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Exercise 1
1 2 3 Exercise
9 7 9 25 Points

1. According to the definition of estimation error en = xn− (̂xn), subtracting (??) from
(??) yields to

en+1 = xn+1 − x̂n+1 = (A − LC)en (1)

Regarding the error dynamics in (1), for every x0 ∈ R
n, x̂n → xn as n tends to

infinity iff |λi(A − LC)| < 1 where λi are eigenvalues of matrix A − LC.

2. The observability matrix is O =

⎡
⎣ C

CA
CA2

⎤
⎦ =

⎡
⎣0 0 1

0 1 −6
1 −6 24

⎤
⎦. Since rank(O) = 3 then

the system is observable.

The controllability matrix is C =
[
B AB A2B

]
=

⎡
⎣0 −8 48
0 −12 64
1 −6 24

⎤
⎦. Since rank(C) =

3 then the system is controllable too.
When un ≡ 0, the system (??) is simplified as xn+1 = Axn; on the other hand, since
λi(A) = −2 for i = 1, 2, 3 then the system is unstable.

3. Regarding the dimension matrixes C and A, dim(L) = 3 × 1.

Now suppose L =

⎡
⎣l1

l2
l3

⎤
⎦; we are interested in observer gain, L, such that λi(A−LC) =

0.5 for i = 1, 2, 3.

A−LC =

⎡
⎣0 0 −8 − l1
1 0 −12 − l2
0 1 −6 − l3

⎤
⎦ ⇒ λ3+(6+l3)λ2+(12+l2)λ+(8+l1) = (λ−0.5)3 (2)

Where λ is the eigenvalue of the matrix A − LC.
Computing the polynomial coefficients of (2) yields to l1 = −8.125, l2 = −11.25, and
l3 = −7.5.
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Exercise 2
1 2 3 4 5 Exercise
3 5 6 7 4 25 Points

1. The dimension of the system is two (the highest order of derivatives). The system is
not autonomous since the differential equation depends on the independent variable
(t). The system is not linear due to the presence of y(t)3.

2. Using the suggested state assignments the second order differential equation may be
rewritten as

[
ẋ1

ẋ2

]
=

[
x2

−x2 − x3
1 + x1 + γcos(ωt)

]
= f(x) . (3)

3. To find the equilibria of the unforced system (γ = 0)we set f(x) = 0. We obtain the
following set of algebraic equations:

0 = x2

0 = −x2 − x3
1 + x1

For all equilibria of the system x∗
2 = 0 and x1(x2

1 − 1) = 0. This implies that there
exist three equilibria: {(0, 0), (1, 0), (−1, 0)}.

4. We linearize around x∗ =
[

0
0

]
.

∂f

∂x
(0, 0) =

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]
=

[
0 1
1 −1

]
(4)

We find the eigenvalues for this matrix:
√

5−1
2 ,−

√
5+1
2 . One of them is positive, so

this equilibrium is unstable.

We repeat the above process for the rest two equilibria,

∂f

∂x
(1, 0) =

∂f

∂x
(−1, 0) =

[
0 1
−2 −1

]
(5)

Both equilibria have eigenvalues −0.5 ± 0.5
√

7i. The eigenvalues have negative real
part, so both equilibria are locally stable.

5. The vector lines should diverge from the unstable equilibrium (0,0) and converge to
both stable equilibria (±1,0).
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Figure 1: Phase Plane plot

Exercise 3
1 2 3 4 Exercise
5 7 6 7 25 Points

1. Given that x̂ = Tx for the derivative of x̂ we have: ˙̂x = T ẋ. Replacing x̂ and ˙̂x with
the previous equations in (??), (??) we have:

T ẋ = ÂTx + B̂u ⇔ ẋ = T−1ÂTx + T−1B̂u (6)
y = ĈTx (7)

Comparing (6) and (7) with the initial system (??) and (??) we have:

Â = TAT−1 (8)
B̂ = TB (9)
Ĉ = CT−1 (10)

2. We start by computing the eigenvalues and the eigenvectors of matrix A. The eigen-
values of A are given by the characteristic equation:
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det (λI − A) = 0 ⇔∣∣∣∣ λ + 2.5 −0.5
−0.5 λ + 2.5

∣∣∣∣ = 0 ⇔

(λ + 2.5)2 − 0.52 = 0 ⇔
(λ + 3)(λ + 2) = 0 ⇔ λ1 = −3 and λ2 = −2

The eigenvector for λ1 is:

Aw1 = λ1w1 ⇔[ −2.5 0.5
0.5 −2.5

] [
w11

w12

]
= −3

[
w11

w12

]
⇔[ −2.5w11 + 0.5w12

0.5w11 − 2.5w12

]
=

[ −3w11

−3w12

]
⇔[

0.5w11 + 0.5w12

0.5w11 + 0.5w12

]
= 0 ⇔ w11 = −w12

The same way for the eigenvector for λ2 can by found that w21 = w22.

