Automatic Control Laboratory	D-ITET
ETH Zurich	Winter 2009
Prof. J. Lygeros	26.01 .2009

Prof. J. Lygeros
26.01.2009

Signal and System Theory II 4. Semester, BSc

Solutions

Exercise 1

1	2	3	Aufgabe
8	6	11	25 Punkte

Figure 1: A mechanical accelerometer mounted on a mass M.

1. Using Newton's law of motion we have:

Mass M :

$$
\begin{align*}
\sum F & =M a \\
F & =M \frac{d^{2} x_{1}}{d t^{2}} \\
\ddot{x}_{1} & =\frac{u}{M} \tag{1}
\end{align*}
$$

Mass m :

$$
\begin{align*}
\sum F & =m a \\
-k x_{2}-b \frac{d x_{2}}{d t} & =m \frac{d^{2}}{d t^{2}}\left(x_{1}+x_{2}\right) \\
-k x_{2}-b \frac{d x_{2}}{d t} & =m \ddot{x}_{1}+m \ddot{x}_{2} \\
\ddot{x}_{2} & =-\frac{k}{m} x_{2}-\frac{b}{m} \dot{x}_{2}-\frac{u}{M} \tag{2}
\end{align*}
$$

Using $z_{1}=x_{1}, z_{2}=\dot{x}_{1}, z_{3}=x_{2}$ and $z_{4}=\dot{x}_{2}$ as states, the state space model is:

$$
\begin{align*}
{\left[\begin{array}{c}
\frac{d z_{1}}{d t} \\
\frac{d z_{2}}{d t} \\
\frac{d z_{3}}{d t} \\
\frac{d z_{4}}{d t}
\end{array}\right]=\left[\begin{array}{lllr}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -\frac{k}{m} & -\frac{b}{m}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{M} \\
0 \\
-\frac{1}{M}
\end{array}\right] u } \tag{3}\\
y=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right] \tag{4}
\end{align*}
$$

2. The output of the system is $y=x_{2}$. Therefore from equation (??) and using the Laplace transform we have:

$$
\begin{align*}
s^{2} Y(s) & =-\frac{k}{m} Y(s)-\frac{b}{m} s Y(s)-\frac{1}{M} U(s) \\
\left(s^{2}+\frac{b}{m} s+\frac{k}{m}\right) Y(s) & =-\frac{1}{M} U(s) \\
G(s)=\frac{Y(s)}{U(s)} & =-\frac{1}{M} \frac{1}{s^{2}+\frac{b}{m} s+\frac{k}{m}} \tag{5}
\end{align*}
$$

3. Replacing the given values we get the transfer function:

$$
G(s)=-\frac{1}{5} \frac{1}{s^{2}+4 s+4}=-\frac{1}{5(s+2)^{2}}
$$

The Laplace transform of the output $y(t)$ is:

$$
Y(s)=-\frac{1}{5(s+2)^{2}} \frac{10}{s}=-\frac{2}{s(s+2)^{2}}
$$

The time expression of the output $y(t)$ can be found using inverse Laplace transform. We start be expanding the transfer function in partial fractions.

$$
\begin{aligned}
-\frac{2}{s(s+2)^{2}} & =\frac{A}{s}+\frac{B}{s+2}+\frac{C}{(s+2)^{2}} \\
-\frac{2}{s(s+2)^{2}} & =\frac{A\left(s^{2}+4 s+4\right)+B\left(s^{2}+2 s\right)+C s}{s(s+2)^{2}} \\
-\frac{2}{s(s+2)^{2}} & =\frac{(A+B) s^{2}+(4 A+2 B+C) s+4 A}{s(s+2)^{2}}
\end{aligned}
$$

Equating coefficients, we obtain $A=-0.5, B=0.5$ and $C=1$. Therefore the Laplace transform of the output is:

$$
Y(s)=-\frac{0.5}{s}+\frac{0.5}{s+2}+\frac{1}{(s+2)^{2}}
$$

and the inverse Laplace transform is:

$$
\begin{equation*}
y(t)=-0.5+0.5 e^{-2 t}+t e^{-2 t} \tag{6}
\end{equation*}
$$

Exercise 2

1	2	3	4	Exercise
5	5	5	10	25 Points

1. To check the controllability, we compute the controllability matrix

$$
P=\left[\begin{array}{cc}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0 & a+1 \tag{7}\\
1 & -3
\end{array}\right]
$$

The determinant of P is $\operatorname{det}(P)=-a-1$, therefore P has full rank whenever $a \neq-1$.
2. To check the observability, we compute the observability matrix

$$
Q=\left[\begin{array}{c}
C \tag{8}\\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & a-2
\end{array}\right]
$$

