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Exercise 1

1 2 3 4 5 Exercise

8 4 2 7 4 25 Points

Consider the following circuit:
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Figure 1: Electrical circuit

1. Using x(t) =
[
vC(t) iL(t)

]T
as state vector, u(t) = Vin(t) as input and y(t) = Vout(t)

as output, derive the state space description of the given circuit in the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t).
(1)

2. Let now C1 = 1F, L1 = 1H and R1 = R2 = 2Ω. Show that the system is both
controllable and observable. In case you have not been able to solve part 1, continue
with the following matrices:

A =

[
−1

4 1

−1 0

]
, B =

[
1
4

1

]
, C =

[
−1

2 0
]
, D =

1

2
(2)
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3. Assume (for this part only) something went wrong in the factory and the circuit
from Fig. 1 was shipped with R2 = 0Ω. Is the circuit still observable with this fault?
Make an intuitive argument. Is the broken circuit detectable?

4. Calculate the transfer function G(s) from Vin to Vout given the system matrices in (2).

5. Your friend from EPFL experimented with the circuit using voltages of the form

Vin(t) = cos(ω0t) + V0 (3)

and noticed that the steady state behavior of Vout(t) did not depend on V0. Explain
either physically or mathematically why this is.

2



Signal and System Theory II, BSc, Spring Term 2014

Exercise 2

1 2 3 4 5 Exercise

3 5 8 5 4 25 Points

Consider the following transfer function of a linear time-invariant system:

G(s) =
Y (s)

U(s)
=

ω2

s2 + 2ωζs+ ω2
, (4)

The parameters ω ≥ 0 and ζ are called the natural frequency and the damping factor of
the system, respectively.

1. Under what conditions on ω and ζ is the system (4) asymptotically stable?

2. From (4), derive a differential equation that describes the output trajectory y(t) for
a given input signal u(t). Assume y(0) = ẏ(0) = ÿ(0) = 0.

3. Use x1(t) := y(t) and x2(t) := ẏ(t) to write down the matrices A, B, C, and D of
a state space realization of system (4). Can there be other second-order realizations
of (4)? Can there be realizations of (4) that are third-order or higher?

For the remainder of the exercise, assume the following state space realization of (4):

A =

[
0 1
−ω2 −2ωζ

]
, B =

[
0
1

]
, C =

[
ω2 0

]
, D = 0 (5)

4. A state-feedback controller u(t) = Kx(t) with K ∈ R1×2 should be designed to
obtain the closed-loop system

ẋ(t) =

[
0 1
−ω2 a

]
x(t), y(t) =

[
ω2 0

]
x(t), (6)

with a ≤ −5. Provide values for the entries of the state feedback matrix K that will
guarantee the desired system structure in (6).

5. Is it possible to design a state feedback controller u(t) = Kx(t) for the realization (5)
that places the poles of the closed-loop system at −1 and −2?
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Exercise 3

1 2 3 4 Exercise

3 4 8 10 25 Points

The Lotka-Volterra equations are frequently used to describe the dynamics of biological
systems with two species, one predator and one prey. The populations change through
time according to

ẋ(t) = x(t)− x(t)y(t), (7)

ẏ(t) = x(t)y(t)− y(t),

where x(t) ≥ 0 is the number of prey individuals at time t and y(t) ≥ 0 is the number of
predator individuals at time t.

1. Is system (7) linear? Is it autonomous? Is it time invariant?

2. Compute the equilibrium points of system (7).

3. Determine, whenever possible, the stability properties of the equilibria found in part
2 using the linearization technique.

4. Consider the function V (x, y) = −xye−(x+y) + e−2.

(a) Show that V (x, y) = 0 in one (and only one) of the equilibrium points found in
part 2. Denote this point by (x̄, ȳ).

(b) The level sets of V (x, y) around (x̄, ȳ) are given in Figure 2. Assume that these
level sets are compact and V (x, y) > 0 locally around (x̄, ȳ). Compute the
Lie derivative (derivative along the trajectories) of V (x, y). What can you say
about the stability properties of (x̄, ȳ)?

(c) Based on Figure 2 and on the Lie derivative of V (x, y), sketch the trajectories
of the system for some initial conditions in the x-y positive orthant.
HINT: Compute the sign of the derivative ẋ and ẏ, when x < x̄ or x > x̄ and
when y < ȳ or y > ȳ.
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Figure 2: Level sets of the function V (x, y) in Exercise 2.
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Exercise 4

1 2 3 4 Exercise

3 11 8 3 Points

Consider the following discrete–time system:

x(k + 1) = Ax(k) +Bu(k) =

 0 1 0
0 0 1
a1 a2 a3

x(k) +

0
0
1

u(k), (8)

where x ∈ R3, u ∈ R and the parameters a1, a2, a3 ∈ R.

1. For which parameter values a1, a2 and a3 is the system controllable?

2. Suppose that you want to control the system using linear state–feedback, i.e.
u(k) = Kx(k), K =

[
k1 k2 k3

]
∈ R1×3.

(a) Derive the system matrix AK of the closed–loop system x(k + 1) = AKx(k).

(b) Compute the characteristic polynomial of the closed–loop system.

(c) We want to use pole-placement to determine the controller parameters. Find
controller parameters k1, k2 and k3 such that the closed–loop system matrix
has eigenvalues λ1, λ2 and λ3. Is this possible for any λ1, λ2, λ3 ∈ R?

3. For system (8), we want to design a so–called deadbeat controller, that is, linear
state–feedback such that the closed–loop system converges to the origin in a finite
number of steps, for any initial state x(0) = x0 ∈ R3. Find k1, k2, k3 ∈ R such that
the linear feedback controller u(k) = Kx(k) with K =

[
k1 k2 k3

]
is deadbeat.

HINT: Recall that a matrix is nilpotent if (and only if) its eigenvalues are all equal
to zero.

4. Can we find a linear deadbeat controller for a controllable, linear system in contin-
uous time?

6