Therefore, we have found that the eigenvalues of A are distinct, its eigenvectors are
linearly independent, which implies that matrix W = [w1 w2] is invertible and that
matrix A is diagonalizable. In such a case matrix A can be written as: A = WΛW−1,
where:

W =

[
1√
2

1√
2

− 1√
2

1√
2

]
and Λ =

[−3 0
0 −2

]
.

It is easy to see now that if we select T = W−1 and Â = Λ equation (8) is satisfied.
Concluding, the fact that matrix A is diagonalizable allows us to compute matrix T .

3. We start by computing the matrices B̂ and Ĉ, using (9) and (10).

B̂ = TB ⇔
= W−1B ⇔
=

[
1√
2

− 1√
2

1√
2

1√
2

][
1
1

]
⇔

=

[
0
2√
2

]

and
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Ĉ = CT−1 ⇔
= CW ⇔
=

[
0 1

] [
1√
2

1√
2

− 1√
2

1√
2

]
⇔

=
[
− 1√

2
1√
2

]

Therefore, the change of coordinates leads in a Kalman decomposition, from which
it is clear that one of the states is uncontrollable and that both states are observable.
Thus, the system is observable but uncontrollable. Given that the second system is
a Kalman decomposition of the initial system, the initial is system is observable and
uncontrollable too.

4. The eigenvalues of the initial system w1 and w2 are linearly independent. All initial
conditions can be written as a linear combination of w1 and w2. For an initial
condition in the form x0 = α1w1 +α2w2 the zero input response is x(t) = α1e

λ1tw1 +
α2e

λ2tw2. Given that d1 = λ1, to have a zero input response in the given form

x(t) = x(0)ed1t the initial condition should be x(0) = w1 =

[
1√
2

− 1√
2

]
.
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Exercise 4
1 2 3 4 Exercise
7 6 5 7 25 Points

1. A) If the switch s is open then by obtaining the circuit we have that:

Vi(t) = Vc(t) + VR1(t)
⇒ Vi(t) = Vc(t) + ic(t)R1

⇒ Vi(t) = Vc(t) + CR1
dVc(t)

dt

⇒ dVc(t)
dt

= − 1
CR1

Vc(t) +
1

CR1
Vi(t) (11)

VL(t) = VR2(t)

⇒ L
diL(t)

dt
= −R2iL(t)

⇒ diL(t)
dt

= −R2

L
iL(t) (12)

The output V0(t) is

V0(t) = VL(t)
⇒ V0(t) = −R2iL(t) (13)

Based on (1) − (3) the state space equations of the system when the switch is open
are:

d

dt

[
Vc(t)
iL(t)

]
=

[− 1
CR1

0
0 −R2

L

] [
Vc(t)
iL(t)

]
+

[ 1
CR1

0

]
Vi(t) (14)

V0(t) =
[
0 −R2

] [
Vc(t)
iL(t)

]
(15)

Therefore we can define the following matrixes:

A =
[− 1

CR1
0

0 −R2
L

]
B =

[ 1
CR1

0

]
C =

[
0 −R2

]
D = 0 (16)

B) In the case where the switch s is closed, by applying the Kirchhoff law we have:

ic(t) = iL(t) + iR(t)

⇒ C
dVc(t)

dt
= iL(t) +

Vi(t) − Vc(t)
R

⇒ dVc(t)
dt

= − 1
RC

Vc(t) +
1
C

iL(t) +
1

RC
Vi(t) (17)
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where R = R1//R2 = R1R2
R1+R2

VL(t) = Vi(t) − Vc(t)

⇒ L
diL(t)

dt
= Vi(t) − Vc(t)

⇒ diL(t)
dt

= − 1
L

Vc(t) +
1
L

Vi(t) (18)

The state space representation for this case is:

d

dt

[
Vc(t)
iL(t)

]
=

[− 1
RC

1
C

− 1
L 0

] [
Vc(t)
iL(t)

]
+

[
1

RC
1
L

]
Vi(t) (19)

V0(t) =
[−1 0

] [
Vc(t)
iL(t)

]
+ Vi(t) (20)

Therefore we can define the following matrixes:

A =
[− 1

RC
1
C

− 1
L 0

]
B =

[
1

RC
1
L

]
C =

[−1 0
]

