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Exercise 1

1 2 3 4 Exercise

5 7 7 6 25 Points

Consider the following linear, time invariant system:

ẋ(t) =

[

0 1
0 0

]

x(t) +

[

0
1

]

u(t),

y(t) =
[

0 1
]

x(t)

where x(t) ∈ R
2 is the state, u(t) ∈ R is the input, and y(t) ∈ R is the output of the

system.

1. Is the system controllable? Is it observable?

2. Determine the reachable and the unobservable subspace.

3. Consider the state feedback u(t) = −
[

k1 k2

]

x(t). Compute the coefficients k1, k2,
so that the poles of the closed loop system are both at −1.

4. Consider the piecewise constant input

u(t) =
{

a1 if 0 ≤ t < 1
a2 if t ≥ 1

Determine the values for a1 and a2 to steer the system from x(0) = (1, 0) to x(2) =
(0, 2).
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Exercise 2

1 2 3 4 Exercise

5 6 6 8 25 Points

Consider the following continuous time system:

ẋ(t) =

[

2 −5
0 −3

]

x(t) +

[

1
0

]

u(t) +

[

1
1

]

w(t)

y(t) =
[

3 −2
]

x(t)

where x(t) ∈ R
2, y(t) ∈ R, u(t) ∈ R is a controlled input to the system and w(t) ∈ R is

an uncontrolled disturbance input to the system.

1. Assume that u(t) = 0 and w(t) = 0 for all t ∈ R+. Is the system linear? Is it time
invariant? Is it stable?

2. Compute the transfer function G(s) from the controlled input U(s) to the output
Y (s). Compute the transfer function H(s) from the uncontrolled disturbance input
W (s) to the output Y (s).

3. Consider the case w(t) = 0 for all t ≥ 0. Is it true that you can design a state
feedback of the form u(t) = Kx(t) for some k ∈ R

1×2 such that the state converges
to zero from any initial condition? Justify your answer.

4. Consider the state feedback u(t) =
[

−3 0
]

x(t). Recompute the transfer function
from the uncontrolled disturbance input W (s) to the output Y (s). Hence determine
the steady state value of the output ( lim

t→∞

y(t)) when a step disturbance is applied

to the system (Hint: Final Value Theorem).
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Exercise 3

1 2 3 Exercise

8 10 7 25 Points

1. Consider the circuit in Figure 1 with vin(t) as input and vout(t) as output. Assume
that the operational amplifier is ideal. Derive the state space representation and the
transfer function of this system.
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+
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vout(t)

δv(t)
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Figure 1: Circuit 1

2. A more realistic model of an operational amplifier is a transfer function of the form

Vout(s) =
K

s + 1
δV (s)

and i+(t) = i−(t) = 0. Augment the state from part 1 and derive a new state space
representation for the circuit in Figure 1. Assume that vout(0) = 0

3. Derive the transfer function for the system in Figure 2, assuming that the operational
amplifier is ideal. Can we put this sytem in state space form? Justify your answer.
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Figure 2: Circuit 2

3



Signal and System Theory II, BSc, Spring Term 2010

Exercise 4

1 2 3 4 Exercise

6 7 7 5 25 Points

Consider the continuous time linear system:

ẋ(t) = Ax(t) + Bu(t) (1)

with x(t) ∈ R
n, u(t) ∈ R

m, A ∈ R
n×n, B ∈ R

n×m, x(0) = x0. Let 0 < T < ∞,
define xk = x(kT ), k = 0, 1, . . . , and assume that u(t) = uk ∈ R

m is constant for all
t ∈ [kT, (k + 1) T ).

1. Show that
xk+1 = Âxk + B̂uk (2)

and derive expressions for Â ∈ R
n×n and B̂ ∈ R

n×m in terms of A, B and T .

2. Assume that A is diagonalizable, with complex eigenvalues {λ1, . . . , λn}. Show that

Â is also diagonalizable and derive an expression for its eigenvalues
{

λ̂1, . . . , λ̂n

}

.

3. Assume again that A is diagonalizable. Show that the continuous time system (1) is
asymptotically stable if and only if the discrete time system (2) is also asymptotically
stable.

4. Assume now that uk = 0 for all k = 0, 1, . . ., and A is diagonalizable. Your friend
from EPFL claims that she was able to find A ∈ R

n×n and 0 < T < ∞ such that
the response of the sampled system (2) satisfies xk = 0 for all k ≥ n. Do you believe
her? Justify your answer.
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