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Exercise
8|9 | 8| 25 Points

Consider the discrete time linear system
Tpy1 = Az + Bug (1)
yr = Cxp+ Duy
where x3, € R", up, € R™, y, € RP, A € R™*"™, B € R™™™, C € RP*", and D € RP*™,

1. A discrete time observer constructs an estimate Iy of the state x; of the form

Tht1 Ay, + Buy, + L(yr — Ur)
Uk = Cz + Duy

starting with £g = 0. Derive the dynamics of the error e = xp — . Under what
conditions will Z; converge to x; as k tends to infinity?

2. Consider now the system (1) with

00 -9 0
A=|1 0 -15| B=|0
01 -7 1

(2)

C=1[0 0 1] D=0

Is the system observable? Is it controllable? Show that the open-loop system has

poles at —1 + 50, —3 + jO, and —3 + j0. What does this mean for the stability of
the system?

3. Design an observer of the form given in part 1 for the system in part 2. What
dimensions should the matrix L have? Select the entries of the matrix L so that the
error dynamics have all eigenvalues equal to 0.5.
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Exercise 2

123 5 | Exercise
5|44 |8 | 4| 25 Points

S

Figure 1 shows a water storage system consisting of a cylindrical tank which has constant
surface area A;. Water flows into the tank at a fixed mass-flow rate ¢i,. The mass-flow
rate at which the water flows out of the tank can be controlled with a valve whose outflow

is given by
Gout (t) = pAy\/2gh(t) v(t),

where h(t) is the height of water in the tank and

p — water density,
A, — cross section area of the fully open valve,
g — acceleration due to gravity

are constants. The valve position v(¢) € [0, 1] can be controlled with a servo motor with

the transfer function
V(is) 2

U(s) s+30°

where u(t) is the input voltage to the motor.

l Qin

G(s) =

Figure 1: Water storage system.

1. Show that the system dynamics takes the form

(1) = (D), 0(0) ) = 2 — Z\/2gh (0 (1),
o(t) = fo(h(t), v(t), u(t)) = —300(t) + 2ult).

2. Explain whether the system above is

(a) linear or nonlinear,
(b) time-variant or time-invariant.
3. Compute the valve position o that maintains the water-level at a constant height h.

What is the input voltage u in that case?
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4. Linearize the system around the steady state computed in part 3, 7.e. compute the
matrices A and B in

of1(hv,u of1(hvu df1(h,v,u
i 5h(t) _ fl(ah ) fl(av ) 5h(t) . fl(au ) Sult)
dt \ [dv(t) dfa(hwu)  dfa(hwu) | |p=ph |Ov(t) dfa(hw,w) | |p=h ’
oh ov Uf’lz ou Ufg
A B

where 6h(t) :== h(t) — h, dv(t) == v(t) — v, and du(t) = u(t) — u.

5. Is the linearized system stable? What can you infer about the stability of the non-
linear system?

Exercise 3

112|345 Exercise
313|781 4| 25 Points

Consider the following nonlinear differential equation:
§(t) + cy(t) +sin(y(t)) = 0, (3)
where y(t) € R for t > 0, and ¢ € R.
1. By defining states x1(t) = y(t) and x2(t) = y(t), write equation (3) in the form
o(t) = f(z(t)),
where x(t) = (z1(¢), x2(t)).
2. Find all equilibrium points for the system above.

3. Determine the stability of the equilibrium point z = (0,0) for ¢ < 0 and ¢ > 0 using
linearization.

4. Can you determine the stability of the equilibrium point = (0,0) when ¢ = 0 using
linearization? If not, find a suitable Lyapunov function to show that the equilibrium
is stable. [Hint: Think pendulum)]

5. Your friend from EPFL thinks that the equilibrium point z = (0,0) is globally
asymptotically stable for ¢ = 1. Explain why this is not the case.

Exercise 4

1] 2 3 Exercise
51|10 | 10 || 25 Points

Consider the linear system > given by:

S () + (2 — a)y(t) — 2ay(t) = alt) — u(t) (4)

where a € R is a system parameter.
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1. Compute the transfer function G(s) of the system X.

Next, consider the system Y connected to a controller as shown in Figure 2.

O K by
e =rt) —y@) u(t) = Ke(t)

Figure 2: Feedback system

2. Consider the case a = —0.01. Figure 3 shows the Bode diagram of the transfer
function G(s) of the system ¥ for @« = —0.01. The maximum of the gain |G(jw)]

occurs at w = 0.
(a) Compute |G(jw)| at w = 0.

(b) Apply the Small gain theorem (corollary of the Bode Stability criterion) to
obtain a range for the control gain K for which the feedback system shown in

Figure 2 is stable.

Bode Diagram
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Figure 3: Bode diagram of the open-loop transfer function of the system ¥ for « = —0.01.
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3. Next, consider the case a = 10. Figure 4 shows the Nyquist diagram of the transfer
function G(s) of the system ¥ for a = 10. Use the Nyquist stability criterion to
show that there does not exist a K for which the closed loop system is stable.

[Hint: Show that the Nyquist criterion is violated both when % is encircled by the
Nyquist plot and when it is not.]

Nyquist Diagram
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Figure 4: Nyquist diagram of the open-loop transfer function G(s) of the system X for
a = 10.



