Signal and System Theory II

This sheet is provided to you for ease of reference only. Do not write your solutions here.

Exercise 1

1	2	3	4	Exercise
8	6	5	6	25 Points

Consider the following circuit:

Figure 1: Electrical circuit

1. Using $x(t)=\left[\begin{array}{lll}i_{L}(t) & v_{C_{1}}(t) & v_{C_{2}}(t)\end{array}\right]^{T}$ as state vector, $u(t)=V_{\text {in }}(t)$ as input and $y(t)=V_{\text {out }}(t)$ as output, derive the state space description of the circuit in the form

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t) . \tag{1}
\end{align*}
$$

2. Assume that $R=C_{1}=C_{2}=L=1$. Design an observer $K \in \mathbb{R}^{3}$ for the system such that the observer error dynamics

$$
\begin{equation*}
\dot{e}(t)=(A-K C) e(t) \tag{2}
\end{equation*}
$$

have all eigenvalues at -1 .

Consider now an LTI system given by

$$
\begin{align*}
& \dot{x}(t)=\underbrace{\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}_{B} u(t) \tag{3}\\
& y(t)=\underbrace{\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]}_{C} x(t) .
\end{align*}
$$

3. Determine whether the system (3) is controllable and observable.
4. Find all eigenvalues of A in (3). Is the system stable? Determine whether the system is detectable. (HINT: A system is detectable if $\left[\begin{array}{c}C \\ \lambda_{i} I-A\end{array}\right]$ has full rank for all non-negative eigenvalues λ_{i} of A.)

Exercise 2

1	2	3	4	5	Exercise
6	5	2	5	7	25 Points

1. Consider an autonomous system:

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{cc}
\sigma & \omega \tag{4}\\
-\omega & \sigma
\end{array}\right]}_{A} x(t),
$$

where σ and ω are two real numbers. Determine the eigenvalues and eigenvectors of A.
2. For the system described by (4), verify that the state transition matrix is given by

$$
\Phi\left(t, t_{0}\right)=\exp (\sigma t)\left[\begin{array}{cc}
\cos (\omega t) & \sin (\omega t) \tag{5}\\
-\sin (\omega t) & \cos (\omega t)
\end{array}\right] .
$$

3. For what values of σ and ω is the system in (4) stable? For what values is the system asymptotically stable?
4. Now consider the system

$$
\dot{x}(t)=\underbrace{\left[\begin{array}{cc}
\sigma & \omega \tag{6}\\
-\omega & \sigma
\end{array}\right]}_{A} x(t)+\underbrace{\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]}_{B} u(t) .
$$

For which combinations of σ, ω, b_{1} and b_{2} is this system controllable? For which combinations is it not?
5. Next, consider the closed-loop system of (6) with $B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ under the state feedback law $u(t)=K x(t)$, with $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$. By appropriately selecting K, one can change the eigenvalues of the closed-loop system $\dot{x}(t)=(A+B K) x(t)$. What are the possible eigenvalues one can obtain when $\omega \neq 0$ and when $\omega=0$?

Exercise 3

1	2	3	4	5	Exercise
3	2	5	7	8	25 Points

Consider the system

$$
\begin{align*}
\dot{x}(t) & =-x(t)+g(y(t)), \tag{7}\\
\dot{y}(t) & =-y(t)+h(x(t)),
\end{align*}
$$

where $x(t), y(t) \in \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ are two unknown continuously differentiable functions satisfying

$$
|g(y)| \leq \frac{|y|}{2} \quad \forall y \in \mathbb{R}, \quad|h(x)| \leq \frac{|x|}{2} \quad \forall x \in \mathbb{R} .
$$

1. Is system (7) linear? Is it autonomous? Is it time invariant?
2. Show that $(x, y)=(0,0)$ is an equilibrium point of system (7).
3. Prove the following properties
(a) $\left|\frac{d}{d x}(h(x))_{x=0}\right| \leq \frac{1}{2}$ and similarly $\left|\frac{d}{d y}(g(y))_{y=0}\right| \leq \frac{1}{2}$.
(b) $|x y| \leq \frac{x^{2}+y^{2}}{2}$ for all $x, y \in \mathbb{R}$.
4. Determine, if possible, the stability properties of the equilibrium $(x, y)=(0,0)$, using the linearization technique.
(HINT: Use property 3(a).)
5. Show that $V(x, y)=\frac{x^{2}+y^{2}}{2}$ is a Lyapunov function for system (7). Can you use this information to find out more about the stability properties of the equilibrium $(x, y)=(0,0)$ compared to your answer in part 4? (HINT: Use property 3(b).)

Exercise 4

1	2	3	4	5	6	Exercise
4	4	8	3	3	3	25 Points

Consider the discrete time system given by the difference equation:

$$
\begin{equation*}
y(k)-a_{1} y(k-1)-a_{2} y(k-2)=b_{0} u(k)+b_{1} u(k-1)+b_{2} u(k-2) \tag{8}
\end{equation*}
$$

Digital filters are often defined in this way. One way to implement such a filter is a feedforward-feedback structure as depicted in Figure 2:

Figure 2: Digital filter
For simplicity, we consider the case $a_{1}=0$. The state-space realization of the feedforward stage is given as:

$$
\begin{align*}
z(k+1) & =A_{1} z(k)+B_{1} u(k)
\end{align*}=\left[\begin{array}{cc}
0 & 1 \tag{9a}\\
0 & 0
\end{array}\right] z(k)+\left[\begin{array}{l}
0 \tag{9b}\\
1
\end{array}\right] u(k), ~(k)=C_{1} z(k)+D_{1} u(k)=\left[\begin{array}{ll}
b_{2} & \left.b_{1}\right] z(k)+b_{0} u(k)
\end{array}\right.
$$

and the one of the feedback stage as:

$$
\begin{align*}
& x(k+1)=A_{2} x(k)+B_{2} v(k)=\left[\begin{array}{cc}
0 & a_{2} \\
1 & 0
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] v(k) \tag{10a}\\
& y(k)=C_{2} x(k)+D_{2} v(k)=\left[\begin{array}{ll}
0 & a_{2}
\end{array}\right] x(k)+v(k) \tag{10b}
\end{align*}
$$

First, we analyze the feedforward stage and the feedback stage separately:

1. For which parameter values b_{0}, b_{1} and b_{2} is the feedforward stage (9) asymptotically stable? For which parameter values is it observable?
2. For which parameter values a_{2} is the feedback stage (10) asymptotically stable? For which parameter values is it observable?

Now, we will analyze the complete system:
3. Using the state $\xi(k):=\left[\begin{array}{ll}x(k)^{\top} & z(k)^{\top}\end{array}\right]^{\top}$, find the matrices A, B, C and D that describe the complete system as:

$$
\begin{align*}
\xi(k+1) & =A \xi(k)+B u(k) \tag{11a}\\
y(k) & =C \xi(k)+D u(k) \tag{11b}
\end{align*}
$$

4. For which parameter values a_{2}, b_{0}, b_{1} and b_{2} is the complete system (11) asymptotically stable?
5. What is the minimal number of states necessary to implement the system given by (8)? Justify your answer. (HINT: Compute the z-transformation of Equation (8) and find the transfer function $G(z)$.)
6. Assume that the parameter values are given as $a_{2}=b_{0}=b_{1}=b_{2}=1$. You may use the fact that for this parameter choice, the complete system (11) is controllable. Is the complete system observable? (HINT: The answer to question 5 might be useful for this question.)
