Signal and System Theory II

This sheet is provided to you for ease of reference only.
 Do not write your solutions here.

Exercise 1

1	2	3	4	5	Exercise
2	4	4	5	10	25 Points

Consider the system

$$
\begin{align*}
\dot{x}_{1}(t) & =2 \beta x_{1}(t)+\beta^{2} x_{2}(t)+u(t) \\
\dot{x}_{2}(t) & =x_{1}(t)+2 \beta x_{2}(t) \tag{1}\\
y(t) & =x_{1}(t)+x_{2}(t),
\end{align*}
$$

where $u(t)$ is the system input, $y(t)$ the system output, and $\beta \in \mathbb{R}$ is a constant parameter.

1. Is the system linear? Is it time invariant?
2. For which values of β is the system observable?
3. For which values of β is the system controllable?
4. For which values of β is the system asymptotically stable under the input $u(t)=0$?
5. Consider now $\beta=2$. Assume that a state feedback $u(t)=K x(t)+v(t)$, where $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$, is applied to the system (1).
(a) Derive the dynamics of the resulting closed loop system.
(b) Find k_{1}, k_{2} such that the closed loop system has poles at -1 and -2 .

Exercise 2

1	2	3	4	Exercise
3	5	10	7	25 Points

Consider the differential equation

$$
\ddot{y}(t)-\dot{y}(t)^{2} y(t)+y(t)^{2}-1=0 .
$$

where $y(t) \in \mathbb{R}$ is the system output.

1. Is the system linear? Is the system autonomous? Is it time invariant?
2. Using the states $x_{1}(t)=\dot{y}(t), x_{2}(t)=y(t)$, write the system in state space form

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)) \\
& y(t)=g(x(t), u(t)) .
\end{aligned}
$$

3. Find all equilibria of the system and, wherever possible, determine their stability using linearization.
4. In Figure 1 you are given a phase-plane plot of the system in the vicinity of one equilibrium from part 3. Which equilibrium could the phase-plane plot correspond to? Justify your answer.

Figure 1: Phase-plane plot around one equilibrium.

Exercise 3

1	2	3	Exercise
10	8	7	25 Points

Consider the following circuit:

Figure 2: Electrical circuit

1. Let $Z(t)=1$ represent the case where the switch Z is closed and R_{1} is connected and $Z(t)=0$ the case where the switch Z is open and R_{1} is not connected. Define an appropriate state vector $x(t)$ and derive a state-space model of the system of the form

$$
\begin{aligned}
\dot{x}(t) & =A(Z(t)) x(t)+B(Z(t)) u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

with input $u(t)$ and output $y(t)$ as shown in Figure 2.
2. Assume $C_{1}=C_{2}=1 F$ and $R_{1}=R_{2}=1 \Omega$ and consider the case where the switch is open for all times. Calculate the transfer function $G(s)$. Are there any pole-zero cancellations? What can you conclude?
3. Consider the case where the switch is open for all times. Derive the zero-input response of the system for the initial state $x_{0}=\binom{1}{1}$.
Hint: Use your calculations from part 2.

Exercise 4

1	2	3	Exercise
9	8	8	25 Points

1. Consider the continuous time system

$$
\dot{x}(t)=\bar{A} x(t)+\bar{B} u(t)=\left[\begin{array}{cc}
-2 & -6 \tag{2}\\
0 & -1
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) .
$$

(a) Compute the eigenvalues and the eigenvectors of \bar{A}.
(b) Suppose $u(t)=0$ for all t. Is the system asymptotically stable?
(c) Compute the matrix exponential $e^{\bar{A} t}$, as a function of $t>0$.
2. Suppose that you want to discretize the system (2) using a zero order hold, that is, $x_{k}=x(k T)$ and $u(t)=u_{k}$ for all $t \in[k T,(k+1) T)$.
(a) Compute the matrices A and B for the corresponding discrete time system,

$$
\begin{equation*}
x_{k+1}=A x_{k}+B u_{k}, \tag{3}
\end{equation*}
$$

for an arbitrary $T>0$.
(b) Are there values of T such that the discrete time system (3) is not asymptotically stable? Justify your answer.
3. A lazy friend of yours discretizes system (2) using

$$
x_{k+1}=\hat{A} x_{k}+\hat{B} u_{k}=(I+\bar{A} T) x_{k}+\left[\begin{array}{c}
T-T^{2} \tag{4}\\
0
\end{array}\right] u_{k}
$$

Find the values of T such that the discrete time system (4) is not asymptotically stable.

