Automatic Control Laboratory ETH Zürich Prof. Florian Dörfler D-ITET Summer 2019 15.08.2019

Signals and Systems II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

Exercise 1

1	2	3	Exercise
10	11	6	27 Points

Represented in Figure 1 is a simplified DC/DC Buck converter. The scope of the device is to modulate the ratio $V(t)/V_{in}$ between the output voltage V(t), which supplies a load I_{load} , and the input voltage V_{in} . The desired ratio can be obtained through a proper choice of the behaviour of the switch S that, at each time instant, can be either open or closed.

Figure 1: Buck converter electrical model

Notation. $R, L, C, V_{in}, I_{load}$, as reported in Figure 1, are constant and <u>positive</u> electrical parameters representing the resistance, inductance, capacitance, input voltage and load current of the device, respectively.

- 1. Let the state be represented by $x(t) = \begin{bmatrix} V(t) & I(t) \end{bmatrix}^T$. Moreover, call f_c and f_o the functions that describe the dynamics of the circuit when the switch is closed and open, respectively.
 - (a) Write down the state-space model for the two possible configurations of the device, $\dot{x}(t) = f_c(x(t))$ and $\dot{x}(t) = f_o(x(t))$.

A typical operation that is performed on switched electrical models is called *state-space averaging*, which consists of computing a unique average dynamics, weighted

over the average time spent in each configuration:

$$\dot{x}(t) = uf_c(x(t)) + (1-u)f_o(x(t))$$

= $f_{avg}(x(t)).$

The new parameter $u \in [0, 1]$ is the average fraction of time the system works in the "closed" configuration. As a consequence, 1 - u represents the fraction of time when the switch is open.

- (b) Compute the average state-space model of the device, $\dot{x}(t) = f_{avg}(x(t))$.
- 2. Consider, from now on, u = u(t) as the control input for the average system and, moreover, let $I_{load} = 0$.
 - (a) Bring the equations in the form $\dot{x}(t) = Ax(t) + Bu(t)$, and check the stability of the system.
 - (b) Compute the equilibria of the system as a function of the constant input $\bar{u} \in [0, 1]$. Then, verify that the main relationship of the device,

$$V/V_{in} \leq 1,$$

holds at the equilibria.

(c) Find the expression for the admissible equilibrium set S, i.e., the set of equilibria compatible with an admissible constant input \bar{u} :

$$\mathcal{S} = \left\{ x \in \mathbb{R}^2 \mid Ax + B\bar{u} = 0, \ \bar{u} \in [0, 1] \right\},\$$

and represent it graphically in the V-I plane.

- 3. Answer the following questions and motivate.
 - (a) Is it possible to stabilize the system at $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ with a constant input $\bar{u} \in [0, 1]$?
 - (b) Would your answer to question 3(a) change if \bar{u} was not constrained to $\bar{u} \in [0, 1]$, but instead $\bar{u} \in \mathbb{R}$?
 - (c) Are your answers to questions 3(a) and 3(b) in contrast with the outcome of the stability test done in question 2?

Exercise 2

1	2	3	4	Exercise
4	5	6	8	23 Points

Consider the system S1 with the following state and output equations:

$$\dot{x}_{1}(t) = \underbrace{\begin{bmatrix} 0 & 1\\ 4 & -3 \end{bmatrix}}_{\triangleq A_{1}} x_{1}(t) + \underbrace{\begin{bmatrix} 0\\ 1 \end{bmatrix}}_{\triangleq B_{1}} u_{1}(t),$$

$$y_{1}(t) = \underbrace{\begin{bmatrix} 1 & 1 \end{bmatrix}}_{\triangleq C_{1}} x_{1}(t),$$
(S1)

where $x_1 = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}$.

- 1. (a) Is the system S1 stable?
 - (b) Is the system S1 controllable?
 - (c) Is the system S1 observable?
- 2. Consider another system S2. Denote by $x_2 \in \mathbb{R}$ the state of S2, $u_2 \in \mathbb{R}$ the input of S2 and $y \in \mathbb{R}$ the output of S2. The block diagram of S2 is given in Figure 2, wherein $U_2(s)$, $X_2(s)$ and Y(s) are the Laplace transforms of $u_2(t)$, $x_2(t)$ and y(t) respectively.

Figure 2: Block diagram of S2.

- (a) Find the transfer functions $\frac{X_2(s)}{U_2(s)}$ and $\frac{Y(s)}{U_2(s)}$.
- (b) Give the state-space equations of S2 in the form $\dot{x}_2(t) = A_2x_2(t) + B_2u_2(t)$ and $y(t) = C_2x_2(t) + D_2u_2(t)$ where $A_2, B_2, C_2, D_2 \in \mathbb{R}$. Assume that all initial conditions are 0.
- 3. Now interconnect S2 to S1 to form a cascade system S as shown in Figure 3. Let $x = \begin{bmatrix} x_{11} & x_{12} & x_2 \end{bmatrix}^T$ be the state of S.

Figure 3: Control system diagram of S.

Suppose that the system S has the following state-space equations:

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t) + Du(t),$$
(S)

with $u(t) = u_1(t)$. Determine the matrices A, B, C and D.

