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Signal and System Theory II, BSc, Summer 2008 Solution

1 Exercise 1
1 2 3 4 Aufgabe
5 5 8 7 25 Punkte

1. To find the equilibria of the system ẋ = Ax we set ẋ = 0. So Ax = 0:

Ax = 0 ⇔[
−1

2
1
2

1
2 −1

2

] [
x1

x2

]
= 0 ⇔

x1 = x2

Figure 1 shows the locations of the equilibria of the system in the x1 - x2 plane.
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Figure 1: Equilibria locations in x1 - x2 plane.

2. Stability of x̂ = 0 can be determined from the eigenvalues of the matrix A, i.e. the
roots of the characteristic polynomial |λI −A|

|λI −A| = 0⇒∣∣∣∣ λ+ 1
2 −1

2
−1

2 λ+ 1
2

∣∣∣∣ = 0⇒

λ2 + λ+
1

4
− 1

4
= 0⇒

λ(λ+ 1) = 0⇒

λ = 0 , λ = −1 (1)

The eigenvalues of matrix A are distinct and non-positive so the system is stable.
Since λ = 0 us an eigenvalue, the system is not asymptotically stable.
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3. The eigenvectors of the matrix A can be computed by the equation: Awi = λiwi

where λi is eigenvalue of the matrtix A.

For λ = 0:[
−1

2
1
2

1
2 −1

2

] [
x1

x2

]
=

[
0
0

]
⇒
[
−1

2x1 + 1
2x2

1
2x1 − 1

2x2

]
= 0⇒ x1 = x2

For λ = −1:[
−1

2
1
2

1
2 −1

2

] [
x1

x2

]
=

[
−x1

−x2

]
⇒
[
−1

2x1 + 1
2x2

1
2x1 − 1

2x2

]
=

[
−x1

−x2

]
⇒ x2 = −x1

So the two eigenvectors are:

w1 =

[
1
1

]
and w2 =

[
1
−1

]
and are shown in Fig. 2.
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Figure 2: System eigenvectors.

The state transition matrix eAt can be computed by the equation:

eAt = WeΛtW−1 (2)

where

W =
[
w1 w2

]
=

[
1 1
1 −1

]
and Λ =

[
λ1 0
0 λ2

]
=

[
0 0
0 −1

]
Replacing W and Λ in Eq. 2 we have:

eAt =

[
1 1
1 −1

] [
1 0
0 e−t

] [
1
2

1
2

1
2 −1

2

]
=

[
1 e−t

1 −e−t
] [

1
2

1
2

1
2 −1

2

]
=

[
1
2 + e−t

2
1
2 −

e−t

2
1
2 −

e−t

2
1
2 + e−t

2

]
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4. Given the transition matrix eAt and an initial condition x0 = [x01 x02]T we have:

x(t) =

[
x1(t)
x2(t)

]
= eAt

[
x01

x02

]
=

[
1
2 + e−t

2
1
2 −

e−t

2
1
2 −

e−t

2
1
2 + e−t

2

] [
x01

x02

]

=

[
x01
2 + e−tx01

2 + x02
2 −

e−tx02
2

x01
2 −

e−tx01
2 + x02

2 + e−tx02
2

]

When t→∞:

lim
t→∞

x(t) =

[
x01+x02

2
x01+x02

2

]

x
1
 ’ = − 0.5 x

1
 + 0.5 x

2

x
2
 ’ = 0.5 x

1
 − 0.5 x

2
  

 

 

 

 

 

 

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

Figure 3: System phase plane.
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2 Exercise 2
1 2 3 4 Exercise
5 5 5 10 25 Points

1. The system is uncontrollable since there is no input!
To check the observability, we compute the observability matrix

Q =

 C
CA
CA2

 =

 1 0 0
0 1 0
0 0 1

 . (3)

Q has full rank, so the system is observable.

2. First, note the basic results x1 = Ax0 and x2 = Ax1 = A2x0. Therefore

y0 = Cx0 =
[

100
]
x0 (4)

y1 = Cx1 = CAx0 =
[

010
]
x0 (5)

y2 = Cx2 = CA2x0 =
[

001
]
x0 (6)

Stacking y0, y1, and y2, we obtain the relation y0

y1

y2

 =

 1 0 0
0 1 0
0 0 1

x0 = x0. (7)

3. By definition,

ek = xk − x̂k ⇒ ek+1 = xk+1 − x̂k+1 (8)
= Axk −Ax̂k − L(yk − Cx̂k) (9)
= A(xk − x̂k)− LC(xk − x̂k) (10)
= (A− LC)ek (11)

A− LC =

 0 1 0
0 0 1
0 0 0

−
 l1
l2
l3

 [ 1 0 0
]

(12)

=

 −l1 1 0
−l2 0 1
−l3 0 0

 (13)

4. Our system is discrete time, thus we should choose λ = 1
2 for the dynamics of the

error to be stable. Therefore, we would like to choose L such that the matrix has
three eigenvalues at λ = 1

2 . Next, we solve the characteristic equation of A− LC

det(λ− (A− LC)) = det

 λ+ l1 −1 0
l2 λ −1
l3 0 λ

 (14)

= λ(λ2 + l1λ+ l2) + l3 (15)
= λ3 + l1λ

2 + l2λ+ l3 (16)
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We thus have our characteristic polynomial in terms of the variables of L. However,
we require the eigenvalues to all have value λ = 1

2 . Thus, we require

det(λ− (A− LC)) = (λ− 1

2
)3 (17)

