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Signals and Systems II, BSc, Spring Term 2020 Solutions

Exercise 1 1 2(a) 2(b) 2(c) 3(a) 3(b) Exercise

3 4 4 4 5 5 25 Points

1. Applying the Laplace transform on (1) results in

s2Y (s) + 15sY (s) + 20Y (s) = 25U(s). [2 p.]

The resulting transfer function reads as

G(s) =
25

s2 + 15s+ 20
. [1 p.]

2. (a) The transfer function from r to e can be obtained, for example, from the block
diagram by noticing that e(t) = r(t) − y(t) [1 p.]. Equivalently, in the Laplace
domain, it holds that

E(s) = R(s)− Y (s)

=

(
1− KG(s)

1 +KG(s)

)
R(s)

=
1

1 +KG(s)
R(s)[2 p.]

where in the second step we exploited the equivalence Y (s) = KG(s)
1+KG(s)R(s). Hence,

the transfer from r to e reads as

Tr→e(s) = E(s)/R(s) =
1

1 +KG(s)
=

s2 + 15s+ 20

s2 + 15s+ 20 + 25K
. [1 p.]

(b) Recall that the Laplace transform of the unitary step input reference is R(s) = 1
s

[1 p.]. Moreover, note that, for all K > 0, the poles of Tr→e have negative real part
[1 p.]. Hence, by the final value theorem, the corresponding tracking error at steady
state can be computed as

ess = lim
s→0

sTr→e(s)R(s) = lim
s→0

s
1

1 +KG(s)

1

s
=

1

1 +KG(0)
=

1

1 + 25
20K

. [1 p.]

It follows that ess < 0.1 if and only if K > 9 · 2025 = 7.2 [1 p.].

(c) The closed-loop transfer function is given by

KG(s)

1 +KG(s)
=

25K
s2+15s+20

1 + 25K
s2+15s+20

=
25K

s2 + 15s+ 20 + 25K
. [1 p., can also use denominator of (a)]
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The 2nd order transfer function is of the form

Ĝ(s) =
C0

s2 + 2ζωns+ ω2
n

, [1 p.]

where ζ is the damping ratio. Comparing the coefficients

ω2
n = 20 + 25K,

2ζωn = 15,
[1 p.]

one gets that ζ = 0.5 if and only if:

15

2
√

20 + 25K
= 0.5

20 + 25K =

(
15

2× 0.5

)2

K =
152 − 20

25
= 8.2. [1 p.]

3. (a) The Nyquist stability criterion states that the number of closed-loop poles with
positive real part is Z = N + P , where N is the number of clockwise encirclements
of the point (−1, 0) and P is the number of open-loop poles with positive real part
[1 p.].

The poles of the open-loop system

L(s) = D(s)G(s) = 25K
(s+ 1.5)

(s+ 2)(s+ 12)(s2 + 15s+ 20)

are p1 = −2, p2 = −12 and the roots of the polynomial (s2 + 15s+ 20), i.e.,

p3,4 =
−15±

√
152 − 80

2
. [1 p.]

Since all the poles {pi}4i=1 have negative real part, then the open loop system L(s)
does not have unstable poles, hence P = 0 [1 p.].

Moreover, from the Nyquist plot in Figure 3, we note that there is no encirclement
of the point (−1, 0), i.e., N = 0 [1 p.]. Hence, we conclude that the closed-loop
system is stable [1 p.].

(b) As K increases, the magnitude of L(s) increases, thus, the curve in the Nyquist
diagram expands [1 p.]. For K big enough, the curve will eventually encircle twice
the point (−1, 0) in clockwise direction, hence, N = 2 [2 p.]. It follows from the
Nyquist stability criterion, that the closed-loop system becomes unstable when K is
increased sufficiently [2 p.].
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Exercise 2 1 2 3 4 5(a) 5(b) 5(c) Exercise

3 6 4 4 2 3 3 25 Points

1. Noticing that the matrix A is upper triangular, its eigenvalues are λ1 = −1 [1 p]
and λ2 = 1 [1 p]. So the system is unstable. [1 p]

2. The observability matrix is

Q =

[
C
CA

]
=

[
γ 1
−γ −2γ + 1

]
.[1 p]

For γ = 1 or γ = 0, the observability matrix Q loses rank and the system is not
observable, so it is observable for γ /∈ {0, 1} [2 p, 1 each].