D = 1 (21)

2. A) In order to check if the system is controllable we can check if the controllability
matrix P has full rank. For the first case where the switch is open P is

P =
[
B AB

]
=

[
1

CR1
− 1

C2R2
1

0 0

]
(22)

Matrix P has not full rank, so the system is uncontrollable. Since the states are
decoupled and the input affects only the first of the states, we should expect also by
intuition that the system would be uncontrollable.
B) For the case where the switch is closed the matrix P is:

P =
[
B AB

]
=

[
1

RC − 1
R2C2 + 1

LC
1
L − 1

RLC

]
(23)

Matrix P has full rank, so the system is controllable.

3. A) In order to check if the system is observable we can check if the observability
matrix Q has full rank. For the first case Q is

Q =
[

C
CA

]

=

[
0 −R2

0 R2
2

L

]
(24)
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Matrix Q has not full rank, so the system is unobservable.
B) If the switch is closed the matrix Q is:

Q =
[

C
CA

]

=
[−1 0

1
RC − 1

C

]
(25)

Since Q has full rank the system is observable.

4. A) 0 ≤ t < 1 :
For this case the switch is open and the system is described by equations (4) and
(5). Since Vi(t) = 0 ∀t ≥ 0, the response of the system for this interval is the zero
input response. If x(t) =

[
Vc(t) iL(t)

]T then

x(t) = Φ(t)x0 = eAtx0 (26)

where Φ(t) is the state transition matrix and x0 =
[
1 1

]T is the initial condition.
In order to compute Φ(t) the eigenvalues and the eigenvector matrix need to be
computed. By obtaining A from equation (6), the eigenvalues are:

λ1 = − 1
CR1

λ2 = −R2

L

⇒λ1 = −3
2

λ2 = −4
3

(27)

But
Awi = λiwi for i = 1, 2 (28)

Where wi is the eigenvector that corresponds to eigenvalue λi. Based on the last
equation we can find that

w1 =
[
1
0

]
and w2 =

[
0
1

]
(29)

So the eigenvector matrix is

W =
[
1 0
0 1

]
(30)

Since Φ(t) = eAt = WeΛtW−1 where

Λ =
[
λ1 0
0 λ2

]
(31)

By using (20) and (21)

Φ(t) =
[
1 0
0 1

]
eΛt

[
1 0
0 1

]
=

[
e
− 1

CR1
t 0

0 e−
R2
L

t

]
(32)
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So from (16):

x(t) =
[
Vc(t)
iL(t)

]
=

[
e
− 1

CR1
t 0

0 e−
R2
L

t

][
1
1

]
=

[
e
− 1

CR1
t

e−
R2
L

t

]
(33)

y(t) = V0(t) = −R2iL(t) = −R2e
−R2

L
t (34)

By substituting the numerical values we have:

x(t) =

[
e−

3
2
t

e−
4
3
t

]
(35)

y(t) = −2
3
e−

4
3
t (36)

B) t ≥ 1:
At time t = 1 the switch closes and remains closed for the rest of the time. This
time the matrixes A, B, C and D are given by (11). The characteristic equation is
λ2 + 1

RC λ + 1
LC = 0, so the eigenvalues are of the form:

λi =
− 1

RC ±
√

1
R2C2 − 4

LC

2
for i = 1, 2 (37)

Hence, by using the numerical values, the eigenvalues are:

λ1 = −1 λ2 = −2 (38)

But since
Awi = λiwi for i = 1, 2 (39)

Where wi is the eigenvector that corresponds to eigenvalue λi we can find that

w1 =
[
1
2

]
and w2 =

[
1
1

]
(40)

So the eigenvector matrix is

W =
[
1 1
2 1

]
(41)

This time the transition matrix Φ(t) would be:

Φ(t) = WeΛtW−1 (42)

with

W−1 =
[−1 1

2 −1

]

So

Φ(t) =
[ −e−t + 2e−2t e−t − e−2t

−2e−t + 2e−2t 2e−t − e−2t

]
(43)
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Therefore, the system’s response for t ≥ 1 is

x(t) = Φ(t − 1)x(1) =
[
0.11e−t + 1.35e−2t

0.22e−t + 1.35e−2t

]
y(t) = −0.11e−t − 1.35e−2t (44)

where

x(1) =

[
e−

3
2

e−
4
3

]

So based on (26) and (34) the response of the system is

y(t) =
{

−2
3e−

4
3
t if 0 ≤ t < 1

−0.11e−t − 1.35e−2t if t ≥ 1
(45)
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