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Do not write your solutions here.

Exercise 1

1 2 3 4 Exercise

5 5 10 5 25 Points

Consider the system:

ẋ(t) =

[

−1 3
0 2

]

x(t) +

[

0
1

]

u1(t) +

[

2
1

]

u2(t) = Ax(t) + B1u1(t) + B2u2(t) (1)

y(t) =
[

1 0
]

x(t). (2)

1. Is the system autonomous? Is it linear? How many states, inputs, and outputs does
the system have? Is the system stable?

2. Compute the transfer function G2(s) from the input u2 to the output y (assuming
u1(t) = 0 for all t ≥ 0) and provide its poles and zeros.

3. You and a friend from EPFL are in charge of designing a state feedback controller for
this system. Your job was to design the control law for the input u1(t), but before
you could discuss the specifics of the task, your friend went ahead and designed
a controller of the form u2(t) = K2x(t). To make matters worse, your friend has
also forgotten what gain matrix K2 he used. Luckily, you were able to perform
a frequency analysis of the resulting closed loop SISO system and experimentally
identify the transfer function G(s) from u1 to y as

G(s) =
1

s2 − 1
.

Reconstruct the time domain description of the closed loop SISO system using the
controllable canonical form. Is the resulting time domain description unique? Is the
system stable? Is it possible to design a feedback controller u1(t) = K1x(t) that
stabilizes the system? Is it necessary to identify the gain matrix K2 that your friend
implemented to accomplish the last task?
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4. Your friend from EPFL disagrees with the frequency analysis you performed and
insists that the transfer function from u1 to y for the closed loop SISO system is
given by

G(s) =
s + 4

s + 2
.

Is this transfer function strictly proper? If possible, reconstruct the time domain
description of this system. Support or argue against your friend’s claim that this
transfer function represents the true closed loop SISO system.

Exercise 2

1 2 3 4 Exercise

5 7 7 6 25 Points

Consider the system

ẋ(t) =





x2(t)
−x2(t) + sin(x1(t))
−x3(t) + ax1(t)



 +





0 1
1 0
0 0



u(t), (3)

y(t) = x2(t) + x3(t),

where x(t) =
[

x1(t) x2(t) x3(t)
]T

∈ R
3 is the state, u(t) =

[

u1(t) u2(t)
]T

∈ R
2 is the

input, y(t) ∈ R is the output of the system, and a ∈ R is a constant parameter.

1. Determine all equilibrium points of (3) such that 0 ≤ x1 < 2π. Assume, for the time
being, that u(t) = 0 for all t ≥ 0.

2. Determine the stability of the equilibrium points of part 1, using linearization.

3. Linearize the system around the origin. Write the resulting linear system in state
space form. For which values of α is the linearized system controllable? For which
values of α is it observable?

4. Determine gains k1, k2 ∈ R, and a function g(x(t)) ∈ R, so that by applying the
nonlinear control law

u1(t) = g(x(t)) − k1x1(t) − k2x2(t),

u2(t) = −k1x1(t) − k2x2(t),

to system (3), we obtain a linear system whose eigenvalues are all equal to −1.
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Exercise 3

1 2 3 Exercise

7 10 8 25 Points

Consider a diagonalizable matrix A ∈ R
n×n with real eigenvalues. The Backward Euler

method generates a discrete time approximation xk for k = 0, 1, . . . of

ẋ(t) = Ax(t), x(0) = x0

by sampling every δ > 0 seconds and setting

xk+1 = xk + δAxk+1.

1. Derive the dynamics of the discrete time system

xk+1 = f (xk)

generated by the Backward Euler method. Is the discrete time system linear? Is it
time invariant? Is it autonomous?
(Hint: You may assume for the time being that the matrix (I − δA) ∈ R

n×n is
invertible.)

2. Compute the eigenvalues of the dynamics of the discrete time system in part 1 as
a function of δ and the eigenvalues of the matrix A. Hence derive conditions on δ
under which the hint in part 1 is indeed true.

3. Derive conditions on δ under which the discrete time system in part 1 is asymptoti-
cally stable. (You may again assume that the hint in part 1 holds.)
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Exercise 4

1 2 3 4 Exercise

7 3 8 7 25 Points

A mass m is attached to a fixed point P by a spring of constant K and is allowed to move
in the vertical plane under gravitational acceleration g. Assume P ∈ R

2 is located at the
origin and let d = (x1, x3) ∈ R

2 denote the position of the mass and v = (x2, x4) ∈ R
2 its

velocity, as shown in Figure 1 . The spring applies force −Kd for some K > 0 to the mass.
The movement of the mass is also subject to an aerodynamic drag force of magnitude
−αv, for some α > 0.

x1

x3 x2

x4

P

d

v

ϕ

θ

mg

Figure 1: Mass on a spring

1. Derive the equations of motion of the system in state space form using x1, x2, x3

and x4 as states and x1, x3 as outputs.
(Hint: cosϕ = x1/

√

x2
1
+ x2

3
, cos θ = x2/

√

x2
2
+ x2

4
)

2. Is the system linear? Is it time invariant? Is it autonomous?

3. Compute the equilibria of the system and determine their stability.

(Hint: Det

[

A 0
0 B

]

= Det [A] · Det [B] )

4. For which states is the energy of the system

V (x) =
1

2
K

(

x2
1 + x2

3

)

+
1

2
m

(

x2
2 + x2

4

)

+ mgx3

decreasing?
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