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Exercise 1

1 2 3 4 5 Exercise

4 5 4 7 5 25 Points

Consider the following system:

ẋ(t) = Ax(t) +Bu(t) where

A =

[
α 1
0 α2

]
, B =

[
0

α+ 1

]
and α ∈ R.

1. Determine the eigenvalues and eigenvectors of A for all values of α.

2. Show that for α < 0 the matrix exponential eAt is given by

eAt =
1

α2 − α

[
(α2 − α)eαt eα

2t − eαt

0 (α2 − α)eα
2t

]
.

Compute also the matrix exponential eAt for α = 0.

3. For which values of α ∈ R is the system stable?

4. Let α = 0 and x(0) = x0 = [0 0]>. Is it possible to find an input u(t) which drives
the system to x(1) = [1 0]>? If your answer is yes, provide such an input. If your
answer is no, prove that such an input cannot exist.

5. Let α = −1 and x(0) = x0 = [1 0]>. Is it possible to find an input u(t) which drives
the system to x(1) = [e−1 0]>? If your answer is yes, provide such an input. If your
answer is no, prove that such an input cannot exist.
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Exercise 2

1 2 3 4 Exercise

9 6 4 6 25 Points

Figure 1: Simplified loudspeaker, a) sketch, b) electromechanical model.

In this task you will model a loudspeaker, sketched in Figure 1. The loudspeaker consists
of an electrical and a mechanical part:

• the electrical part is represented by an RL-network with resistance R, inductance L,
and an additional self-inductance voltage Uind(t);

• the mechanical part is modeled as a linear damped mass-spring system with mass
m, damper constant d, and spring constant f , on which the force F (t) is applied.

The two subsystems are coupled by the coil, which has diameter D, n windings, and is
immersed in a homogeneous permanent magnetic field of strength B. A current I through
the coil will produce a force F (t) = B · n · D · π · I(t) = κ · I(t), where we have set
κ = B · n · D · π. As the coil oscillates in the magnetic field, the induced voltage in the
coil is Uind(t) = B · n ·D · π · v(t) = κ · v(t), where v(t) is the velocity of the mass m.

1. Derive the equations representing this system and bring them into state space form.
Use x̃(t) = [I(t) x(t) v(t)]> as the state vector, ũ(t) = u(t) as the input and ỹ(t) =
x(t) as the output.

2. Assume L = m = f = d = κ = 1 and R = 2 (with the respective SI-units). Is the
system stable? Is it controllable? Is it observable?

If you could not solve part 1, use A =

−2 0 −1
0 0 1
1 −1 −1

, B =

1
0
0

 and C =
[
0 1 0

]
.

Hint: there is an eigenvalue λ1 = −1.

3. For the parameters given in part 2, derive the transfer function G(s).

Hint: A−1 =

a b c
d e f
g h i

−1 = 1
det(A)

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


4. Compute the impulse response of the system.
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Exercise 3

1 2 3 4 Exercise

6 6 6 7 25 Points

Consider the continuous-time nonlinear system

ẋ(t) = (x2(t) + y2(t)− 1)x(t)− y(t),

ẏ(t) = (x2(t) + y2(t)− 1)y(t) + x(t),
(1)

where x(t), y(t) ∈ R.

1. This system has a unique equilibrium. What is it? Can you say something about
its stability?

2. Consider the change of coordinates

x(t) = r(t) cos(θ(t)) (2)

y(t) = r(t) sin(θ(t)). (3)

Note that these are the polar coordinates, hence you can assume r(t) ≥ 0. Show
that, in the r(t), θ(t) coordinates, the system dynamics are given by

ṙ(t) = r(t)(r2(t)− 1),

θ̇(t) = 1.
(4)

Hint: To compute the derivative of r start from the equality r2 = x2 + y2. To
compute the derivative of θ, differentiate both sides of (3) and then substitute (1),
(2) and (3).

3. Compute the sign of ṙ(t) when r(t) > 1, r(t) = 1, and r(t) < 1. Use this information
to sketch the evolution of the trajectories of system (1) in the (x, y)-plane. Are there
any periodic trajectories?

4. Using the analysis in part 3, suggest a Lyapunov function for the equilibrium found
in part 1. You may assume that the set S = {(x, y)|x2 + y2 < 1} is open and
invariant. Use your Lyapunov function to show that the equilibrium point is locally
asymptotically stable and to estimate its domain of attraction.
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Exercise 4

1 2 3 4 Exercise

7 6 7 5 25 Points

Consider a discrete-time linear system

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k),
(5)

where x(k) ∈ Rn is the state, u(k) ∈ Rm the input, y(k) ∈ Rp the output, and the system
matrices have appropriate dimensions. For N ≥ n assume that noise free measurements
of the input u(k) and output y(k) for k = 0, . . . , N − 1 are stacked in the vectors

U =

 u(0)
...

u(N − 1)

 ∈ RmN , Y =

 y(0)
...

y(N − 1)

 ∈ RpN . (6)

1. Assume you want to compute the initial state x(0) of the system (5) from the ob-
served input and output trajectories in (6). Derive a system of linear equations

Mx(0) = q

which allows you to do so. Express M and q in terms of the system matrices A, B,
C, and D and the vectors U and Y . What are the dimensions of M and q?

2. Assume m = p = 1 and N = n. Prove that you can uniquely determine the initial
state x(0) from inputs u(0), . . . , u(N − 1) and outputs y(0), . . . , y(N − 1) if and only
if the observability matrix

Q :=


C
CA

...
CAn−1


satisfies rank(Q) = n.

3. Assume the values of the system matrices in (5) are

A =

[
1 1.5
2 1

]
, B =

[
1
1

]
, C =

[
1 0.9

]
, D = 0.

You measure the following values for the input and output of the system:

u(0) = 1, u(1) = −2, y(0) = 2.9, y(1) = 9.9

Compute the initial state x(0) that generated this output trajectory.

4. Give reasons why the system of linear equations from part 1 should generally not be
used to compute the initial state of a system if the input and output measurements
are affected by noise. What alternative would you suggest to reliably estimate the
state of a system? What condition should the system fulfill for your suggested
method to work?

4


