Automatic Control Laboratory

Signal and System Theory II 4. Semester, BSc

Solutions

1 Exercise 1

1	2	3	4	Aufgabe
5	5	10	5	25 Punkte

1. Controllability matrix:

$$
\begin{aligned}
\mathcal{C} & =\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{ll}
0 & \alpha \\
1 & 2
\end{array}\right] \\
\operatorname{det} \mathcal{C} & =-\alpha
\end{aligned}
$$

If system is controllable, we need to have

$$
\operatorname{det}(\mathcal{C}) \neq 0 \rightarrow \alpha \neq 0
$$

The system is controllable for all $\alpha \in \mathbb{R} \backslash 0$.
2. Observability matrix:

$$
\begin{aligned}
\mathcal{O} & =\left[\begin{array}{r}
C \\
C A
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & \alpha
\end{array}\right] \\
\operatorname{det} \mathcal{O} & =\alpha-1
\end{aligned}
$$

If system is observable, we need to have

$$
\operatorname{det}(\mathcal{O}) \neq 0 \rightarrow \alpha \neq 1
$$

The system is observable for all $\alpha \in \mathbb{R} \backslash 1$.
3. Compute characteristic polynomial for poles at -1 and -7 :

$$
(\lambda+1)(\lambda+7)=\lambda^{2}+8 \lambda+7
$$

With the feedback controller the resulting closed loop system is

$$
\begin{aligned}
A^{*} & =(A+B K)=\left[\begin{array}{ll}
1 & 5 \\
0 & 2
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 5 \\
k_{1} & 2+k_{2}
\end{array}\right] \\
\operatorname{det}\left(A^{*}\right) & =(1-\lambda)\left(2+k_{2}-\lambda\right)-5 k_{1} \\
& =\lambda^{2}+\left(-3-k_{2}\right) \lambda+2+k_{2}-5 k_{1}
\end{aligned}
$$

Comparison of coefficients:

$$
\begin{array}{r}
\wedge \begin{array}{r}
-3-k_{2}=8 \\
\wedge+2+k_{2}-5 k_{1}=7 \\
\Rightarrow k_{1}=-\frac{16}{5}, \quad k_{2}=-11 \\
2
\end{array}
\end{array}
$$

4. The closed loop system is stable since we designed it to have the poles in the left half-plane.

2 Exercise 2

1	2	3	4	Exercise
5	5	9	6	25 Points

1. In state space form, the discrete time system can be expressed:

$$
x_{k+1}=\left[\begin{array}{ll}
0 & 1 \\
\frac{\nu+1}{m} & -\frac{d}{m}
\end{array}\right] x_{k}+\left[\begin{array}{c}
0 \\
\frac{b}{m}
\end{array}\right] u_{k}
$$

2. The dimension of the system is 2 . The system is not autonomous since it has an input. The system is linear.
3. For $\nu=-1$, the state matrix is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & -0.5
\end{array}\right]
$$

The eigenvalues are $\lambda=0,-0.5$ and therefore the system is stable.
For $\nu=0$, the state matrix is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0.5 & -0.5
\end{array}\right]
$$

The eigenvalues are $\lambda=0.5,-1$ and therefore the system is marginally stable.
For $\nu=2$, the state matrix is

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1.5 & -0.5
\end{array}\right]
$$

The eigenvalues are $\lambda=1,-1.5$ and therefore the system is unstable.
4. Setting $u_{k}=\left[\begin{array}{cc}-1 & \frac{1}{3}\end{array}\right] x_{k}$, the system becomes:

$$
x_{k+1}=\left(\left[\begin{array}{ll}
0 & 1 \\
1.5 & -0.5
\end{array}\right]+\left[\begin{array}{l}
0 \\
1.5
\end{array}\right]\left[\begin{array}{ll}
-1 & \frac{1}{3}
\end{array}\right]\right) x_{k}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x_{k}
$$

The system matrix is nilpotent and thus $x_{k}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}$ for all $k \geq 2$.

