Signal and System Theory II

This sheet is provided to you for ease of reference only. Do not write your solutions here.

Exercise 1

1	2	3	4	5	Exercise
4	5	4	7	5	25 Points

Consider the following system:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \text { where } \\
A & =\left[\begin{array}{cc}
\alpha & 1 \\
0 & \alpha^{2}
\end{array}\right], B=\left[\begin{array}{c}
0 \\
\alpha+1
\end{array}\right] \text { and } \alpha \in \mathbb{R} .
\end{aligned}
$$

1. Determine the eigenvalues and eigenvectors of A for all values of α.
2. Show that for $\alpha<0$ the matrix exponential $e^{A t}$ is given by

$$
e^{A t}=\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\left(\alpha^{2}-\alpha\right) e^{\alpha t} & e^{\alpha^{2} t}-e^{\alpha t} \\
0 & \left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right] .
$$

Compute also the matrix exponential $e^{A t}$ for $\alpha=0$.
3. For which values of $\alpha \in \mathbb{R}$ is the system stable?
4. Let $\alpha=0$ and $x(0)=x_{0}=[00]^{\top}$. Is it possible to find an input $u(t)$ which drives the system to $x(1)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$? If your answer is yes, provide such an input. If your answer is no, prove that such an input cannot exist.
5. Let $\alpha=-1$ and $x(0)=x_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$. Is it possible to find an input $u(t)$ which drives the system to $x(1)=\left[e^{-1} 0\right]^{\top}$? If your answer is yes, provide such an input. If your answer is no, prove that such an input cannot exist.

Exercise 2

1	2	3	4	Exercise
9	6	4	6	25 Points

Figure 1: Simplified loudspeaker, a) sketch, b) electromechanical model.
In this task you will model a loudspeaker, sketched in Figure 1. The loudspeaker consists of an electrical and a mechanical part:

- the electrical part is represented by an RL-network with resistance R, inductance L, and an additional self-inductance voltage $U_{\text {ind }}(t)$;
- the mechanical part is modeled as a linear damped mass-spring system with mass m, damper constant d, and spring constant f, on which the force $F(t)$ is applied.

The two subsystems are coupled by the coil, which has diameter D, n windings, and is immersed in a homogeneous permanent magnetic field of strength B. A current I through the coil will produce a force $F(t)=B \cdot n \cdot D \cdot \pi \cdot I(t)=\kappa \cdot I(t)$, where we have set $\kappa=B \cdot n \cdot D \cdot \pi$. As the coil oscillates in the magnetic field, the induced voltage in the coil is $U_{\text {ind }}(t)=B \cdot n \cdot D \cdot \pi \cdot v(t)=\kappa \cdot v(t)$, where $v(t)$ is the velocity of the mass m.

1. Derive the equations representing this system and bring them into state space form. Use $\tilde{x}(t)=\left[\begin{array}{lll}I(t) & x(t) & v(t)\end{array}\right]^{\top}$ as the state vector, $\tilde{u}(t)=u(t)$ as the input and $\tilde{y}(t)=$ $x(t)$ as the output.
2. Assume $L=m=f=d=\kappa=1$ and $R=2$ (with the respective SI-units). Is the system stable? Is it controllable? Is it observable?
If you could not solve part 1 , use $A=\left[\begin{array}{ccc}-2 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & -1\end{array}\right], B=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $C=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$.
Hint: there is an eigenvalue $\lambda_{1}=-1$.
3. For the parameters given in part 2, derive the transfer function $G(s)$.

Hint: $A^{-1}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{lll}e i-f h & c h-b i & b f-c e \\ f g-d i & a i-c g & c d-a f \\ d h-e g & b g-a h & a e-b d\end{array}\right]$
4. Compute the impulse response of the system.

