Signal and System Theory II

This sheet is provided to you for ease of reference only. Do not write your solutions here.

Exercise 1

1	2	3	4	Exercise
4	7	7	7	25 Points

Consider the linear time-invariant single input, single output discrete-time system

$$
\begin{align*}
x(k+1) & =A x(k)+B u(k)=\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right] x(k)+\left[\begin{array}{c}
0.5 \\
2
\end{array}\right] u(k), \\
y(k) & =C x(k)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] x(k) . \tag{1}
\end{align*}
$$

1. Is the system asymptotically stable? Assume $u(k)=0$ for all $k \in \mathbb{N}$.
2. Compute the transfer function, $G(z)$, of system (1). Are there any pole-zero cancellations? What can you conclude about the controllability and observability properties of system (1)?
3. Suppose that you want to stabilize the system using a feedback control law $u(k)=$ $K x(k), K \in \mathbb{R}^{1 \times 2}$. Derive the matrix A_{K} of the closed loop system, i.e.

$$
\begin{aligned}
x(k+1) & =A_{K} x(k), \\
y(k) & =C x(k) .
\end{aligned}
$$

Find a matrix K such that the closed loop system is asymptotically stable.
Hint: choose K such that A_{K} is upper triangular.
4. Consider now an observer that generates an estimate $\hat{x}(k)$ of the state $x(k)$ of system (1), by starting with an arbitrary $\hat{x}(0)$ and evolving according to

$$
\hat{x}(k+1)=A \hat{x}(k)+B u(k)+L[y(k)-C \hat{x}(k)] .
$$

Derive a state space model for the evolution of the observation error $e(k)=\hat{x}(k)-$ $x(k)$. Determine the entries of the matrix $L \in \mathbb{R}^{2 \times 1}$ so that the observation error goes to zero in a finite number of steps for every initial estimate $\hat{x}(0)$.
Hint: Try the same trick as in part 3 above.

Exercise 2

1	2	3	4	Exercise
5	6	7	7	25 Points

Consider the following system:

$$
\begin{align*}
& \dot{x}(t)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 3 & -5 \\
1 & 0 & -2
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] u(t) \tag{2}\\
& y(t)=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] x(t) .
\end{align*}
$$

1. Is the system stable? Assume $u(t)=0$ for all $t \geq 0$.
2. Let

$$
T=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right] \text { and } \widehat{x}(t)=T x(t)
$$

Derive the matrices $\widehat{A}, \widehat{B}, \widehat{C}$ for the new system

$$
\begin{align*}
\dot{\widehat{x}}(t) & =\widehat{A} \widehat{x}(t)+\widehat{B} u(t) \tag{3}\\
y(t) & =\widehat{C} \widehat{x}(t)
\end{align*}
$$

and show that \widehat{A} is diagonal. What can you infer about the columns of the matrix T^{-1} ?

Hint: T is invertible and

$$
T^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

3. Is the new system (3) controllable? Is it observable? Is it stabilizable? Is it detectable? What can you infer about the corresponding properties of the original system (2)?
Hint: Note the location of zero entries in the matrices \widehat{B} and \widehat{C}.
4. Compute the zero input response $y(t)$ of system (2) as a function of the initial state $x(0)=x_{0} \in \mathbb{R}^{3}$. Hence show that $y(t) \rightarrow 0$ as $t \rightarrow \infty$. How does this relate to your answers in part 1 and part 3 of this exercise?
Hint: Use your answer to part 2 of this exercise to compute $y(t)$.

Exercise 3

1	2	3	4	Exercise
7	7	7	4	25 Points

Consider the mechanical system given in Figure 1 consisting of two masses coupled with springs and dampers. The springs and dampers are in an equilibrium position if $\xi_{1}=\xi_{2}=$ $u=0$. The spring constants are given by k and the damping coefficients are denoted by d.

Figure 1: Dynamical System

1. Using $x_{1}(t)=\xi_{1}(t), x_{2}(t)=\dot{\xi}_{1}(t), x_{3}(t)=\xi_{2}(t), x_{4}(t)=\dot{\xi}_{2}(t)$ as states, the displacement $u(t)$ as input, and $y(t)=\xi_{1}(t)-\xi_{2}(t)$ as output, derive the equations of motion for the system in state space form.
2. Show that if instead one uses $\hat{x}_{1}(t)=\frac{1}{2}\left(\xi_{1}(t)+\xi_{2}(t)\right), \hat{x}_{2}(t)=\frac{1}{2}\left(\dot{\xi}_{1}(t)+\dot{\xi}_{2}(t)\right), \hat{x}_{3}(t)=$ $\frac{1}{2}\left(\xi_{1}(t)-\xi_{2}(t)\right)$ and $\hat{x}_{4}(t)=\frac{1}{2}\left(\dot{\xi}_{1}(t)-\dot{\xi}_{2}(t)\right)$ as states, the state equations take the form

$$
\begin{aligned}
\frac{d}{d t} \hat{x}(t) & =\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\alpha_{1} & -\beta_{1} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\alpha_{2} & -\beta_{2}
\end{array}\right) \hat{x}(t)+\left(\begin{array}{c}
0 \\
\gamma_{1} \\
0 \\
-\gamma_{2}
\end{array}\right) u(t) \\
y(t) & =\left(\begin{array}{llll}
0 & 0 & \delta & 0
\end{array}\right) \hat{x}(t)
\end{aligned}
$$

for some positive constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta$. Determine the value of these constants.
3. Show that the system is asymptotically stable.

Hint: Use your answer to part 2 and the fact that $\operatorname{det}\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)$.
4. Is the system observable? Provide a physical intuition for your answer.

Exercise 4

1	2	3	4	5	Exercise
4	6	6	6	3	25 Points

During your summer internship, your supervisor asks you to characterize the dynamics of an autonomous, time-invariant, analog electrical circuit. In an experiment, you measure the system response for two different initial conditions, which happen to be

$$
\begin{array}{ll}
x(0)=1: & x(t)=\frac{1}{4 e^{t}-3} \\
x(0)=2: & x(t)=\frac{2}{7 e^{t}-6} .
\end{array}
$$

1. Is the system linear?
2. After repeating the above experiment for several initial conditions you find out that the system response can be generally described by

$$
\begin{equation*}
x(t)=\frac{x_{0}}{e^{t}-3 x_{0}+3 e^{t} x_{0}}, \tag{4}
\end{equation*}
$$

with $x_{0}=x(0)$. Assuming that the system has dimension one, find the corresponding system equations, i.e., find a function f such that (4) solves the $\mathrm{ODE} \dot{x}(t)=f(x(t))$ with $x(0)=x_{0}$.
Hint: Differentiate (4), then add and subtract $3 x_{0}^{2}$ to and from the numerator.
3. Find all equilibria of the system and determine their stability.
4. Sketch $f(x)$ as a function of x and indicate with arrows the direction in which the state moves on the x -axis.
5. How would you design your experiments if you had to show that a system is not time-invariant?