= λ3 − 3

2
λ2 +

3

4
λ− 1

8
(18)

Which, when compared to the analytical characteristic polynomial, leads us to choose
our gain matrix L to be

L =

 l1
l2
l3

 =

 −3
2

3
4
−1

8

 . (19)

In this part, we designed a stable observer with eigenvalues at λ = 1
2 . Thus, as

k → ∞, ek → 0. Therefore, even if our initial state estimate x̂0 is inaccurate or
we have noisy measurements yk, our error is always guaranteed to remain stable,
and generally head towards zero. This is not the case for the observer in part 2.
However, given that the eigenvalues of the error are non-zero, if we have a non-zero
initial error, our observer error in part 4 will never go to exactly zero (it will only
converge towards zero) even with perfect measurement values. Under these same
conditions, our observer in part 2 works perfectly since it does not depend on an
initial guess of x̂0.

(Alternatively)

Part 2: Finite time convergence but prone to measurement noise.

Part 4: Requires infinite time to converge but more robust to noise (it takes into
account all measurements, not just the first three).
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3 Exercise 3
1 2 3 4 Aufgabe
5 8 7 5 25 Punkte

1. P =

[
0 1
1 2

]
: the system is controllable.

Q =

[
1 0
1 1

]
: the system is observable.

det(λI −A) =

∣∣∣∣λ− 1 −1
0 λ− 2

∣∣∣∣ = 0⇐⇒ (λ− 1)(λ− 2) = 0 =⇒ λ1 = 1 and λ2 = 2 :

the system is unstable.

2.

ẋ =

[
1 1
0 2

]
+

[
0
1

] [
k1 k2

]
x+

[
0
1

]
v =⇒

ẋ =

[
1 1
k1 2 + k2

]
x+

[
0
1

]
v

y =
[
1 0

]
x

G(s) =
[
1 0

] [s− 1 −1
−k1 s− 2− k2

]−1 [
0
1

]
=

1

(s− 1)(s− 2− k2)− k1

[
1 0

] [s− 2− k2 1
k1 s− 1

] [
0
1

]
=

1

s2 − s− 2s+ 2− k2s+ k2 − k1

[
s− 2− k2 1

] [0
1

]
=

1

s2 − (k2 + 3)s+ 2 + k2 − k1

3. We want the polynomials (s+ 1)2 = s2 + 2s+ 1 and s2 − (k2 + 3)s+ 2 + k2 − k1 to
be equal, i.e.

−(k2 + 3) = 2 =⇒ k2 = −5

2 + k2 − k1 = 1 =⇒ k1 = −4

4. One can build an observer (since the system is observable). Alternatively, we can
also differentiate y, since x2 = ẋ1 − x1 = ẏ − y.
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4 Exercise 4
1 2 3 Aufgabe
10 8 7 25 Punkte

1. We will use the voltages across the two capacitors of the circuit as our states, VC1

and VC2 . Using Kirchhoff’s circuit laws, we have, for the currents:

I1 = Ik + IC1 (Op-Amp ideal) (20)

I3 = IC2 (Op-Amp ideal) (21)

For the voltages:

VC1 − IkKR0 = 0⇒ Ik =
VC1

KR0
(22)

and

Vi − I1R1 − I3R3 = 0 (Op-Amp ideal) (23)

VC1 + IC2R2 + VC2 = 0 (Op-Amp ideal) (24)

Furthermore, for the currents that pass through the two capacitors we have:

IC1 = C1V̇C1 (25)

IC2 = C2V̇C2 (26)

Using the above equations we can derive the following:

(23), (25), (26), (21)⇒ Vi −
R1

KR0
VC1 − C1R1V̇C1 − C2R3V̇C2 = 0 (27)

From the equations:

(24), (26)⇒ V̇C2 = − 1

C2R2
VC1 −

1

C2R2
VC2 (28)

Substituting (28) to (27) we get:

V̇C1 = − 1

C1KR0
VC1 +

R3

C1R1R2
VC1 +

R3

C1R1R2
VC2 +

1

C1R1
Vi (29)
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The output voltage V0 is:

V0 = IC2R2 + VC2 + I3R3 (30)
= (R3 +R2)C2V̇C2 + VC2 (31)

= (R3 +R2)C2(− 1

C2R2
VC1 −

1

C2R2
V C2) + VC2 (32)

= −R3

R2
VC1 − VC1 −

R3

R2
VC2 (33)

Now we can derive the state space equations:[
V̇C1

V̇C2

]
=

[
− 1

C1KR0
+ R3

C1R1R2

R3
C1R1R2

− 1
C2R2

− 1
C2R2

] [
VC1

VC2

]
+

[ 1
C1R1

0

]
Vi

and

V0 =
[
−R3

R2
− 1 −R3

R2

] [ VC1

VC2

]
So,

A =

[
− 1

K + 1 1
−1 −1

]

B =

[
1
0

]

C =
[
−2 −1

]
D = 0

2. The transfer function of the system is computed by the formula:

G(s) = C(sI −A)−1B +D

G = − 2Ks+K

(Ks2 + s+ 1)
(34)

3. The A matrix becomes:

A =

[
− 1

K + 1 1
−1 −1

]
(35)

The poles of the transfer function are:

s2 =
1

2K
(−1 +

√
1− 4K)
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s2 =
1

2K
(−1−

√
1− 4K)

The system is asymptotically stable for all K > 0. For K ≤ 0.25 the state decays to
0 exponentially. For K > 0.25 the state oscillates like a sine-wave with exponentially
decaying amplitude.
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