3 Exercise 3

1	2	3	Exercise
10	7	8	25 Points

1. Based on Kirchhoff's laws, we have that

$$
\begin{align*}
V_{i} & =V_{L_{1}}+V_{L_{2}} \tag{1}\\
& =L_{1} \frac{d i_{L_{1}}}{d t}+L_{2} \frac{d i_{L_{2}}}{d t} \tag{2}
\end{align*}
$$

We also have that

$$
i_{R_{1}}+i_{L_{1}}=i_{R_{2}}+i_{L_{2}}
$$

Hence

$$
\frac{L_{1}}{R_{1}} \frac{d i_{L_{1}}}{d t}+i_{L_{1}}=\frac{L_{2}}{R_{2}} \frac{d i_{L_{2}}}{d t}+i_{L_{2}}
$$

From the above two equations we conclude that the state space representation of the system is

$$
\frac{d}{d t}\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{1} R_{2}}{L_{1}\left(R_{1}+R_{2}\right)} & \frac{R_{1} R_{2}}{L_{1}\left(R_{1}+R_{2}\right)} \\
\frac{R_{1} R_{2}}{L_{2}\left(R_{1}+R_{2}\right)} & -\frac{R_{1} R_{2}}{L_{2}\left(R_{1}+R_{2}\right)}
\end{array}\right]\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right]+\left[\begin{array}{c}
\frac{R_{1}}{L_{1}\left(R_{1}+R_{2}\right)} \\
\frac{R_{2}}{L_{2}\left(R_{1}+R_{2}\right)}
\end{array}\right] V_{i}
$$

From the output of the system we have that $V_{0}=V_{L_{2}}=L_{2} \frac{d i_{L_{2}}}{d t}$, which is

$$
V_{0}=\left[\begin{array}{cc}
\frac{R_{1} R_{2}}{R_{1}+R_{2}} & -\frac{R_{1} R_{2}}{R_{1}+R_{2}}
\end{array}\right]\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right]+\frac{R_{2}}{R_{1}+R_{2}} V_{i}
$$

2. Consider the controllability matrix $P=[B A B]$. For $R_{1}=R_{2}=1 \Omega$, and $L_{1}=L_{2}=$ $0.5 H$ we have that

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Then the controllability matrix is

$$
P=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]
$$

We obtain that $\operatorname{rank}(P)=1$, since the rows of P are linearly dependent, and hence the system is uncontrollable.

Similarly, by checking the observability matrix $Q=\left[\begin{array}{c}C \\ C A\end{array}\right]$, we have that

$$
Q=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-1 & 1
\end{array}\right]
$$

We obtain that $\operatorname{rank}(Q)=1$, and hence the system is unobservable.
3. For the case where $V_{i}=0$ the system is reduced to

$$
\frac{d}{d t}\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right]
$$

The response of the system is given by $x(t)=\Phi(t) x(0)$, where $\Phi(t)=e^{A t}$ is the state transition matrix. From $\operatorname{det}(\lambda I-A)=0$, the eigenvalues of A are calculated as $\lambda_{1}=0, \lambda_{2}=-2$. Denote as w_{1}, w_{2} the eigenvectors that correspond to the eigenvalues λ_{1} and λ_{2} respectively. Since $\tilde{A} w_{i}=\lambda_{i} w_{i}$ for $i=1,2$, the eigenvectors are calculated as

$$
w_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Hence the eigenvectors matrix is $W=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. The response of the system is given by $x(t)=\Phi(t) x(0)$, where $\Phi(t)=e^{A t}=W e^{\Lambda t} W^{-1}$, and $\Lambda=\left[\begin{array}{cc}0 & 0 \\ 0 & -2\end{array}\right]$. Then,

$$
\begin{aligned}
{\left[\begin{array}{c}
i_{L_{1}} \\
i_{L_{2}}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-2 t}
\end{array}\right] \frac{1}{-2}\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
e^{-2 t} \\
-e^{-2 t}
\end{array}\right]
\end{aligned}
$$

