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Exercise 1

1 2 3 4 Exercise

4 7 7 7 25 Points

Consider the linear time-invariant single input, single output discrete-time system

x(k + 1) = Ax(k) +Bu(k) =

[
1 5
2 4

]
x(k) +

[
0.5
2

]
u(k),

y(k) = Cx(k) =
[

1 2
]
x(k). (1)

1. Is the system asymptotically stable? Assume u(k) = 0 for all k ∈ N.

2. Compute the transfer function, G(z), of system (1). Are there any pole-zero cancella-
tions? What can you conclude about the controllability and observability properties
of system (1)?

3. Suppose that you want to stabilize the system using a feedback control law u(k) =
Kx(k), K ∈ R1×2. Derive the matrix AK of the closed loop system, i.e.

x(k + 1) = AKx(k),

y(k) = Cx(k).

Find a matrix K such that the closed loop system is asymptotically stable.

Hint: choose K such that AK is upper triangular.

4. Consider now an observer that generates an estimate x̂(k) of the state x(k) of sys-
tem (1), by starting with an arbitrary x̂(0) and evolving according to

x̂(k + 1) = Ax̂(k) +Bu(k) + L [y(k)− Cx̂(k)] .

Derive a state space model for the evolution of the observation error e(k) = x̂(k)−
x(k). Determine the entries of the matrix L ∈ R2×1 so that the observation error
goes to zero in a finite number of steps for every initial estimate x̂(0).

Hint: Try the same trick as in part 3 above.
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Exercise 2

1 2 3 4 Exercise

5 6 7 7 25 Points

Consider the following system:

ẋ(t) =

 −1 0 0
1 3 −5
1 0 −2

x(t) +

 1
0
1

u(t) (2)

y(t) =
[

1 0 1
]
x(t).

1. Is the system stable? Assume u(t) = 0 for all t ≥ 0.

2. Let

T =

 1 0 0
0 1 −1
−1 0 1

 and x̂(t) = Tx(t).

Derive the matrices Â, B̂, Ĉ for the new system

˙̂x(t) = Âx̂(t) + B̂u(t) (3)

y(t) = Ĉx̂(t)

and show that Â is diagonal. What can you infer about the columns of the matrix
T−1?

Hint: T is invertible and

T−1 =

 1 0 0
1 1 1
1 0 1

 .
3. Is the new system (3) controllable? Is it observable? Is it stabilizable? Is it de-

tectable? What can you infer about the corresponding properties of the original
system (2)?

Hint: Note the location of zero entries in the matrices B̂ and Ĉ.

4. Compute the zero input response y(t) of system (2) as a function of the initial state
x(0) = x0 ∈ R3. Hence show that y(t)→ 0 as t→∞. How does this relate to your
answers in part 1 and part 3 of this exercise?

Hint: Use your answer to part 2 of this exercise to compute y(t).
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Exercise 3

1 2 3 4 Exercise

7 7 7 4 25 Points

Consider the mechanical system given in Figure 1 consisting of two masses coupled with
springs and dampers. The springs and dampers are in an equilibrium position if ξ1 = ξ2 =
u = 0. The spring constants are given by k and the damping coefficients are denoted by
d.

mass, m m mm

ξ1 ξ2

u
kk

k

d d

1

Figure 1: Dynamical System

1. Using x1(t) = ξ1(t), x2(t) = ξ̇1(t), x3(t) = ξ2(t), x4(t) = ξ̇2(t) as states, the displace-
ment u(t) as input, and y(t) = ξ1(t)−ξ2(t) as output, derive the equations of motion
for the system in state space form.

2. Show that if instead one uses x̂1(t) = 1
2(ξ1(t)+ξ2(t)), x̂2(t) = 1

2(ξ̇1(t)+ ξ̇2(t)), x̂3(t) =
1
2(ξ1(t) − ξ2(t)) and x̂4(t) = 1

2(ξ̇1(t) − ξ̇2(t)) as states, the state equations take the
form

d

dt
x̂(t) =


0 1 0 0
−α1 −β1 0 0

0 0 0 1
0 0 −α2 −β2

 x̂(t) +


0
γ1
0
−γ2

u(t)

y(t) =
(
0 0 δ 0

)
x̂(t),

for some positive constants α1, α2, β1, β2, γ1, γ2, δ. Determine the value of these con-
stants.

3. Show that the system is asymptotically stable.

Hint: Use your answer to part 2 and the fact that det

(
A 0
0 B

)
= det(A)det(B).

4. Is the system observable? Provide a physical intuition for your answer.
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Exercise 4

1 2 3 4 5 Exercise

4 6 6 6 3 25 Points

During your summer internship, your supervisor asks you to characterize the dynamics of
an autonomous, time-invariant, analog electrical circuit. In an experiment, you measure
the system response for two different initial conditions, which happen to be

x(0) = 1 : x(t) =
1

4et − 3

x(0) = 2 : x(t) =
2

7et − 6
.

1. Is the system linear?

2. After repeating the above experiment for several initial conditions you find out that
the system response can be generally described by

x(t) =
x0

et − 3x0 + 3etx0
, (4)

with x0 = x(0). Assuming that the system has dimension one, find the corresponding
system equations, i.e., find a function f such that (4) solves the ODE ẋ(t) = f(x(t))
with x(0) = x0.

Hint: Differentiate (4), then add and subtract 3x20 to and from the numerator.

3. Find all equilibria of the system and determine their stability.

4. Sketch f(x) as a function of x and indicate with arrows the direction in which the
state moves on the x-axis.

5. How would you design your experiments if you had to show that a system is not
time-invariant?
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