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Figure 1: A mechanical accelerometer mounted on a mass M.

1. Using Newton’s law of motion we have:

Mass M:

Mass m:

Y F
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Using z1 = x1, 22 = &1, 23 = =9 and z4 = &9 as states, the state space model is:

B 01 0 0][= 0
&2 00 0 0 2 -+
dt — 2 M
dzs 00 0 1||z|T] 0 |® 3
Zt4 k b 1
¥ 00 —% —m 24 -
21
y = [0 01 0] Z (4)
24

2. The output of the system is y = x9. Therefore from equation (??) and using the

Laplace transform we have:

k b 1
2 —_—— —_—— _——
s7Y(s) mY(s) msY(s) MU(S)
1
(P4 —st ¥(s) = —=-Us)
Y (s) 1 1
G(s) = - 5
W06 T TMeT Ak ?
3. Replacing the given values we get the transfer function:
1 1 1
Gls) = 52 4+4s+4 5(s+2)2
The Laplace transform of the output y(¢) is:
10 2
Y(s)\= -\ —— — —
() 5(s+2)? s s(s + 2)?

The time expression of the output y(¢) can be found using inverse Laplace transform.
We start be expanding the transfer function in partial fractions.



Signal and System Theory II, BSc, Winter 2009 Solution

2 A B C
Cs(s+2)2 - §+s+2+(s+2)2

2  A(s?44s+4) + B(s* 4+ 2s) + Cs
Cs(s+2)2 s(s + 2)?

2  (A+B)s?4+(4A+2B+C)s+44
Cs(s+2)2 s(s + 2)?

Equating coefficients, we obtain A = —0.5, B = 0.5 and C' = 1. Therefore the
Laplace transform of the output is:

O.5+ 0.5 n 1
s s+2 (s+2)?

and the inverse Laplace transform is:

Y(s) =

y(t) = —0.5+ 0.5 2 +te (6)
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Exercise 2
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1. To check the controllability, we compute the controllability matrix

P=[B AB]:[OGH] (7)

1 -3
The determinant of P is det(P) = —a—1, therefore P has full rank whenever a # —1.

2. To check the observability, we compute the observability matrix

o=[&]-[1.0]

The determinant of @ is det(Q) = a — 3, therefore @ has full rank whenever a # 3.

3. We begin by evaluating the characteristic polynomial by taking the determinant of
A — A where [ is the identity matrix.

det(\I — A) = det< _Al _Aa+_31> (9)

= M43\—a-1 (10)

We know that a second order system is stable if and only if all coefficients of the
quadratic characteristic equation have the same sign. Therefore, we have that the
system is asymptotically stable for ¢ < —1, and unstable for a > —1. For a = 1 the
characteristic polynomial becomes A\(A+3), with the corresponding eigenvalues being
A1 = 0 and Ay = —3. Hence, the system in this case is stable, but not asymptotically
stable.

4. We wish to design a feedback controller which places the closed loop poles at A = —1.
Given the state feedback controller, u = Kz, we may rewrite the systems as an
autonomous system, i.e.

. 0 a+1 0
& o= [1 _3}+[1}[1€1 ko | (11)
0 a+1
- [1+/<:1 —3+k2]m' (12)
Computing the characteristic polynomial of the closed loop system, we take
A —a—1
det(\] - A— BK) = det<_1_k1 )\+3—k2> (13)

= )52+(3—k2)>\—(a+1)(k1+1). (14)



Signal and System Theory II, BSc, Winter 2009 Solution

To place the poles at A = —1, we simply need to match the coefficients of the above
characteristic polynomial to the polynomial with roots at —1, i.e. A2 4+ 2\ + 1.
Therefore, we can first solve for ko by solving 2 = 3 — ko, which gives us ko = 1.
Next, we try to solve for k; by solving 1 = —(a + 1)(k; + 1). This is impossible if

a = —1, otherwise the solution is k1 = —ﬁ—g. Therefore, if a # —1, our controller is
— 2+
K = [ —-e 1 ] . (15)

Notice that the controller K is undefined at a« = —1, and therefore the pole placement
is not feasible. Of course, this is consistent with part 1) where we noted that the
systems is uncontrollable at a = —1.
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1. Setting 21 = # and z3 = 0 we can derive the following equations:

Ci?l ) (16)

To = sin(—xz1 + axs) (17)

2. In order to determine the equilibrium points of the above system we set the derivatives
in equations (?7),(??) equal to zero. So we have:

x5 =0 (18)

sin(—z] + axs) =0 (19)
Substituting (??) into (??) we obtain that sin(—z}) = 0, so x] = —km, for k € Z.
Equilibria for even values of k lead to the same system behavior, so for stability we

can check z, = (0,0) as a representative of the points obtained for £ = 0,2,4, ....
The same hold for odd values of k, so we can check only x, = (—,0).