- 4. (a) Show that the system S is unstable.
 - (b) Suppose the initial state of S is $x(0) = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Derive the relationship of a, b and c to make the zero input transition of S finite as $t \to \infty$. Hint: The transition matrix $\phi(t) = e^{At}$ of S is

$$\begin{bmatrix} \frac{4}{5}e^t + \frac{1}{5}e^{-4t} & \frac{1}{5}e^t - \frac{1}{5}e^{-4t} & 0\\ \frac{4}{5}e^t - \frac{4}{5}e^{-4t} & \frac{1}{5}e^t + \frac{4}{5}e^{-4t} & 0\\ \frac{8}{15}e^t + \frac{3}{10}e^{-4t} - \frac{5}{6}e^{-2t} & \frac{2}{15}e^t - \frac{3}{10}e^{-4t} + \frac{1}{6}e^{-2t} & e^{-2t} \end{bmatrix}$$

(c) Your friend from EPFL believes that your answers to 4(a) and 4(b) contradict each other. Explain to your friend why this is not the case.

Exercise 3

1	2	2 3 Exercise	
8	7	10	25 Points

We have seen the Lyapunov methods to analyze the stability of nonlinear **continuoustime** systems. These methods also have a version for nonlinear **discrete-time** systems such as:

$$x(k+1) = f(x(k))$$

Lyapunov first method for discrete-time:

The equilibrium \tilde{x} is

- i. Locally asymptotically stable if the linearized system has all eigenvalues with norm strictly less than 1.
- ii. **Unstable** if the linearized system has at least one eigenvalue with norm strictly larger than 1.

(Remember that for **discrete-time** systems we look at the norm of the eigenvalues, instead of looking at the real part as for **continuous-time** systems)

Lyapunov second method for discrete-time:

If there is an open set $S \subseteq \mathbb{R}^n$ with equilibrium $\tilde{x} \in S$, and a differentiable function $V \colon \mathbb{R}^n \to \mathbb{R}$ such that:

i.
$$V(\tilde{x}) = 0$$

- ii. $V(x) > 0, \forall x \in S, x \neq \tilde{x}$
- iii. $V(f(x)) V(x) \le 0, \forall x \in S$
- \implies Then the equilibrium \tilde{x} is stable.

If additionally we have

- iv. $V(f(x)) V(x) < 0, \ \forall x \in S, x \neq \tilde{x}$
- \implies Then the equilibrium \tilde{x} is locally asymptotically stable.

If additionally we have

- v. The open set is the whole space $S = \mathbb{R}^n$
- vi. $||x|| \to \infty \implies V(x) \to \infty$
- \implies Then the equilibrium \tilde{x} is globally asymptotically stable.

(Note that conditions iii. and iv. are the main differences with respect to Lyapunov second method for continuous-time.)

Now we will use these methods to analyze the stability of a nonlinear **discrete-time** system. Consider the following system for $\alpha > 0$:

$$x_1(k+1) = \frac{\alpha}{1+x_1(k)^2+x_2(k)^2} x_2(k)$$

$$x_2(k+1) = \frac{\alpha}{1+x_1(k)^2+x_2(k)^2} x_1(k)$$

- 1. What are the equilibrium points for the following cases?
 - (a) $\alpha \ge 1$

Hint: Show that $\alpha = (1 + \tilde{x}_1^2 + \tilde{x}_2^2)$ for any non-trivial equilibrium point $(\tilde{x}_1, \tilde{x}_2) \neq (0, 0)$. Then use it to find these non-trivial equilibrium points.

- (b) $\alpha < 1$
- 2. Using the Lyapunov <u>first</u> method for discrete-time systems, for which values of α is the system locally asymptotically stable around the equilibrium (0,0)?
- 3. Using the Lyapunov second method for discrete-time systems and considering the Lyapunov function $V((x_1(k), x_2(k))) = x_1(k)^2 + x_2(k)^2$, what can you say about the global asymptotic stability of the equilibrium (0, 0) for $\alpha = 1$?

Exercise 4

1	2	3	4	5	Exercise
3	5	4	7	6	25 Points

Consider the linear time invariant system Σ given by the transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\omega_0^2}{(s-\sigma)^2 + \omega_0^2},$$
(1)

where $\omega_0 > 0, \sigma$ are the system parameters.

- 1. What are the poles of the system? For what conditions on ω_0 and σ is the system Σ given in (1) asymptotically stable?
- 2. Given the transfer function G(s) in (1) for the system Σ , find the corresponding second order ODE, which describes the output trajectory y(t) given the input signal u(t). Assume that all initial conditions are 0.
- 3. Setting states to be $x_1(t) = \dot{y}(t)$ and $x_2(t) = y(t)$, write down the state-space representation A, B, C, D of Σ .
- 4. Set $\omega_0 = 1, \sigma = -1$.
 - (a) Compute $|G(j\omega)|$ for $\omega \in \mathbb{R}$.
 - (b) Compute $\angle G(j\omega)$ for $\omega \in \mathbb{R}$.
 - (c) Compute the steady-state output response of the system given the input $u(t) = \sin(t)$.

Hint: By using the results from subtasks (a) and (b), you can obtain the output response directly.

5. Consider closed-loop system Σ connected to a controller as shown in Figure 4.

Figure 4: Feedback system

- (a) Write down $G_1(s) = \frac{E(s)}{R(s)}$ of the closed-loop system, where E(s) and R(s) are the Laplace transform of e(t) and r(t) respectively.
- (b) For $\sigma = 0$, compute the steady-state error $\lim_{t \to \infty} e(t)$ given $K \in \mathbb{R}$ and step reference $r(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$. Is it possible to find such K so that steady-state error equals 0?

Hint: Use Final Value Theorem.