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Exercise 1

1 2 3 4 Exercise

7 6 5 7 25 Points

1. The controllability matrix P ∈ R
2×4 of system (3) is given by

P =
[
[b1 b2] A[b1 b2]

]

=
[
b1 b2 Ab1 Ab2

]
.

For system (3) to be controllable matrix P should be of full rank, i.e. rank(P ) = 2.
Assume that (1) is controllable. Its controllability matrix P1 =

[
b1 Ab1

]
∈ R

2×2

would then have full rank. Therefore, its columns b1, Ab1 are linearly independent.
The latter implies that the first and third column of P are linearly independent,
hence P has full rank and (3) is controllable irrespective of the fact that (2) may be
uncontrollable. The same conclusions is drawn if (2) was assumed to be controllable
instead.

Alternative solution: by setting u2(t) = 0, (3) turns into (1), which is controllable.
Hence, (3) is controllable. Similarly for the case where (2) is controllable.

2. Consider the controllability matrices P1, P2 ∈ R
2×2 of systems (1) and (2), respec-

tively.

P1 =
[
b1 Ab1

]
,

P2 =
[
b2 Ab2

]
.

In the case where (1), (2) are not controllable, the columns of P1 and P2 are linearly
dependent. Therefore, there exist scalars k1, k2 ∈ R such that Ab1 = k1b1 and
Ab2 = k2b2.

As shown in part 1, the controllability matrix P ∈ R
2×4 of system (3) is given by

P =
[
b1 b2 Ab1 Ab2

]
. We thus have that P =

[
b1 b2 k1b1 k2b2

]
. For system

(3) to be controllable, matrix P should have full rank, i.e. rank(P ) = 2. The latter
holds if b1 and b2 are linearly independent.

3. Consider for example the system matrices A =

[
1 1
1 1

]

, C1 =
[
1 0

]
and C2 =

[
0 −1

]
. Under this choice both systems (1) and (2) are observable, since the

observability matrices Q1 and Q2 have full rank.

Q1 =

[
C1

C1A

]

=

[
1 0
1 1

]

⇒ rank(Q1) = 2,

Q2 =

[
C2

C2A

]

=

[
0 −1
−1 −1

]

⇒ rank(Q2) = 2.

However, system (3) is not observable since its observability matrix does not have
full rank.

Q =

[
(C1 + C2)
(C1 + C2)A

]

=

[
1 −1
0 0

]

⇒ rank(Q) = 1.

Other counterexamples are of course equally valid.
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4. Applying u1(t) = Kx1(t) + r(t) to (1) the closed loop system is

ẋ1(t) = Ax1(t) + b1Kx1(t) + b1r(t),

= (A+ b1K)x1(t) + b1r(t).

The controllability matrix of the closed loop system is given by

P =
[
b1 (A+ b1K)b1

]

=
[
b1 Ab1 + b1Kb1

]
.

Since Kb1 is a scalar the above statement can be written as

P =
[
b1 Ab1 + αb1

]
,

where α = Kb1 ∈ R. P has full rank (i.e. the closed loop system is controllable)
if and only if the columns b1 and Ab1 + αb1 are linearly independent. The latter
is equivalent with the requirement that b1 and Ab1 are linearly independent. But
this is the case if and only if the controllability matrix of (1) is full rank (i.e. (1) is
controllable). Therefore, the closed loop system is controllable from r(t) if and only
if (1) is controllable from u1(t).
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Exercise 2

1 2 Exercise

10 15 25 Points

1. (a) [3 Points]

x1[k + 1] = e−Tx1[k] +

∫
T

0
eτ−Tdτ

︸ ︷︷ ︸

1−e−T

u[k]

y[k] = x1[k]

(b) [3 Points]

x2[k + 1] = e−Tx2[k] +

∫
T

0
eτ−Tdτ

︸ ︷︷ ︸

1−e−T

y[k]

v[k] = −2x2[k]

(c) [4 Points] Define ξ[k] :=
[
x1[k] x2[k]

]⊤
.

ξ[k + 1] =

(
x1[k + 1]
x2[k + 1]

)

=

(
e−Tx1[k] + (1− e−T )u[k]
e−Tx2[k] + (1− e−T )y[k]

)

=

(
e−Tx1[k] + (1− e−T )u[k]
e−Tx2[k] + (1− e−T )x1[k]

)

=

(
e−T 0

1− e−T e−T

)(
x1[k]
x2[k]

)

+

(
1− e−T

0

)

u[k]

=

(
e−T 0

1− e−T e−T

)

ξk +

(
1− e−T

0

)

u[k]

v[k] =
(
0 −2

)
(
x1[k]
x2[k]

)

=
(
0 −2

)
ξ[k]

2. (a) [3 Points] Define ξ(t) :=
[
x1(t) x2(t)

]⊤
.

ξ̇ =

(
ẋ1
ż2

)

=

(
−x1 + u

−x2 + y

)

=

(
−x1 + u

−x2 + x1

)

=

(
−1 0
1 −1

)(
x1
x2

)

+

(
1
0

)

u

v = −2x2 =
(
0 −2

)
(
x1
x2

)

(b) [1+5+5+1 Points] Recall E = eĒT , F =
∫
T

0 eĒ(T−τ)F̄dτ , G =
[
0 −2

]

[1 Point for G]

Ē =

(
−1 0
1 −1

)

=

(
−1 0
0 −1

)

︸ ︷︷ ︸

R1

+

(
0 0
1 0

)

︸ ︷︷ ︸

R2
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Since R1 is diagonal R1 and R2 commute. Therefore

eĒT = e(R1+R2)T = eR1T eR2T ,

where

eR1T =

(
e−T 0
0 e−T

)

eR2T = I + TR2 +
T 2

2
R2

2 + . . .
︸ ︷︷ ︸

0

=

(
1 0
T 1

)

.