Exercise 3

1	2	3	4	Exercise
6	6	6	7	25 Points

Consider the continuous-time nonlinear system

$$
\begin{align*}
& \dot{x}(t)=\left(x^{2}(t)+y^{2}(t)-1\right) x(t)-y(t), \tag{1}\\
& \dot{y}(t)=\left(x^{2}(t)+y^{2}(t)-1\right) y(t)+x(t),
\end{align*}
$$

where $x(t), y(t) \in \mathbb{R}$.

1. This system has a unique equilibrium. What is it? Can you say something about its stability?
2. Consider the change of coordinates

$$
\begin{align*}
& x(t)=r(t) \cos (\theta(t)) \tag{2}\\
& y(t)=r(t) \sin (\theta(t)) . \tag{3}
\end{align*}
$$

Note that these are the polar coordinates, hence you can assume $r(t) \geq 0$. Show that, in the $r(t), \theta(t)$ coordinates, the system dynamics are given by

$$
\begin{align*}
\dot{r}(t) & =r(t)\left(r^{2}(t)-1\right), \\
\dot{\theta}(t) & =1 \tag{4}
\end{align*}
$$

Hint: To compute the derivative of r start from the equality $r^{2}=x^{2}+y^{2}$. To compute the derivative of θ, differentiate both sides of (3) and then substitute (1), (2) and (3).
3. Compute the sign of $\dot{r}(t)$ when $r(t)>1, r(t)=1$, and $r(t)<1$. Use this information to sketch the evolution of the trajectories of system (1) in the (x, y)-plane. Are there any periodic trajectories?
4. Using the analysis in part 3, suggest a Lyapunov function for the equilibrium found in part 1. You may assume that the set $S=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$ is open and invariant. Use your Lyapunov function to show that the equilibrium point is locally asymptotically stable and to estimate its domain of attraction.

Exercise 4

1	2	3	4	Exercise
7	6	7	5	25 Points

Consider a discrete-time linear system

$$
\begin{align*}
x(k+1) & =A x(k)+B u(k), \\
y(k) & =C x(k)+D u(k), \tag{5}
\end{align*}
$$

where $x(k) \in \mathbb{R}^{n}$ is the state, $u(k) \in \mathbb{R}^{m}$ the input, $y(k) \in \mathbb{R}^{p}$ the output, and the system matrices have appropriate dimensions. For $N \geq n$ assume that noise free measurements of the input $u(k)$ and output $y(k)$ for $k=0, \ldots, N-1$ are stacked in the vectors

$$
U=\left[\begin{array}{c}
u(0) \tag{6}\\
\vdots \\
u(N-1)
\end{array}\right] \in \mathbb{R}^{m N}, \quad Y=\left[\begin{array}{c}
y(0) \\
\vdots \\
y(N-1)
\end{array}\right] \in \mathbb{R}^{p N} .
$$

1. Assume you want to compute the initial state $x(0)$ of the system (5) from the observed input and output trajectories in (6). Derive a system of linear equations

$$
M x(0)=q
$$

which allows you to do so. Express M and q in terms of the system matrices A, B, C, and D and the vectors U and Y. What are the dimensions of M and q ?
2. Assume $m=p=1$ and $N=n$. Prove that you can uniquely determine the initial state $x(0)$ from inputs $u(0), \ldots, u(N-1)$ and outputs $y(0), \ldots, y(N-1)$ if and only if the observability matrix

$$
Q:=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

satisfies $\operatorname{rank}(Q)=n$.
3. Assume the values of the system matrices in (5) are

$$
A=\left[\begin{array}{cc}
1 & 1.5 \\
2 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0.9
\end{array}\right], \quad D=0
$$

You measure the following values for the input and output of the system:

$$
u(0)=1, \quad u(1)=-2, \quad y(0)=2.9, \quad y(1)=9.9
$$

Compute the initial state $x(0)$ that generated this output trajectory.
4. Give reasons why the system of linear equations from part 1 should generally not be used to compute the initial state of a system if the input and output measurements are affected by noise. What alternative would you suggest to reliably estimate the state of a system? What condition should the system fulfill for your suggested method to work?