The controllability matrix is

P = [B AB] =

[
1 −1− 2β
β β

]
.[1 p.]

For β = 0 or 1 = −1 − 2β, equivalently β = −1, the controllability matrix P loses
rank and the system is not controllable, so it is controllable for β /∈ {0,−1} [2 p., 1
each].

3. For the unstable eigenvalue λ = 1 we have

λI −A =

[
2 2
0 0

]
[1 p.]

For γ = 1 we have [
C

λI −A

]
=

1 1
2 2
0 0


so the matrix has rank 1, and thus the unstable eigenvalue is not detectable. [1 p.]

For γ = 0 we have [
C

λI −A

]
=

0 1
2 2
0 0


so the matrix has rank 2, and thus the unstable eigenvalue is detectable. [1 p.]

Therefore, for both values the system is unobservable, but it is detectable for γ = 0,
so we choose γ = 0. [1 p.].

4. For the unstable eigenvalue λ = 1 we have

λI −A =

[
2 2
0 0

]
[1 p.]

For β = 0 we have [
B λI −A

]
=

[
1 2 2
0 0 0

]
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so the matrix has rank 1, and thus the unstable eigenvalue is not stabilizable. [1 p.]

For β = −1 we have [
B λI −A

]
=

[
1 2 2
−1 0 0

]
so the matrix has rank 2, and thus the unstable eigenvalue is stabilizable. [1 p.]

Therefore, for both values the system is uncontrollable, but it is stabilizable for
β = −1, so we choose β = −1. [1 p.].

5. (a) For these values we have

Ã(k) = A+BkC[1 p.] =

[
−1 −2
0 1

]
+ k

[
1
2

] [
0 1

]
=

[
−1 −2 + k
0 1 + 2k

]
[1 p.]

(b) Since the matrix is upper triangular [1 p.], the system is asymptotically stable
for 1 + 2k < 0 [1 p.] , or equivalently k < −1

2 . [1 p.]

(c) Since the eigenvalue λ1 = −1 cannot be altered, that is the fastest convergence
rate [1 p.]. To achieve it we need, 1 + 2k ≤ −1 [1 p.], or equivalently k ≤ −1.
[1 p.]
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Exercise 3

1 2 3 (a) 3(b) 3 (c) Exercise

6 4 5 4 6 25 Points

1. For the given circuit the following holds i(t) = C d
dtuc(t) (1p.), and L d

dt i(t) = uL

(1p. for),with uL = u(t) − R(i(t))i(t) − uc(t) (1p.). By taking x(t) :=

[
uc(t)
i(t)

]
we

have

d

dt
x(t) =

[
0 1

C

− 1
L −R(i(t))

L

]
x(t) +

[
0
1
L

]
u(t) =

[
0 1
−1 −R(i(t))

]
x(t) +

[
0
1

]
u(t), (2p.)

y(t) =
[
0 1

]
x(t), (1p.).

(Give all points even if matrices are not separated as in the solution, but everything
is written as one big matrix)

2. First we note that the system is not linear because R(i(t))i(i) is, in general, non
linear function of i(t) (1p.). In order for system to be linear, R(i(t))i(t) has to be
linear function of the current i(t) (1p.). Consequently, we have R(i(t))i(t) = ai(t),
where a ∈ R, i.e., R(i(t)) = a (2p.). Note that when we have R(i(t))i(t) = ai(t) + b,
where a, b ∈ R, i.e., R(i(t)) = a + b

i(t) system is linear in input and output, but it

has a constant offset matrix D =

[
0
b

]
hence, by definition, it is affine. (Give 2p. if

there is just conclusion without explanations.)

3. (a) We find the equilibria of a system by setting d
dtx(t)

!
= 0. Hence, i(t) = 0 and

−uc(t) + sin(t)
i(t) i(t) + u(t) = 0 ⇒ uc(t) = u(t). (1p.) The nonlinear part of

a system sin(i(t)) is linearized around i(t) = 0, hence we have sin(i(t)) ≈ i(t)
(1p.). Consequently, the linearised system has the following form

d

dt
x(t) =

[
0 1
−1 1

]
x(t) +

[
0
1

]
u(t) (1p.),

and the characteristic polynomial is det(sI − A) = s2 − s+ 1 (1p.). Since the
roots of the polynomial have positive real part, the system is unstable (1p.).