The determinant of Q is $\operatorname{det}(Q)=a-3$, therefore Q has full rank whenever $a \neq 3$.
3. We begin by evaluating the characteristic polynomial by taking the determinant of $\lambda I-A$ where I is the identity matrix.

$$
\begin{align*}
\operatorname{det}(\lambda I-A) & =\operatorname{det}\left(\begin{array}{cc}
\lambda & -a-1 \\
-1 & \lambda+3
\end{array}\right) \tag{9}\\
& =\lambda^{2}+3 \lambda-a-1 \tag{10}
\end{align*}
$$

We know that a second order system is stable if and only if all coefficients of the quadratic characteristic equation have the same sign. Therefore, we have that the system is asymptotically stable for $a<-1$, and unstable for $a>-1$. For $a=1$ the characteristic polynomial becomes $\lambda(\lambda+3)$, with the corresponding eigenvalues being $\lambda_{1}=0$ and $\lambda_{2}=-3$. Hence, the system in this case is stable, but not asymptotically stable.
4. We wish to design a feedback controller which places the closed loop poles at $\lambda=-1$. Given the state feedback controller, $u=K x$, we may rewrite the systems as an autonomous system, i.e.

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{cc}
0 & a+1 \\
1 & -3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right] x \tag{11}\\
& =\left[\begin{array}{cc}
0 & a+1 \\
1+k_{1} & -3+k_{2}
\end{array}\right] x . \tag{12}
\end{align*}
$$

Computing the characteristic polynomial of the closed loop system, we take

$$
\begin{align*}
\operatorname{det}(\lambda I-A-B K) & =\operatorname{det}\left(\begin{array}{cc}
\lambda & -a-1 \\
-1-k_{1} & \lambda+3-k_{2}
\end{array}\right) \tag{13}\\
& =\frac{\lambda^{2}}{5}+\left(3-k_{2}\right) \lambda-(a+1)\left(k_{1}+1\right) \tag{14}
\end{align*}
$$

To place the poles at $\lambda=-1$, we simply need to match the coefficients of the above characteristic polynomial to the polynomial with roots at -1 , i.e. $\lambda^{2}+2 \lambda+1$. Therefore, we can first solve for k_{2} by solving $2=3-k_{2}$, which gives us $k_{2}=1$. Next, we try to solve for k_{1} by solving $1=-(a+1)\left(k_{1}+1\right)$. This is impossible if $a=-1$, otherwise the solution is $k_{1}=-\frac{2+a}{1+a}$. Therefore, if $a \neq-1$, our controller is

$$
K=\left[\begin{array}{ll}
-\frac{2+a}{1+a} & 1 \tag{15}
\end{array}\right]
$$

Notice that the controller K is undefined at $a=-1$, and therefore the pole placement is not feasible. Of course, this is consistent with part 1) where we noted that the systems is uncontrollable at $a=-1$.

Exercise 3

1	2	3	4	Aufgabe
5	5	10	5	25 Punkte

1. Setting $x_{1}=\theta$ and $x_{2}=\dot{\theta}$ we can derive the following equations:

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \tag{16}\\
& \dot{x}_{2}=\sin \left(-x_{1}+\alpha x_{2}\right) \tag{17}
\end{align*}
$$

2. In order to determine the equilibrium points of the above system we set the derivatives in equations (??),(??) equal to zero. So we have:

$$
\begin{align*}
& x_{2}^{\star}=0 \tag{18}\\
& \sin \left(-x_{1}^{\star}+\alpha x_{2}^{\star}\right)=0 \tag{19}
\end{align*}
$$

Substituting (??) into (??) we obtain that $\sin \left(-x_{1}^{\star}\right)=0$, so $x_{1}^{\star}=-k \pi$, for $k \in \mathbb{Z}$. Equilibria for even values of k lead to the same system behavior, so for stability we can check $x_{a}=(0,0)$ as a representative of the points obtained for $k=0,2,4, \ldots$. The same hold for odd values of k, so we can check only $x_{b}=(-\pi, 0)$.
3. The Jacobian of the system is:

$$
A\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
0 & 1 \tag{20}\\
-\cos \left(-x_{1}+\alpha x_{2}\right) & \alpha \cos \left(-x_{1}+\alpha x_{2}\right)
\end{array}\right]
$$

For all equilibria of the form $(0,2 k \pi)$, for $k \in \mathbb{Z}$, the Jacobian becomes $A=\left[\begin{array}{cc}0 & 1 \\ -1 & \alpha\end{array}\right]$. The characteristic polynomial is therefore $\lambda^{2}-\alpha \lambda+1$.

