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Exercise 1

1 2 3 Exercise

10 11 6 27 Points

Represented in Figure 1 is a simplified DC/DC Buck converter. The scope of the device
is to modulate the ratio V (t)/Vin between the output voltage V (t), which supplies a load
Iload, and the input voltage Vin. The desired ratio can be obtained through a proper choice
of the behaviour of the switch S that, at each time instant, can be either open or closed.
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V (t)

Figure 1: Buck converter electrical model

Notation. R, L, C, Vin, Iload, as reported in Figure 1, are constant and positive
electrical parameters representing the resistance, inductance, capacitance, input voltage
and load current of the device, respectively.

1. Let the state be represented by x(t) =
[
V (t) I(t)

]T
. Moreover, call fc and fo the

functions that describe the dynamics of the circuit when the switch is closed and
open, respectively.

(a) Write down the state-space model for the two possible configurations of the
device, ẋ(t) = fc(x(t)) and ẋ(t) = fo(x(t)).

A typical operation that is performed on switched electrical models is called state-
space averaging, which consists of computing a unique average dynamics, weighted
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over the average time spent in each configuration:

ẋ(t) = ufc(x(t)) + (1− u)fo(x(t))

= favg(x(t)).

The new parameter u ∈ [0, 1] is the average fraction of time the system works in the
“closed” configuration. As a consequence, 1−u represents the fraction of time when
the switch is open.

(b) Compute the average state-space model of the device, ẋ(t) = favg(x(t)).

2. Consider, from now on, u = u(t) as the control input for the average system and,
moreover, let Iload = 0.

(a) Bring the equations in the form ẋ(t) = Ax(t) + Bu(t), and check the stability
of the system.

(b) Compute the equilibria of the system as a function of the constant input ū ∈
[0, 1]. Then, verify that the main relationship of the device,

V/Vin ≤ 1,

holds at the equilibria.

(c) Find the expression for the admissible equilibrium set S, i.e., the set of equilibria
compatible with an admissible constant input ū:

S =
{
x ∈ R2 | Ax+Bū = 0, ū ∈ [0, 1]

}
,

and represent it graphically in the V -I plane.

3. Answer the following questions and motivate.

(a) Is it possible to stabilize the system at x =
[
1 1

]T
with a constant input

ū ∈ [0, 1]?

(b) Would your answer to question 3(a) change if ū was not constrained to ū ∈ [0, 1],
but instead ū ∈ R?

(c) Are your answers to questions 3(a) and 3(b) in contrast with the outcome of
the stability test done in question 2?
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Exercise 2

1 2 3 4 Exercise

4 5 6 8 23 Points

Consider the system S1 with the following state and output equations:

ẋ1(t) =

[
0 1
4 −3

]
︸ ︷︷ ︸

,A1

x1(t) +

[
0
1

]
︸︷︷︸
,B1

u1(t),

y1(t) =
[
1 1

]︸ ︷︷ ︸
,C1

x1(t),

(S1)

where x1 =

[
x11
x12

]
.

1. (a) Is the system S1 stable?

(b) Is the system S1 controllable?

(c) Is the system S1 observable?

2. Consider another system S2. Denote by x2 ∈ R the state of S2, u2 ∈ R the input
of S2 and y ∈ R the output of S2. The block diagram of S2 is given in Figure 2,
wherein U2(s), X2(s) and Y (s) are the Laplace transforms of u2(t), x2(t) and y(t)
respectively.

1/s 2

-2

+

+

U2(s) Y(s)X2(s)

Figure 2: Block diagram of S2.

(a) Find the transfer functions X2(s)
U2(s)

and Y (s)
U2(s)

.

(b) Give the state-space equations of S2 in the form ẋ2(t) = A2x2(t) +B2u2(t) and
y(t) = C2x2(t) + D2u2(t) where A2, B2, C2, D2 ∈ R. Assume that all initial
conditions are 0.

3. Now interconnect S2 to S1 to form a cascade system S as shown in Figure 3. Let

x =
[
x11 x12 x2

]T
be the state of S.

S1
u1(t) y1(t) y(t)

S2
u2(t)S:

Figure 3: Control system diagram of S.
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Suppose that the system S has the following state-space equations:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(S)

with u(t) = u1(t). Determine the matrices A, B, C and D.

4. (a) Show that the system S is unstable.