4 Exercise 4

1	2	3	Exercise
8	9	8	25 Points

1. Since both systems are controllable, the controllability matrices $\mathcal{C}_{1}=\left[\begin{array}{ll}B & A_{1} B\end{array}\right]$ and $\mathcal{C}_{2}=\left[\begin{array}{ll}B & A_{2} B\end{array}\right]$ are both full rank. This, though, cannot indicate anything for $\mathcal{C}_{3}=$ $\left[B\left(A_{1}+A_{2}\right) B\right]$. One can see that easily by considering the two cases where $A_{2}=A_{1}$ and $A_{2}=-A_{1}$. In the former, we have $\mathcal{C}_{3}=\left[\begin{array}{ll}B & 2 A_{1} B\end{array}\right] \Rightarrow \operatorname{det} \mathcal{C}_{3}=2 \operatorname{det} \mathcal{C}_{1} \neq 0$, i.e. system (3) is controllable and in the latter, $\mathcal{C}_{3}=[B \mathbb{O} B] \Rightarrow \operatorname{det} \mathcal{C}_{3}=0$, i.e. system (3) is uncontrollable.
2. Let $A_{1}=\left[\begin{array}{ll}a_{1}^{1} & a_{2}^{1} \\ a_{3}^{1} & a_{4}^{1}\end{array}\right], A_{2}=\left[\begin{array}{ll}a_{1}^{2} & a_{2}^{2} \\ a_{3}^{2} & a_{4}^{2}\end{array}\right], B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. We know that $\operatorname{det} \mathcal{C}_{2}=0$, i.e.:

$$
\left|\begin{array}{ll}
b_{1} & a_{1}^{2} b_{1}+a_{2}^{2} b_{2} \\
b_{2} & a_{3}^{2} b_{1}+a_{4}^{2} b_{2}
\end{array}\right|=b_{1}\left(a_{3}^{2} b_{1}+a_{4}^{2} b_{2}\right)-b 2\left(a_{1}^{2} b_{1}+a_{2}^{2} b_{2}\right)=0
$$

Now, calculating $\operatorname{det} \mathcal{C}_{3}$, we get:

$$
\begin{aligned}
\operatorname{det} \mathcal{C}_{3} & =\left|\begin{array}{cc}
b_{1} & \left(a_{1}^{1}+a_{1}^{2}\right) b_{1}+\left(a_{2}^{1}+a_{2}^{2}\right) b_{2} \\
b_{2} & \left(a_{3}^{1}+a_{3}^{2}\right) b_{1}+\left(a_{4}^{1}+a_{4}^{2}\right) b_{2}
\end{array}\right| \\
& =b_{1}\left[\left(a_{3}^{1}+a_{3}^{2}\right) b_{1}+\left(a_{4}^{1}+a_{4}^{2}\right) b_{2}\right]-b 2\left[\left(a_{1}^{1}+a_{1}^{2}\right) b_{1}+\left(a_{2}^{1}+a_{2}^{2}\right) b_{2}\right] \\
& =b_{1}\left(a_{3}^{1} b_{1}+a_{4}^{1} b_{2}\right)-b 2\left(a_{1}^{1} b_{1}+a_{2}^{1} b_{2}\right)+b_{1}\left(a_{3}^{2} b_{1}+a_{4}^{2} b_{2}\right)-b 2\left(a_{1}^{2} b_{1}+a_{2}^{2} b_{2}\right) \\
& =\operatorname{det} \mathcal{C}_{1}+\operatorname{det} \mathcal{C}_{2}=\operatorname{det} \mathcal{C}_{1} \neq 0
\end{aligned}
$$

Thus, system (3) in this case is controllable.
3. Nothing can be said for system (4). Take for instance any invertible matrix A_{1} such that system (1) is controllable. Then, taking $A_{2}=A_{1}^{-1}$, one always gets an uncontrollable system (4). On the contrary, one can easily find a matrix A_{2} that makes system (2) controllable, as well as system (4).

