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1 Exercise 1
1 2 3 4 Aufgabe
5 5 10 5 25 Punkte

1. Controllability matrix:

C =
[

B AB
]

=
[

0 α
1 2

]

det C = −α

If system is controllable, we need to have

det(C) 6= 0 → α 6= 0

The system is controllable for all α ∈ R\0.
2. Observability matrix:

O =
[

C
CA

]
=

[
1 1
1 α

]

detO = α− 1

If system is observable, we need to have

det(O) 6= 0 → α 6= 1

The system is observable for all α ∈ R\1.
3. Compute characteristic polynomial for poles at -1 and -7:

(λ + 1)(λ + 7) = λ2 + 8λ + 7

With the feedback controller the resulting closed loop system is

A∗ = (A + BK) =
[

1 5
0 2

]
+

[
0
1

] [
k1 k2

]
=

[
1 5

k1 2 + k2

]

det(A∗) = (1− λ)(2 + k2 − λ)− 5k1

= λ2 + (−3− k2)λ + 2 + k2 − 5k1

Comparison of coefficients:

−3− k2 = 8
∧ + 2 + k2 − 5k1 = 7

⇒ k1 = −16
5

, k2 = −11

2



Signal and System Theory II, BSc, Winter 2010 Solution

4. The closed loop system is stable since we designed it to have the poles in the left
half-plane.
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2 Exercise 2
1 2 3 4 Exercise
5 5 9 6 25 Points

1. In state space form, the discrete time system can be expressed:

xk+1 =
[

0 1
ν+1
m − d

m

]
xk +

[
0
b
m

]
uk.

2. The dimension of the system is 2. The system is not autonomous since it has an
input. The system is linear.

3. For ν = −1, the state matrix is

A =
[

0 1
0 −0.5

]
.

The eigenvalues are λ = 0, −0.5 and therefore the system is stable.

For ν = 0, the state matrix is

A =
[

0 1
0.5 −0.5

]
.

The eigenvalues are λ = 0.5, −1 and therefore the system is marginally stable.

For ν = 2, the state matrix is

A =
[

0 1
1.5 −0.5

]
.

The eigenvalues are λ = 1, −1.5 and therefore the system is unstable.

4. Setting uk =
[ −1 1

3

]
xk, the system becomes:

xk+1 = (
[

0 1
1.5 −0.5

]
+

[
0
1.5

] [ −1 1
3

]
)xk =

[
0 1
0 0

]
xk.

The system matrix is nilpotent and thus xk =
[

0 0
]T for all k ≥ 2.
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3 Exercise 3
1 2 3 Exercise
10 7 8 25 Points

1. Based on Kirchhoff’s laws, we have that

Vi = VL1 + VL2 (1)

= L1
diL1

dt
+ L2

diL2

dt
. (2)

We also have that
iR1 + iL1 = iR2 + iL2 .

Hence
L1

R1

diL1

dt
+ iL1 =

L2

R2

diL2

dt
+ iL2 .

From the above two equations we conclude that the state space representation of the
system is

d

dt

[
iL1

iL2

]
=

[
− R1R2

L1(R1+R2)
R1R2

L1(R1+R2)
R1R2

L2(R1+R2) − R1R2
L2(R1+R2)

][
iL1

iL2

]
+

[
R1

L1(R1+R2)
R2

L2(R1+R2)

]
Vi.

From the output of the system we have that V0 = VL2 = L2
diL2
dt , which is

V0 =
[

R1R2
R1+R2

− R1R2
R1+R2

] [
iL1

iL2

]
+

R2

R1 + R2
Vi.

2. Consider the controllability matrix P = [B AB]. For R1 = R2 = 1Ω, and L1 = L2 =
0.5H we have that

A =
[ −1 1

1 −1

]
, B =

[
1
1

]

Then the controllability matrix is

P =
[

1 0
1 0

]
.

We obtain that rank(P ) = 1, since the rows of P are linearly dependent, and hence
the system is uncontrollable.

Similarly, by checking the observability matrix Q =
[

C
CA

]
, we have that

Q =
[

1
2 −1

2
−1 1

]
.

We obtain that rank(Q) = 1, and hence the system is unobservable.
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3. For the case where Vi = 0 the system is reduced to

d

dt

[
iL1

iL2

]
=

[ −1 1
1 −1

] [
iL1

iL2

]
.

The response of the system is given by x(t) = Φ(t)x(0), where Φ(t) = eAt is the
state transition matrix. From det(λI − A) = 0, the eigenvalues of A are calculated
as λ1 = 0, λ2 = −2. Denote as w1, w2 the eigenvectors that correspond to the
eigenvalues λ1 and λ2 respectively. Since Ãwi = λiwi for i = 1, 2, the eigenvectors
are calculated as

w1 =
[

1
1

]
, w2 =

[
1
−1

]
.

Hence the eigenvectors matrix is W =
[

1 1
1 −1

]
. The response of the system is

given by x(t) = Φ(t)x(0), where Φ(t) = eAt = WeΛtW−1, and Λ =
[

0 0
0 −2

]
.

Then,
[

iL1

iL2

]
=

[
1 1
1 −1

] [
1 0
0 e−2t

]
1
−2

[ −1 −1
−1 1

] [
1
−1

]

=
[

e−2t

−e−2t

]
.

6



Signal and System Theory II, BSc, Winter 2010 Solution

4 Exercise 4
1 2 3 Exercise
8 9 8 25 Points

1. Since both systems are controllable, the controllability matrices C1 = [B A1B] and
C2 = [B A2B] are both full rank. This, though, cannot indicate anything for C3 =
[B (A1+A2)B]. One can see that easily by considering the two cases where A2 = A1

and A2 = −A1. In the former, we have C3 = [B 2A1B] ⇒ det C3 = 2 det C1 6= 0, i.e.
system (3) is controllable and in the latter, C3 = [B OB] ⇒ det C3 = 0, i.e. system
(3) is uncontrollable.

2. Let A1 =
[

a1
1 a1

2

a1
3 a1

4

]
, A2 =

[
a2

1 a2
2

a2
3 a2

4

]
, B =

[
b1

b2

]
. We know that det C2 = 0, i.e.:

∣∣∣∣
b1 a2

1b1 + a2
2b2

b2 a2
3b1 + a2

4b2

∣∣∣∣ = b1(a2
3b1 + a2

4b2)− b2(a2
1b1 + a2

2b2) = 0.

Now, calculating det C3, we get:

det C3 =
∣∣∣∣

b1 (a1
1 + a2

1)b1 + (a1
2 + a2

2)b2

b2 (a1
3 + a2

3)b1 + (a1
4 + a2

4)b2

∣∣∣∣
= b1[(a1

3 + a2
3)b1 + (a1

4 + a2
4)b2]− b2[(a1

1 + a2
1)b1 + (a1

2 + a2
2)b2]

= b1(a1
3b1 + a1

4b2)− b2(a1
1b1 + a1

2b2) + b1(a2
3b1 + a2

4b2)− b2(a2
1b1 + a2

2b2)
= det C1 + det C2 = det C1 6= 0.

Thus, system (3) in this case is controllable.

3. Nothing can be said for system (4). Take for instance any invertible matrix A1

such that system (1) is controllable. Then, taking A2 = A−1
1 , one always gets an

uncontrollable system (4). On the contrary, one can easily find a matrix A2 that
makes system (2) controllable, as well as system (4).
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