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Signal and System Theory II, BSc, Fall Term 2013 Solution

Exercise 1

1 2 3 4 5 Exercise

2 4 4 5 10 25 Points

1. [2 Points] The system can be rewritten as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where

A =

(
2β β2

1 2β

)
, B =

(
1
0

)
, C =

(
1 1

)
.

Therefore, the system clearly is linear. Since the matrices A,B,C do not depend on
time, the system is time invariant.

2. [4 Points] The observability matrix is given by Q =

(
C
CA

)
=

(
1 1

2β + 1 β2 + 2β

)
.

The system is observable if and only if Q has rank two, which is equivalent to
det(Q) 6= 0.

det(Q) = β2 + 2β − (2β + 1) = β2 − 1,

and therefore the system is observable for all β ∈ R \ {1,−1}.

3. [4 Points] The controllability matrix is given by P =
(
B AB

)
=

(
1 2β
0 1

)
. The

system is controllable if and only if P has rank two, which is equivalent to det(R) 6= 0.

det(R) = 1,

hence the system is controllable for any β ∈ R.

4. [5 Points] We compute the Eigenvalues of the system matrix A

det(A− λI2) = λ2 − 4βλ+ 3β2 = 0

⇒ λ1 = 3β and λ2 = β. Since the two eigenvalues are distinct the matrix A
is diagonalizable and as such we know from the lecture notes that the system is
asymptotically stable if and only if β < 0.

5. (a) [5 Points]

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +B(Kx(t) + v(t))

= (A+BK)x(t) +Bv(t)

=

(
4 + k1 4 + k2

1 4

)
x(t) +

(
1
0

)
v(t)

y(t) =
(
1 1

)
x(t)
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(b) [5 Points] The poles of the closed loop system are given by the characteristic
polynomial

det(A+BK − sI2) = (4 + k1 − s)(4− s)− (4 + k2)

= s2 + s(−8− k1) + 12 + 4k1 − k2.

By setting det(A+BK − sI2) = (s+ 1)(s+ 2) and comparing the coefficients
we get k1 = −11 and k2 = −34.
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Exercise 2

1 2 3 4 Exercise

3 5 10 7 25 Points

1. The system is nonlinear, time-invariant and autonomous.

2. In state space form the system is given by

ẋ1(t) = x1(t)2x2(t)− x2(t)2 + 1 (2)

ẋ2(t) = x1(t) (3)

y(t) = x2(t). (4)

3. The equilibria of the system are obtained by setting the system equations to zero

0 = x1(t)2x2(t)− x2(t)2 + 1 (5)

0 = x1(t) (6)

such that we obtain

x̃1 =

(
0
1

)
and x̃2 =

(
0
−1

)
. (7)

The Jacobian is given by

A =

(
2x̃1x̃2 −2x̃2

1 0

)
(8)

and inserting the two equilibria yields

A1 =

(
0 −2
1 0

)
and A2 =

(
0 2
1 0

)
. (9)

A1 has eigenvalues ±i
√

2 and hence, the analysis is inconclusive. A2 has eigenvalues
±
√

2 such that we can conclude that we can conclude instability of the corresponding
equilibrium.

4. The phase-plane diagram indicates sustained oscillations around the equilibrium.
Looking at the linearized systems, we find that A2 is unstable, such that trajecto-
ries starting close to the equilibrium are pushed away from it. Consequently, the
phase-plane plot must correspond to the other equilibrium x1. Additionally, A1 has
complex eigenvalues with a real part of zero, again indicating sustained oscillations.
A2 on the other hand has one positive and one negative eigenvalue, indicating a
saddle point.

4



Signal and System Theory II, BSc, Fall Term 2013 Solution

Exercise 3

1 2 3 Exercise

10 8 7 25 Points

1. The fact that our circuit contains two capacitors suggests using a two-dimensional
state vector, with components corresponding to the voltages at C1 and C2 respec-
tively, i.e.,

x(t) =

(
uC1(t)
uC2(t)

)
.

With Kirchoff’s voltage law, we can set up our first equation

u(t) = uC1(t) + uR2(t) + uC2(t)

= uC1(t) +R2C2u̇C2(t) + uC2(t)

u̇C2(t) = − 1

R2C2
uC1(t)− 1

R2C2
uC2(t) +

1

R2C2
u(t).