- If $\alpha>0$ the coefficients of the characteristic polynomial have different signs. This implies that a root has positive real part. Therefore the system is unstable.
- If $\alpha<0$ the coefficients of the characteristic polynomial have same sign. This implies that the roots have negative real part. Therefore the system is stable.
- If $\alpha=0$ the roots of the characteristic polynomial are imaginary. Therefore the linearization is inconclusive.

For all equilibria of the form $(0,(2 k+1) \pi)$, for $k \in \mathbb{Z}$ the Jacobian becomes $A=$ $\left[\begin{array}{cc}0 & 1 \\ 1 & -\alpha\end{array}\right]$. The characteristic polynomial of this matrix is $\lambda^{2}+\alpha \lambda-1$. Hence the system is unstable for all values of α.
4. For $\alpha=0$ the state equations become:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\sin _{7}\left(-x_{1}\right)=-\sin \left(x_{1}\right)
\end{aligned}
$$

This is a special case of the frictionless pendulum threated in class. For $V(x)=$ $\left(1-\cos \left(x_{1}\right)\right)+\frac{1}{2} x_{2}^{2}$ we have that $V(0)=0$ and $V(x)>0$ for $x \in \mathbb{R}^{2}$ with $\left|x_{1}\right|<2 \pi$. Moreover,

$$
\begin{aligned}
\dot{V}(x) & =\sin \left(x_{1}\right) x_{2}+x_{2}\left(-\sin \left(x_{1}\right)\right) \\
& =0
\end{aligned}
$$

Applying Lyapunov's Stability Theorem to the open set

$$
S=\left\{x \in \mathbb{R}^{2}| | x_{1} \mid<2 \pi\right\}
$$

we conclude that the equilibrium $x=0$ is stable.

Exercise 4

1	2	3	Aufgabe
5	10	10	25 Punkte

1. If A is diagonalizable then it can be written in the form $A=S \Lambda S^{-1}$. We can use induction for the proof. So, for $\mathrm{k}=1, A^{1}=S \Lambda^{1} S^{-1}$ holds by definition. Assume that

$$
A^{k-1}=S \Lambda^{k-1} S^{-1}
$$

and show that $A^{k}=S \Lambda^{k} S^{-1}$. This is clearly true since

$$
\begin{aligned}
A^{k} & =A^{k-1} A \\
& =S \Lambda^{k-1} S^{-1} S \Lambda S^{-1} \\
& =S \Lambda^{k-1} \Lambda S^{-1} \\
& =S \Lambda^{k} S^{-1}
\end{aligned}
$$

2. We start by calculating the product of the first two matrices:

$$
P=S \Lambda^{k}=\left[\begin{array}{ccccccc}
& \vdots & & \vdots & \ldots & \vdots & \\
& s_{1} & \vdots & s_{2} & \vdots & \ldots & \vdots \\
& \vdots & & \vdots & \ldots & \vdots & s_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \ldots & 0 \\
0 & \lambda_{2}^{k} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}^{k}
\end{array}\right]
$$

which leads to

$$
P=s_{1}\left[\begin{array}{lllll}
\lambda_{1}^{k} & 0 & 0 & \ldots & 0
\end{array}\right]+s_{2}\left[\begin{array}{lllll}
0 & \lambda_{2}^{k} & 0 & \ldots & 0
\end{array}\right]+\ldots+s_{n}\left[\begin{array}{lllll}
0 & 0 & 0 & \ldots & \lambda_{n}^{k}
\end{array}\right]
$$

We can observe that this is a sum of n matrices, each of dimension $n \times n$. For the first matrix, we have:

$$
\left.\begin{array}{rl}
s_{1}\left[\begin{array}{lllll}
\lambda_{1}^{k} & 0 & 0 & \ldots & 0
\end{array}\right] & =\left[\begin{array}{cccc}
s_{11} \lambda_{1}^{k} & 0 & \ldots & 0 \\
s_{12} \lambda_{1}^{k} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
s_{1 n} \lambda_{1}^{k} & 0 & \ldots & 0
\end{array}\right] \\
& =\lambda_{1}^{k}\left[\begin{array}{ccccc}
s_{11} & 0 & \ldots & 0 \\
s_{12} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
s_{1 n} & 0 & \ldots & 0
\end{array}\right] \quad=\lambda_{1}^{k}\left[\begin{array}{cccccc}
\vdots & & \\
s_{1} & \vdots & 0 & \vdots & \ldots & \vdots
\end{array}\right. \\
& \vdots \\
& \\
&
\end{array}\right]
$$