3. The Jacobian of the system is:

0 1
Al 22) = | _ cos(—x1 + aze) acos(—r1 + O‘m)] .

For all equilibria of the form (0, 2k7), for k € Z, the Jacobian becomes A = [_01 ;] .

The characteristic polynomial is therefore A2 — a) + 1.
e If o > 0 the coefficients of the characteristic polynomial have different signs.

This implies that a root has positive real part. Therefore the system is unstable.

e If oo < 0 the coefficients of the characteristic polynomial have same sign. This
implies that the roots have negative real part. Therefore the system is stable.

e If o = 0 the roots of the characteristic polynomial are imaginary. Therefore the
linearization is inconclusive.

For all equilibria of the form (0, (2k + 1)7), for k € Z the Jacobian becomes A =
[(1) _10[} The characteristic polynomial of this matrix is A> + o\ — 1. Hence the
system is unstable for all values of .

4. For o = 0 the state equations become:

ilsz

o = sin§—x1) = —sin(xq)
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This is a special case of the frictionless pendulum threated in class. For V(z) =
(1 — cos(z1)) + 323 we have that V(0) = 0 and V(z) > 0 for x € R? with |z;] < 2.
Moreover,

V(a:) = sin(zq)re + x2(—sin(z1))
=0

Applying Lyapunov’s Stability Theorem to the open set
S = {z € R?||zy| < 27}

we conclude that the equilibrium x = 0 is stable.
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1. If A is diagonalizable then it can be written in the form A = SAS™!. We can use
induction for the proof. So, for k=1, A' = SA'.S~! holds by definition. Assume that

Ak*l — SAkflsfl

and show that A* = SAFS~!. This is clearly true since

Ak — AF-14
= SAF181gAS !
= SAFIASTE
= SAks—!

2. We start by calculating the product of the first two matrices:

Moo 0

0 X5 .. 0

P=SAN=1|g g5 © i s SRR
0 0 . X

which leads to

P=sAN00...0/ 450X 0...04...+5,[000 ... \F]

We can observe that this is a sum of n matrices, each of dimension n x n. For the
first matrix, we have:

sllA’f 0O .. 0
siAF00 .. 0] = SIQ_AIIC Vo0
X 00
s;i1 0 ... O
:)\]f 3%2 0 .. 0 :)\]f . . .
stm 0 0
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where s11, 12, ...51, are the individual elements of the eigenvector si. Similar rela-
tions hold for the rest of the matrices, so finally we get:

P=X|g t0: . to|+-+X|o:o0: . s
nsn

Mesi b Nsy 0o AR
Now, given that

A=PS ™ = Ms1 ... Ms, ]

by a similar procedure

n
_ k. T
A= E Aj sie;
1=1

3. We can examine the stability of the system using the above relation, since the zero
input response of the system is x, = A*zy. So,

n
Ty = < g Afsmf) T
i=1

n
lzgll = 1D A¥sief woll
1=1
n
k
< > IMlllsilllle: ol
i=1

n
= > il*llsillllei lloll
i=1

Recall that \; are generally complex. If |\;| < 1 for all i = 1,...,n then |N;[¥ — 0
as k — oo, for all i = 1,...,n since everything else in this expression (s;,e;,xg) are
constant x; — 0 as k — oo and the system is asymptotically stable.

If |\;] = 1foralli = 1,...,n then |\*| = |\;|¥ = 1 forallk =0,...,1and alli = 1,...,n.

Therefore
10
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n n
k k
el = 1) Asiel ol < Y M lllsilllle:llzol
i=1 i=1

n
<> lsillleillllzol
1=1

Hence the state trajectory remains bounded (though it does not necessarily converge
to 0) and the system is stable (though not necessarily asymptotically stable).

el
Finally, if there exists i = 1,...,n such that |\;| > 1, set o = s;. Since S~ =

€n
and S~1S = I, we have GZTCCQ = eZTsi =1 and e;-r:vo = e;-rsi = 0 if j # i. Therefore

k
Ty = g )\fsieiTxo = )\fsi
i=1

and ||z = |A\i|*||si]| — oo as k — oco. Hence the system is unstable.

11



