∈ R.

1. By defining states x1(t) = y(t) and x2(t) = ẏ(t), write equation (3) in the form

ẋ(t) = f(x(t)),

where x(t) = (x1(t), x2(t)).

2. Find all equilibrium points for the system above.

3. Determine the stability of the equilibrium point x = (0, 0) for c < 0 and c > 0 using
linearization.

4. Can you determine the stability of the equilibrium point x = (0, 0) when c = 0 using
linearization? If not, find a suitable Lyapunov function to show that the equilibrium
is stable. [Hint: Think pendulum]

5. Your friend from EPFL thinks that the equilibrium point x = (0, 0) is globally
asymptotically stable for c = 1. Explain why this is not the case.

Exercise 4

1 2 3 Exercise

5 10 10 25 Points

Consider the linear system Σ given by:

Σ : ÿ(t) + (2− α)ẏ(t)− 2αy(t) = u̇(t)− u(t) (4)

where α ∈ R is a system parameter.
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1. Compute the transfer function G(s) of the system Σ.

Next, consider the system Σ connected to a controller as shown in Figure 2.

K Σ
r(t)

e(t) = r(t)− y(t) u(t) = Ke(t)

y(t)

−

Figure 2: Feedback system

2. Consider the case α = −0.01. Figure 3 shows the Bode diagram of the transfer
function G(s) of the system Σ for α = −0.01. The maximum of the gain |G(jω)|
occurs at ω = 0.

(a) Compute |G(jω)| at ω = 0.

(b) Apply the Small gain theorem (corollary of the Bode Stability criterion) to
obtain a range for the control gain K for which the feedback system shown in
Figure 2 is stable.
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Figure 3: Bode diagram of the open-loop transfer function of the system Σ for α = −0.01.
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3. Next, consider the case α = 10. Figure 4 shows the Nyquist diagram of the transfer
function G(s) of the system Σ for α = 10. Use the Nyquist stability criterion to
show that there does not exist a K for which the closed loop system is stable.

[Hint: Show that the Nyquist criterion is violated both when 1
K is encircled by the

Nyquist plot and when it is not.]
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Figure 4: Nyquist diagram of the open-loop transfer function G(s) of the system Σ for
α = 10.
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