where $s_{11}, s_{12}, \ldots s_{1 n}$ are the individual elements of the eigenvector s_{1}. Similar relations hold for the rest of the matrices, so finally we get:

$$
\begin{aligned}
& =\left[\begin{array}{ccccccc}
& \vdots & & \vdots & \ldots & \vdots & \\
\lambda_{1}^{k} s_{1} & \vdots & \lambda_{2}^{k} s_{2} & \vdots & \ldots & \vdots & \lambda_{n}^{k} s_{n} \\
& \vdots & & \vdots & \ldots & \vdots &
\end{array}\right]
\end{aligned}
$$

Now, given that

$$
A=P S^{-1}=\left[\begin{array}{lll}
\lambda_{1}^{k} s_{1} & \ldots & \lambda_{n}^{k} s_{n}
\end{array}\right]\left[\begin{array}{c}
e_{1}^{T} \\
\vdots \\
e_{n}^{T}
\end{array}\right]
$$

by a similar procedure

$$
A=\sum_{i=1}^{n} \lambda_{i}^{k} s_{i} e_{i}^{T}
$$

3. We can examine the stability of the system using the above relation, since the zero input response of the system is $x_{k}=A^{k} x_{0}$. So,

$$
\begin{aligned}
x_{k} & =\left(\sum_{i=1}^{n} \lambda_{i}^{k} s_{i} e_{i}^{T}\right) x_{0} \\
\left\|x_{k}\right\| & =\left\|\sum_{i=1}^{n} \lambda_{i}^{k} s_{i} e_{i}^{T} x_{0}\right\| \\
& \leq \sum_{i=1}^{n}\left|\lambda_{i}^{k}\right|\left\|s_{i}\right\|\left\|e_{i}\right\|\left\|x_{0}\right\| \\
& =\sum_{i=1}^{n}\left|\lambda_{i}\right|^{k}\left\|s_{i}\right\|\left\|e_{i}\right\|\left\|x_{0}\right\|
\end{aligned}
$$

Recall that λ_{i} are generally complex. If $\left|\lambda_{i}\right|<1$ for all $i=1, \ldots, n$ then $\left|\lambda_{i}\right|^{k} \rightarrow 0$ as $k \rightarrow \infty$, for all $i=1, \ldots, n$ since everything else in this expression $\left(s_{i}, e_{i}, x_{0}\right)$ are constant $x_{k} \rightarrow 0$ as $k \rightarrow \infty$ and the system is asymptotically stable.
If $\left|\lambda_{i}\right|=1$ for all $i=1, \ldots, n$ then $\left|\lambda^{k}\right|=\left|\lambda_{i}\right|^{k}=1$ for all $k=0, \ldots, 1$ and all $i=1, \ldots, n$. Therefore

$$
\begin{aligned}
\left\|x_{k}\right\|=\left\|\sum_{i=1}^{n} \lambda_{i}^{k} s_{i} e_{i}^{T} x_{0}\right\| & \leq \sum_{i=1}^{n}\left|\lambda_{i}^{k}\right|\left\|s_{i}\right\|\left\|e_{i}\right\|\left\|x_{0}\right\| \\
& \leq \sum_{i=1}^{n}\left\|s_{i}\right\|\left\|e_{i}\right\|\left\|x_{0}\right\|
\end{aligned}
$$

Hence the state trajectory remains bounded (though it does not necessarily converge to 0) and the system is stable (though not necessarily asymptotically stable).
Finally, if there exists $i=1, \ldots, n$ such that $\left|\lambda_{i}\right|>1$, set $x_{0}=s_{i}$. Since $S^{-1}=\left[\begin{array}{c}e_{1}^{T} \\ \vdots \\ e_{n}\end{array}\right]$ and $S^{-1} S=I$, we have $e_{i}^{T} x_{0}=e_{i}^{T} s_{i}=1$ and $e_{i}^{T} x_{0}=e_{i}^{T} s_{i}=0$ if $j \neq i$. Therefore

$$
x_{k}=\sum_{i=1}^{k} \lambda_{i}^{k} s_{i} e_{i}^{T} x_{0}=\lambda_{i}^{k} s_{i}
$$

and $\left\|x_{k}\right\|=\left|\lambda_{i}\right|^{k}\left\|s_{i}\right\| \rightarrow \infty$ as $k \rightarrow \infty$. Hence the system is unstable.