The second equation is obtained by applying Kirchoff’s current law

iC1(t) = Z(t)iR1(t) + iR2(t)

C1u̇C1(t) = Z(t)
u(t)− uC1(t)

R1
+
u(t)− uC1(t)− uC2(t)

R2

u̇C1(t) = − 1

C1

(
Z(t)

1

R1
+

1

R2

)
uC1(t)− 1

C1R2
uC2(t) +

1

C1

(
Z(t)

1

R1
+

1

R2

)
u(t).

The resulting two-dimensional state-space model is given by

ẋ(t) =

(
− 1

C1
(Z(t) 1

R1
+ 1

R2
) − 1

C1R2

− 1
R2C2

− 1
R2C2

)
x(t) +

( 1
C1

(Z(t) 1
R1

+ 1
R2

)
1

R2C2

)
u(t)

y(t) = (0 1)x(t) + 0 · u(t).

2. With C1 = C2 = 1F , R1 = R2 = 1Ω and Z(t) = 0 we get

A =

(
−1 −1
−1 −1

)
and B =

(
1
1

)
As D = 0, the transfer function is given by
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G(s) = C(sI−A)−1B

= (0 1)

(
s+ 1 1

1 s+ 1

)−1(
1
1

)
= (−1 s+ 1)

(
1
1

)
1

s2 + 2s

=
s

s2 + 2s
=

1

s+ 2
.

There is a pole-zero cancellation, hence the system is either not controllable or not
observable.

3. For Z(t) = 0 we have A =

(
−1 −1
−1 −1

)
and the characteristic polynomial of A is

λ2 + 2λ, hence the eigenvalues of A are λ1 = 0 and λ2 = −2. It is easy to see that

the corresponding eigenvectors are w1 =

(
1
−1

)
and w2 =

(
1
1

)
. Consequently, we

can compute the zero input response as

y(t) = CΦ(t)x0 = CeAtx0 = CWeΛtW−1x0 =

=
(
0 1

)( 1 1
−1 1

)(
1 0
0 e−2t

)
1

2

(
1 −1
1 1

)(
1
1

)
=

=
1

2

(
−1 1

)(1 0
0 e−2t

)(
0
2

)
= e−2t.

Alternatively, we can also use the results from part 2 and directly obtain that

y(t) = L−1
{
C(sI−A)−1x0

}
= L−1

{
1

s+ 2

}
= e−2t.
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Exercise 4

1 2 3 Exercise

9 8 8 25 Points

1. (a) The eigenvalues are Λ(Ā) = {−2,−1}. The corresponding eigenvectors are

Āw1 = −2w1 ⇒ w1 =

[
1
0

]
,

Āw2 = −1w2 ⇒ w2 =

[
−6
1

]
.

(b) Since Re(λi) < 0 for i = 1, 2 the system is asymptotically stable.

(c) In order to compute the matrix exponential it is useful to diagonalize Ā using
the eigenvectors matrix W .

W = [w1|w2] , DĀ = W−1ĀW =

[
−2 0
0 −1

]

eDĀt =

[
e−2t 0

0 e−t

]
eĀt = WeDĀtW−1 =

[
e−2t 6e−2t − 6e−t

0 e−t

]
2. (a) According to the formula on slide 6.7:

A = eĀT =

[
e−2T 6e−2T − 6e−T

0 e−T

]
,

B =

∫ T

0
eĀ(T−t)B̄dt =

∫ T

0
eĀ(t)B̄dt =

∫ T

0

[
e−2t

0

]
dt =

[ ∫ T
0 e−2tdt

0

]
=

1

2

[
1− e−2T

0

]
.

(b) The eigenvalues of A are Λ(A) = {e−2T , e−T }. Since |λi| < 1 for all T > 0,
i = 1, 2, the discrete time system is always asymptotically stable. This has
to be the case since the free evolution of the discrete time system is just the
sampled version of the free evolution of the continuous time system. Since this
is asymptotically stable, for any initial condition x(0),

lim
t→∞

x(t) = lim
t→∞

eĀtx(0) = 0

⇓

lim
k→∞

x(k) = lim
k→∞

Akx(0) = lim
k→∞

(eĀT )kx(0) = lim
k→∞

eĀkTx(0) = 0.
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3. The matrices of the new system are

Â = (I + ĀT ) =

[
1− 2T −6T

0 1− T

]
,

B̂ =

[
T − T 2

0

]
.

The eigenvalues are Λ(Â) = {1− 2T, 1− T}. The system is asymptotically stable iff

|1− 2T | < 1 ⇒ T < 1 & |1− T | < 1 ⇒ T < 2.

Therefore the condition is T ≥ 1.
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