Signal and System Theory II

This sheet is provided to you for ease of reference only.
Do not write your solutions here.

Exercise 1

1	2	3	Exercise
10	9	8	27 Points

Consider the following electrical network.

Figure 1: Electrical circuit

1. Define an appropriate state vector $x(t)$ and derive a state-space model of the system

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t),
\end{aligned}
$$

with input $u(t)$ and output $y(t)$ as shown in Figure 1. What is the dimension of the system?
2. Assume $C_{1}=C_{2}=1 F$ and $R_{1}=R_{2}=1 \Omega$. Calculate the transfer function $G(s)$.
3. Use your answer in part 2 to calculate the steady state output response of the system to the input signal $u(t)=\sin (t)$.

Exercise 2

1	2	3	Exercise
7	9	10	26 Points

Consider the following discrete time linear system

$$
\begin{aligned}
& z(k+2)-0.7 z(k+1)+0.1 z(k)=0.5 u(k) \\
& y(k)=z(k+1) .
\end{aligned}
$$

1. Let $x(k)=\left[\begin{array}{c}z(k+1) \\ z(k)\end{array}\right] \in \mathbb{R}^{2}$, and write the system in state space form

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)+D u(k) .
\end{aligned}
$$

What is the dimension of the system?
2. Is the system controllable? Is it observable? If we set $u(k)=0$ for all k, is the system asymptotically stable? Justify your answers.
3. Consider now an observer that generates an estimate $\hat{x}(k)$ of the state $x(k)$, by starting with an arbitrary $\hat{x}(0)$ and evolving according to

$$
\hat{x}(k+1)=A \hat{x}(k)+B u(k)+L(y(k)-C \hat{x}(k)) .
$$

Derive a state space model for the evolution of the observation error $e(k)=\hat{x}(k)-$ $x(k)$. Determine the entries of the matrix $L \in \mathbb{R}^{2 \times 1}$ so that the eigenvalues of the observation error dynamics are both equal to 0.1.

Exercise 3

1	2	3	4	Exercise
5	7	9	6	27 Points

Consider the system

$$
\begin{aligned}
& \dot{y}(t)=\frac{z(t)}{z(t)^{2}+1} y(t) \\
& \dot{z}(t)=-\frac{z(t)}{z(t)^{2}+1} y(t)
\end{aligned}
$$

where $y(t), z(t) \in \mathbb{R}$.

1. Write the system in state space form. What is the dimension of the system? Is the system autonomous? Is it linear?
2. Compute all equilibria of the system.
3. Let (\hat{y}, \hat{z}) denote an equilibrium of the system. Linearize the system about this equilibrium. Can you determine the stability of (\hat{y}, \hat{z}) from the linearization when $\hat{y}>0$? What about $\hat{y}<0$? Repeat for $\hat{z}>0$ and $\hat{z}<0$.
4. Draw all equilibria of the system on the (y, z) plane. By differentiating the function $V(y, z)=y+z$ show that all lines of the form $y+z=c$ for constant $c \in \mathbb{R}$ are invariant sets. Draw the line for $c=1$ on your plot and use your results from part 3 to argue about how different points on $y+z=1$ are going to move under the dynamics of the system.

Exercise 4

1	2	3	Exercise
6	4	10	20 Points

Consider a second order, continuous time, linear, time invariant system:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t) .
\end{aligned}
$$

Assume that the state transition matrix is given by:

$$
e^{A t}=\frac{1}{3}\left[\begin{array}{cc}
2 e^{-t}+e^{2 t} & -2 e^{-t}+2 e^{2 t} \\
-e^{-t}+e^{2 t} & e^{-t}+2 e^{2 t}
\end{array}\right] .
$$

1. Determine the eigenvalues of the system directly from $e^{A t}$. If we set $u(t)=0$ for all t, is the sytem stable? Is the system asymptotically stable?
2. Using your answer in part 1 , can you determine whether the eigenvectors of A are linearly independent without computing them?
3. Compute the system matrix A.