Hence

E = eĒT =

(
e−T 0
Te−T e−T

)

.[5 Points for E]

F =

∫
T

0

(
eτ−T 0

(T − τ)eτ−T eτ−T

)(
1
0

)

dτ =

∫
T

0

(
eτ−T

(T − τ)eτ−T

)

dτ

=

(
1− e−T

1− e−T (1 + T )

)

,

where we have used that

∫
T

0
eτ−Tdτ = eτ−T

∣
∣T

0
= 1− e−T

∫
T

0
τeτ−Tdτ

P.I.
= τeτ−T

∣
∣T

0
−

∫
T

0
eτ−Tdτ

= T − (1 − e−T ) = T − 1 + e−T .[5 Points for F]

Finally we have for ξ[k] := (x1[k], x2[k])
T

ξ[k + 1] = Eξ[k] + Fu[k]

v[k] = Gξ[k]

[1 Point]
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Exercise 3

1 2 3 4 5 Exercise

5 5 7 4 4 25 Points

1. The state equations for the system are:

ẋ =

[
−1 −1

α− 1 1

]

x+

[
1
0

]

u

y =
[
−3 −1

]
x

2. The controllability matrix is P =
[
B AB

]
=

[
1 −1
0 α− 1

]

. Hence, det(P ) =

α− 1 and the system is controllable unless α = 1.

For α = 1 the reachable states are range(P ) = span

([
1
0

])

.

3. For α = −2 the transfer function is given by

G(s) = C (sI −A)−1
B =

[
−3 −1

]

[

s+ 1 1

3 s− 1

]−1 [
1
0

]

=
1

s2 − 1− 3

[
−3 −1

]
[
s− 1
−3

]

=
−3(s − 1) + 3

s2 − 4
=

−3s+ 6

(s+ 2)(s − 2)
=

−3(s− 2)

(s+ 2)(s − 2)
=

−3

s+ 2
.

There is a pole-zero cancellation at s = 2, hence the system is either not controllable
or not observable. In part 2 of the exercise it was shown that the system is con-
trollable for α 6= 1, hence for α = −2 it is controllable and thus cannot be observable.

4. y(t) = 1 ∀ t ≥ 1 holds if and only if Cx(t) = −3x1(t) − x2(t) = 1 ∀ t ≥ 1. Hence,
the set of all states for which y(t) = 1 is the space V =

{
x ∈ R

2 : x2 = −3x1 − 1
}
.

The equilibrium states when u(t) = 0 ∀ t ≥ 0 are the states x ∈ R
2 with ẋ = 0,

which are the states in the nullspace of A: x ∈ Null(A) = span

([
1
−1

])

.

5. With u(t) = 0 ∀t ≥ 1, since the only eigenvector of A is

[
1
−1

]

, y(t) = 1 ∀ t ≥ 1

is only possible if ẋ = 0 ∀ t ≥ 1, hence x ∈ Null(A) = span

([
1
−1

])

. Thus, the

state has to lie in the intersection V ∩Null(A) =

[
−1

2
1
2

]

.

Since for α = 2 the system is controllable it can be driven to

[
−1

2
1
2

]

in an arbitrary

time interval [0, t1]. With u(t) = 0 ∀ t > t1 it will stay in this point and all the
requirements are satisfied.

6



Signal and System Theory II, BSc, Spring Term 2012 Solution

Exercise 4

1 2 3 4 Exercise

3 6 13 3 25 Points

1. The system is non-linear and autonomous but time invariant.

2. In state space form, the system is given by

ẋ1(t) = f1(x(t), u(t)) = −2x31(t)− x22(t) + 2x2(t)− 1 + c2 (1)

ẋ2(t) = f2(x(t), u(t)) = x1(t) (2)

and
y = g(x(t), u(t)) = x2(t) (3)

The dimension of the system is 2 (number of states).

3. The equilibria are obtained by setting the state derivatives to zero, i.e.,

0 ≡ −2x31(t)− x22(t) + 2x2(t)− 1 + c2 (4)

0 ≡ x1(t) (5)

and we obtain

x̃(1) =

[
0

1− c

]

and x̃(2) =

[
0

1 + c

]

. (6)

The system matrix of the linearized model for each of the equilibria is determined
by the partial derivatives of the system equations, i.e.,

A(i) =

[
−6x21(t) −2x2(t) + 2

1 0

]

x(t)=x̃(i)

(7)

for i = 1, 2. With the equilibria given above, we further obtain

A(1) =

[
0 2c
1 0

]

and A(2) =

[
0 −2c
1 0

]

. (8)

The eigenvalues of A(1) are given by

λ
(1)
1 =

√
2c = 2 and λ

(1)
2 = −

√
2c = −2. (9)

Since one eigenvalue is greater than zero, the equilibrium x̃(1) is unstable.

Matrix A(2) has eigenvalues

λ
(2)
1 =

√
−2c = 2i and λ

(2)
2 = −

√
−2c = −2i. (10)

Since the real parts of the eigenvalues are zero, the analysis is inconclusive for equi-
librium x̃(2).

4. The stability analysis using linearization is always inconclusive for the equilibrium
x̃(2) since for every c, the real parts of the corresponding eigenvalues are zero. For
the case c = 0, also the eigenvalues of the first equilibrium are zero.
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