Signal and System Theory II

This sheet is provided to you for ease of reference only.
 Do not write your solutions here.

Exercise 1

1	2	3	Exercise
10	6	9	25 Points

Consider the following discrete time system

$$
\begin{equation*}
y(k+2)+a_{1} y(k+1)+a_{0} y(k)=b_{1} u(k+1)+b_{0} u(k), \tag{1}
\end{equation*}
$$

where $u(k) \in \mathbb{R}$ denotes the input, $y(k) \in \mathbb{R}$ denotes the output, and $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{R}$ are constant coefficients.

1. By defining an appropriate state $x(k) \in \mathbb{R}^{2}$ show that the system can be put into the observable canonical form

$$
\begin{aligned}
x(k+1) & =\left[\begin{array}{ll}
-a_{1} & 1 \\
-a_{0} & 0
\end{array}\right] x(k)+\left[\begin{array}{l}
b_{1} \\
b_{0}
\end{array}\right] u(k), \\
y(k) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(k) .
\end{aligned}
$$

2. Let $b_{1}=2 b_{0}$. Under which conditions is the system controllable? Under which conditions is it observable?
3. Compute the transfer function of the system. For the case where $b_{1}=2 b_{0}$, comment on any pole-zero cancelations that may occur.

Exercise 2

1	2	3	4	Exercise
5	8	7	5	25 Points

Consider the continuous time system

$$
\begin{aligned}
\dot{x}_{1}(t) & =-2 x_{1}(t)+3 x_{2}(t)+u(t) \\
\dot{x}_{2}(t) & =4 x_{2}(t)+2 u(t) \\
y(t) & =x_{1}(t)
\end{aligned}
$$

where $x(t)=\left[x_{1}(t) x_{2}(t)\right]^{T}$ are the system states, $u(t)$ is the control input, and $y(t)$ is the measurement.

1. Derive matrices A, B, C, and D to bring the system in the standard state space form:

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& y(t)=C x(t)+D u(t)
\end{aligned}
$$

Is the system stable? Is it controllable? Is it observable?
2. Consider a state feedback law $u(t)=K x(t)$. Is it possible to find a matrix $K \in \mathbb{R}^{1 \times 2}$ such that the eigenvalues of the closed loop system are both equal to -4 ? Comment in relation to your answer in Part (1).
3. An observer constructs an estimate $\tilde{x}(t)$ of the state $x(t)$. Its dynamics are described by the equations

$$
\begin{aligned}
& \dot{\tilde{x}}(t)=A \tilde{x}(t)+B u(t)+L(y(t)-\tilde{y}(t)) \\
& \tilde{y}(t)=C \tilde{x}(t)+D u(t)
\end{aligned}
$$

The estimation error is given by $e(t)=x(t)-\tilde{x}(t)$. Design the entries of the gain matrix $L \in \mathbb{R}^{2 \times 1}$ so that the error dynamics have all eigenvalues equal to -1 .
4. Compute all states $\hat{x} \in \mathbb{R}^{2}$ for which there exists a constant input $\hat{u} \in \mathbb{R}$ such that the system is in equilibrium.

Exercise 3

1	2	3	Exercise
10	7	8	25 Points

Consider the following circuit:

1. Write down a state space model for this circuit. Use $x_{1}=i_{L}, x_{2}=V_{c}$ as the states of the system, $u=V_{s}$ as input and $y=V_{o}$ as output. Assume that the operational amplifier is ideal.
2. Assume that $C=1 F, R_{0}=R_{1}=1 \Omega, L=1 H$. Calculate the transfer function $G(s)$. Discuss the potential reasons of any pole-zero cancellations.
3. Compute the zero input transition $\left(V_{s}(t)=0\right.$ for all $\left.t \geq 0\right)$ for the initial state $x(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$.

Exercise 4

1a	1b	1c	2a	2b	2c	Exercise
3	2	2	3	7	8	25 Points

1. In 1798 Reverend T.R. Malthus postulated the following dynamical system to model growth of human population:

$$
\begin{equation*}
\dot{x}(t)=r x(t) \tag{2}
\end{equation*}
$$

where $r>0, x(t) \in \mathbb{R}$ and $t \in \mathbb{R}_{+}$.
(a) Is the system (2) linear? Is it autonomous? What is its dimension?
(b) Compute all equilibria of the system and determine their stability.
(c) Compute the solution $x(t)$ of system (2) starting at $x(0)=x_{0}>0$. What is its limit as $t \rightarrow \infty$?
2. Subsequent research in population dynamics postulated the following system to model population growth in the presence of limited resources:

$$
\begin{equation*}
\dot{x}(t)=r x(t)\left(1-\frac{x(t)}{K}\right) \tag{3}
\end{equation*}
$$

Here $r>0, K>0, x(t) \in \mathbb{R}$ and $t \in \mathbb{R}_{+}$.
(a) Is system (3) linear? Is it autonomous? What is its dimension?
(b) Compute all equilibria of the system and determine their stability using linearization.
(c) Show that

$$
x(t)=\frac{K x_{0} e^{r t}}{K+x_{0}\left(e^{r t}-1\right)}
$$

is the solution of system (3) starting at initial condition $x(0)=x_{0}>0$. Compute the limit of the solution as $t \rightarrow \infty$ and relate to your answer to part (2b). Comment on the relation of this solution and the one computed in part (1c) as $K \rightarrow \infty$.