(Give also points if solved for u(t) = 0)

(b) We begin by writing the energy function of the system which is given by E(t) =

1
2x(t)TQx(t), where Q =

[
C 0
0 L

]
= I (1p., also if not written in matrix

form). Consequently, E(t) = 1
2x(t)Tx(t).

Then the power ,which is the instantaneous energy change, is given by

P (t) =
d

dt
E(t) =

1

2

(
d

dt
x(t)Tx(t) + x(t)T

d

dt
x(t)

)
=

1

2
x(t)T

(
AT +A

)
x(t)

= x(t)T
[
0 0
0 −R(i(t))

]
x(t) = −R(i(t))i(t)2. (1p.)
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When magnitude i(t) is small, R(i(t)) ≈ −1. (1p.) Hence, the power of the
system is increasing, meaning that R(i(t)) is not a passive element, as it is
introducing additional energy into the system. (1p).

(c) The control law u(t) = f(y(t)) + Ky(t) has to be such that it cancels out the
non-linearity −R(i(t))i(t) = sin(i(t)) (1p.). Hence, f(y(t)) = − sin(i(t)) (1p.).
Plugging in the the desired control law in the system dynamics, we obtain

d

dt
x(t) =

[
0 1
−1 K

]
︸ ︷︷ ︸

Ã

x(t) (2p.).

The characteristic polynomial of the closed loop system is det(sI − Ã) = s2 −
Ks + 1 (1p.). The roots of the characteristic polynomial have a negative real
part when all coefficients of s2 − Ks + 1 have the same sign, hence in order
for system to be asymptotically stable K < 0 has to hold (1p.). Note that
when K = 0, the system is marginally stable, and when K > 0, the system is
unstable.
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Exercise 4

1 2 3(a) 3(b) 3(c) Exercise

4 5 4 6 6 25 Points

1. Its an EQ points if and only if ẋ = f(x) = 0 [1 p]

ẋ = f(x) = −α∇g(x) =⇒ f(x̄) = −α∇g(x̄) = 0 [3 p].

2. • The system is LAS if ∇f(x̄) is negative definite (all eigenvalues have negative
real parts) [1 p]

• ∇f(x̄) = A = −α∇2g(x̄) [1 p]

• Argue that ∇2g(x̄) positive definite implies that A is negative definite. [3
p] (For this section, give full points if the student understands that if the
Eigenvalues of ∇2g(x̄) are positive then the Eigenvalues of A = −α∇2g(x̄) are
negative) Example proof:
Let γi be the Eigenvalues of A. Since ∇g2(x̄) is symmetric the Eigenvalues are
all real and γi = −αλi where λi are the eigenvalues of ∇2g(x̄). Since ∇2g(x̄) is
positive definite, λi > 0 which implies that γi = −αλi < 0 .

3. (a) • V (x̄) = ‖x̄− x̄‖2 = 0 [1 p]

• V (x) = 0 =⇒ ‖x̄− x‖ = 0 =⇒ x = x̄ [1 p]

• V (x) ≥ 0 by the properties of norms [1 p]

• limx→∞ ‖x − x̄‖2 ≥ limk→∞(‖x‖ − ‖x̄‖)2 = ∞ [1 p] (Also accept that
limx→∞ x− x̄ =∞)

(b) The steps are:

V̇ (x) = (∇V (x))T f(x) [1 p] (1)

= (x− x̄)T f(x) [2 p] (2)

= (x− x̄)T (−α∇g(x)) [2 p] (3)

− α(x− x̄)T∇g(x) [1 p] (4)

(c) First step:

V̇ (x) = −α(x− x̄)T∇g(x) (5)

= −α(x− x̄)T (∇g(x)− 0) [1 p] (6)

= −α(x− x̄)T (∇g(x)−∇g(x̄)) [1 p] (7)

Specialize the condition from y to x̄, i.e.,

(x− x̄)T (∇g(x)−∇g(x̄)) ≥ m‖x− x̄‖2 [1 p] (8)
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Substitute the condition into the previous expression

V̇ (x) = −α(x− x̄)T (∇g(x)−∇g(x̄)) (9)

≤ −αm‖x− x̄‖2 [2 p] (10)

Note that V̇ (x) < 0 when x 6= x̄ and V̇ (x̄) = 0 and apply Lyapunov’s Theorem
to show GAS. [1 p]
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