Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Winter 2015 9.2.2015

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1

1	2	3	4	5	Exercise
8	4	2	7	4	25 Points

Consider the following circuit:

Figure 1: Electrical circuit

1. Using $x(t) = \begin{bmatrix} v_C(t) & i_L(t) \end{bmatrix}^T$ as state vector, $u(t) = V_{in}(t)$ as input and $y(t) = V_{out}(t)$ as output, derive the state space description of the given circuit in the form

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t).$$
(1)

2. Let now $C_1 = 1$ F, $L_1 = 1$ H and $R_1 = R_2 = 2\Omega$. Show that the system is both controllable and observable. In case you have not been able to solve part 1, continue with the following matrices:

$$A = \begin{bmatrix} -\frac{1}{4} & 1\\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{1}{4}\\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} -\frac{1}{2} & 0 \end{bmatrix}, \quad D = \frac{1}{2}$$
(2)

- 3. Assume (for this part only) something went wrong in the factory and the circuit from Fig. 1 was shipped with $R_2 = 0\Omega$. Is the circuit still observable with this fault? Make an intuitive argument. Is the broken circuit detectable?
- 4. Calculate the transfer function G(s) from V_{in} to V_{out} given the system matrices in (2).
- 5. Your friend from EPFL experimented with the circuit using voltages of the form

$$V_{\rm in}(t) = \cos(\omega_0 t) + V_0 \tag{3}$$

and noticed that the steady state behavior of $V_{\text{out}}(t)$ did not depend on V_0 . Explain either physically or mathematically why this is.

Exercise 2

1	2	3	4	5	Exercise
3	5	8	5	4	25 Points

Consider the following transfer function of a linear time-invariant system:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\omega^2}{s^2 + 2\omega\zeta s + \omega^2},\tag{4}$$

The parameters $\omega \geq 0$ and ζ are called the natural frequency and the damping factor of the system, respectively.

- 1. Under what conditions on ω and ζ is the system (4) asymptotically stable?
- 2. From (4), derive a differential equation that describes the output trajectory y(t) for a given input signal u(t). Assume $y(0) = \dot{y}(0) = \ddot{y}(0) = 0$.
- 3. Use $x_1(t) := y(t)$ and $x_2(t) := \dot{y}(t)$ to write down the matrices A, B, C, and D of a state space realization of system (4). Can there be other second-order realizations of (4)? Can there be realizations of (4) that are third-order or higher?

For the remainder of the exercise, assume the following state space realization of (4):

$$A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\omega\zeta \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} \omega^2 & 0 \end{bmatrix}, \qquad D = 0 \qquad (5)$$

4. A state-feedback controller u(t) = Kx(t) with $K \in \mathbb{R}^{1 \times 2}$ should be designed to obtain the closed-loop system

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -\omega^2 & a \end{bmatrix} x(t), \quad y(t) = \begin{bmatrix} \omega^2 & 0 \end{bmatrix} x(t), \tag{6}$$

with $a \leq -5$. Provide values for the entries of the state feedback matrix K that will guarantee the desired system structure in (6).

5. Is it possible to design a state feedback controller u(t) = Kx(t) for the realization (5) that places the poles of the closed-loop system at -1 and -2?

Exercise 3

1	2	3	4	Exercise
3	4	8	10	25 Points

The Lotka-Volterra equations are frequently used to describe the dynamics of biological systems with two species, one predator and one prey. The populations change through time according to

$$\dot{x}(t) = x(t) - x(t)y(t),$$

 $\dot{y}(t) = x(t)y(t) - y(t),$
(7)

where $x(t) \ge 0$ is the number of prey individuals at time t and $y(t) \ge 0$ is the number of predator individuals at time t.

- 1. Is system (7) linear? Is it autonomous? Is it time invariant?
- 2. Compute the equilibrium points of system (7).
- 3. Determine, whenever possible, the stability properties of the equilibria found in part 2 using the linearization technique.
- 4. Consider the function $V(x,y) = -xye^{-(x+y)} + e^{-2}$.
 - (a) Show that V(x, y) = 0 in one (and only one) of the equilibrium points found in part 2. Denote this point by (\bar{x}, \bar{y}) .
 - (b) The level sets of V(x, y) around (\bar{x}, \bar{y}) are given in Figure 2. Assume that these level sets are compact and V(x, y) > 0 locally around (\bar{x}, \bar{y}) . Compute the Lie derivative (derivative along the trajectories) of V(x, y). What can you say about the stability properties of (\bar{x}, \bar{y}) ?
 - (c) Based on Figure 2 and on the Lie derivative of V(x, y), sketch the trajectories of the system for some initial conditions in the x-y positive orthant. HINT: Compute the sign of the derivative \dot{x} and \dot{y} , when $x < \bar{x}$ or $x > \bar{x}$ and when $y < \bar{y}$ or $y > \bar{y}$.

Figure 2: Level sets of the function $V(\boldsymbol{x},\boldsymbol{y})$ in Exercise 2.

Exercise 4

1	2	3	4	Exercise
3	11	8	3	Points

Consider the following discrete-time system:

$$x(k+1) = Ax(k) + Bu(k) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ a_1 & a_2 & a_3 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(k),$$
(8)

where $x \in \mathbb{R}^3$, $u \in \mathbb{R}$ and the parameters $a_1, a_2, a_3 \in \mathbb{R}$.

- 1. For which parameter values a_1 , a_2 and a_3 is the system controllable?
- 2. Suppose that you want to control the system using linear state-feedback, i.e. $u(k) = Kx(k), K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix} \in \mathbb{R}^{1 \times 3}.$
 - (a) Derive the system matrix A_K of the closed-loop system $x(k+1) = A_K x(k)$.
 - (b) Compute the characteristic polynomial of the closed-loop system.
 - (c) We want to use pole-placement to determine the controller parameters. Find controller parameters k_1 , k_2 and k_3 such that the closed-loop system matrix has eigenvalues λ_1 , λ_2 and λ_3 . Is this possible for any $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$?
- 3. For system (8), we want to design a so-called *deadbeat controller*, that is, linear state-feedback such that the closed-loop system converges to the origin in a finite number of steps, for any initial state $x(0) = x_0 \in \mathbb{R}^3$. Find $k_1, k_2, k_3 \in \mathbb{R}$ such that the linear feedback controller u(k) = Kx(k) with $K = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$ is deadbeat. HINT: Recall that a matrix is nilpotent if (and only if) its eigenvalues are all equal to zero.
- 4. Can we find a linear deadbeat controller for a controllable, linear system in continuous time?