(b) Suppose the initial state of S is x(0) =

ab
c

. Derive the relationship of a, b and

c to make the zero input transition of S finite as t→∞.
Hint: The transition matrix φ(t) = eAt of S is 4

5e
t + 1

5e
−4t 1

5e
t − 1

5e
−4t 0

4
5e
t − 4

5e
−4t 1

5e
t + 4

5e
−4t 0

8
15e

t + 3
10e
−4t − 5

6e
−2t 2

15e
t − 3

10e
−4t + 1

6e
−2t e−2t


(c) Your friend from EPFL believes that your answers to 4(a) and 4(b) contradict

each other. Explain to your friend why this is not the case.

Exercise 3

1 2 3 Exercise

8 7 10 25 Points

We have seen the Lyapunov methods to analyze the stability of nonlinear continuous-
time systems. These methods also have a version for nonlinear discrete-time systems
such as:

x(k + 1) = f(x(k))

Lyapunov first method for discrete-time:
The equilibrium x̃ is

i. Locally asymptotically stable if the linearized system has all eigenvalues with
norm strictly less than 1.

ii. Unstable if the linearized system has at least one eigenvalue with norm strictly
larger than 1.

(Remember that for discrete-time systems we look at the norm of the eigenvalues, instead
of looking at the real part as for continuous-time systems)

Lyapunov second method for discrete-time:
If there is an open set S ⊆ Rn with equilibrium x̃ ∈ S, and a differentiable function
V : Rn → R such that:

i. V (x̃) = 0
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ii. V (x) > 0, ∀x ∈ S, x 6= x̃

iii. V (f(x))− V (x) ≤ 0, ∀x ∈ S

=⇒ Then the equilibrium x̃ is stable.

If additionally we have

iv. V (f(x))− V (x) < 0, ∀x ∈ S, x 6= x̃

=⇒ Then the equilibrium x̃ is locally asymptotically stable.

If additionally we have

v. The open set is the whole space S = Rn

vi. ‖x‖ → ∞ =⇒ V (x)→∞

=⇒ Then the equilibrium x̃ is globally asymptotically stable.

(Note that conditions iii. and iv. are the main differences with respect to Lyapunov second
method for continuous-time.)

Now we will use these methods to analyze the stability of a nonlinear discrete-time
system. Consider the following system for α > 0:

x1(k + 1) = α
1+x1(k)2+x2(k)2

x2(k)

x2(k + 1) = α
1+x1(k)2+x2(k)2

x1(k)

1. What are the equilibrium points for the following cases?

(a) α ≥ 1

Hint: Show that α = (1 + x̃21 + x̃22) for any non-trivial equilibrium point
(x̃1, x̃2) 6= (0, 0). Then use it to find these non-trivial equilibrium points.

(b) α < 1

2. Using the Lyapunov first method for discrete-time systems, for which values
of α is the system locally asymptotically stable around the equilibrium (0, 0)?

3. Using the Lyapunov second method for discrete-time systems and considering
the Lyapunov function V ((x1(k), x2(k))) = x1(k)2 +x2(k)2, what can you say about
the global asymptotic stability of the equilibrium (0, 0) for α = 1?
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Exercise 4

1 2 3 4 5 Exercise

3 5 4 7 6 25 Points

Consider the linear time invariant system Σ given by the transfer function:

G(s) =
Y (s)

U(s)
=

ω2
0

(s− σ)2 + ω2
0

, (1)

where ω0 > 0, σ are the system parameters.

1. What are the poles of the system? For what conditions on ω0 and σ is the system
Σ given in (1) asymptotically stable?

2. Given the transfer function G(s) in (1) for the system Σ, find the corresponding
second order ODE, which describes the output trajectory y(t) given the input signal
u(t). Assume that all initial conditions are 0.

3. Setting states to be x1(t) = ẏ(t) and x2(t) = y(t), write down the state-space
representation A,B,C,D of Σ.

4. Set ω0 = 1, σ = −1.

(a) Compute |G(jω)| for ω ∈ R.

(b) Compute ∠G(jω) for ω ∈ R.

(c) Compute the steady-state output response of the system given the input u(t) =
sin(t).
Hint: By using the results from subtasks (a) and (b), you can obtain the output
response directly.

5. Consider closed-loop system Σ connected to a controller as shown in Figure 4.

K Σ
r(t)

e(t) = r(t)− y(t) u(t) = Ke(t)

y(t)

−

Figure 4: Feedback system

(a) Write down G1(s) = E(s)
R(s) of the closed-loop system, where E(s) and R(s) are

the Laplace transform of e(t) and r(t) respectively.

(b) For σ = 0, compute the steady-state error limt→∞ e(t) given K ∈ R and step

reference r(t) =

{
1, t > 0

0, t < 0
.

Is it possible to find such K so that steady-state error equals 0?
Hint: Use Final Value Theorem.
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