Automatic Control Laboratory	D-ITET
ETH Zurich	Winter 2011
Prof. J. Lygeros	12.02 .2011

Signal and System Theory II 4. Semester, BSc

Solutions

Exercise 1

1	2	3	Exercise
10	9	8	27 Points

1. The fact that our circuit contains two capacitors suggests using a two-dimensional state vector, with it's components corresponding to the voltages at C_{1} and C_{2} respectively, i.e.,

$$
x(t)=\binom{u_{C 1}}{u_{C 2}} .
$$

with Kirchoff's voltage law, we can set up our first equation

$$
\begin{align*}
u(t) & =u_{C 1}(t)+u_{R 2}(t)+u_{C 2}(t) \\
& =u_{C 1}(t)+R_{2} C_{2} \dot{u}_{C 2}(t)+u_{C 2}(t) \\
\dot{u}_{C 2}(t) & =-\frac{1}{R_{2} C_{2}} u_{C 1}(t)-\frac{1}{R_{2} C_{2}} u_{C 2}(t)+\frac{1}{R_{2} C_{2}} u(t) . \tag{1}
\end{align*}
$$

The second equation is obtained by applying Kirchoff's current law

$$
\begin{aligned}
i(t) & =i_{R 1}(t)+i_{R 2}(t) \\
C_{1} \dot{u}_{C_{1}}(t) & =\frac{u(t)-u_{C 1}(t)}{R_{1}}+\frac{u(t)-u_{C 1}(t)-u_{C 2}(t)}{R_{2}} \\
\dot{u}_{C 1}(t) & =-\frac{1}{C_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) u_{C 1}(t)-\frac{1}{C_{1} R_{2}} u_{C 2}(t)+\frac{1}{C_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) u(t) .
\end{aligned}
$$

The resulting two-dimensional state-space model is given by

$$
\begin{aligned}
& \dot{x}(t)=\left(\begin{array}{cc}
-\frac{1}{C_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) & -\frac{1}{R_{1} R_{2}} \\
-\frac{1}{R_{2} C_{2}} & -\frac{1}{R_{2} C_{2}}
\end{array}\right) x(t)+\binom{\frac{1}{C_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)}{\frac{1}{R_{2} C_{2}}} u(t) \\
& y(t)=\left(\begin{array}{ll}
0 & 1) x(t)+0 \cdot u(t) .
\end{array}\right.
\end{aligned}
$$

2. With $C_{1}=C_{2}=1 F$ and $R_{1}=R_{2}=1 \Omega$ we get

$$
A=\left(\begin{array}{ll}
-2 & -1 \\
-1 & -1
\end{array}\right) \text { and } B=\binom{2}{1}
$$

As $D=0$, the transfer function is given by

$$
\begin{aligned}
G(s) & =C(s \mathbf{I}-A)^{-1} B \\
& =\left(\begin{array}{ll}
0 & 1
\end{array}\right)\left(\begin{array}{cc}
s+2 & 1 \\
1 & s+1
\end{array}\right)^{-1}\binom{2}{1} \\
& =\left(\begin{array}{ll}
-1 & s+2
\end{array}\right)\binom{2}{1} \frac{1}{(s+2)(s+1)-1} \\
& =\frac{s}{s^{2}+3 s+1}
\end{aligned}
$$

3. In this case, we can simply evaluate the transfer function at the frequency of the input sine signal to calculate the steady state output signal as

$$
y(t)=|G(j \omega)| U_{0} \sin \left(\omega t+\phi_{0}+\angle G(j \omega)\right)
$$

With $U_{0}=1$ and $\phi_{0}=0^{\circ}$ we obtain

$$
\begin{aligned}
y(t) & =|G(j 1)| \sin (1 t+\angle G(j 1)) \\
|G(j 1)| & =\frac{|j|}{|-1+3 j+1|}=\frac{1}{3} \\
\angle G(j 1) & =\arctan \left(\frac{0}{\frac{1}{3}}\right)=0 \\
& \rightarrow y(t)=\frac{1}{3} \sin (t)
\end{aligned}
$$

Exercise 2

1	2	3	Exercise
7	9	10	26 Points

1. Consider the discrete time system

$$
\begin{align*}
& z(k+2)-0.7 z(k+1)+0.1 z(k)=0.5 u(k), \\
& y(k)=z(k+1) . \tag{2}
\end{align*}
$$

Let $x(k)=\left[\begin{array}{l}x_{1}(k) \\ x_{2}(k)\end{array}\right]=\left[\begin{array}{c}z(k+1) \\ z(k)\end{array}\right]$. Hence, we have $x_{2}(k+1)=z(k+1)=x_{1}(k)$, and $x_{1}(k+1)=z(k+2)$. By inspection of (2)

$$
\begin{align*}
x(k+1) & =\left[\begin{array}{cc}
0.7 & -0.1 \\
1 & 0
\end{array}\right] x(k)+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] u(k), \\
y(k) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(k) . \tag{3}
\end{align*}
$$

Denote then $A=\left[\begin{array}{cc}0.7 & -0.1 \\ 1 & 0\end{array}\right], B=\left[\begin{array}{c}0.5 \\ 0\end{array}\right], C=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $D=0$.
2. i) Consider the determinant of $\lambda I-A$, where λ represents the eigenvalues of the system. Then, $\operatorname{det}(\lambda I-A)=\lambda^{2}-0.7 \lambda+0.1$. By equating with zero we get the eigenvalues of the system, which are $\lambda_{1}=0.5$ and $\lambda_{2}=0.2$. Since, $\left|\lambda_{i}\right|<1$ for $i=1,2$, the system is asymptotically stable.
ii) Compute the controllability matrix P

$$
P=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0.5 & 0.35 \\
0 & 0.5
\end{array}\right]
$$

P is full $\operatorname{rank}(\operatorname{Rank}(P)=2)$, so the system is controllable.
iii) Compute the observability matrix Q

$$
Q=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0.7 & -0.1
\end{array}\right] .
$$

Q is full rank $(\operatorname{Rank}(Q)=2)$, so the system is observable.
3. The observer dynamics are given by

$$
\begin{aligned}
\hat{x}(k+1) & =A \hat{x}(k)+L(y(k)-\hat{y}(k))+B u(k), \\
\hat{y}(k) & =C \hat{x}(k) .
\end{aligned}
$$

By subtracting (3) from the previous equation, and since $e(k+1)=\hat{x}(k+1)-x(k+1)$,

$$
\begin{equation*}
e(k+1)=(A-L C) e(k) . \tag{4}
\end{equation*}
$$

Since we want the eigenvalues of the observation error $e(k)$ to be both 0.1 , we can design a gain matrix $L=\left[\begin{array}{l}l_{1} \\ l_{2}\end{array}\right] \in \mathbb{R}^{2}$ such that the eigenvalues of $A-L C$ are both at 0.1. Hence,

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\lambda-\left(0.7-l_{1}\right) & 0.1 \tag{5}\\
l_{2}-1 & \lambda
\end{array}\right]\right)=\lambda^{2}-\left(0.7-l_{1}\right) \lambda+0.1\left(1-l_{2}\right)
$$

By equating the last equation with zero, and since both eigenvalues are equal, we have that

$$
\lambda_{1}=\lambda_{2}=\frac{0.7-l_{1}}{2}=0.1
$$

Hence, $l_{1}=0.5$. Due to the fact that $\lambda_{1}=\lambda_{2}$, the last term of (5) must be $0.1\left(1-l_{2}\right)=0.1^{2}$. Therefore, $l_{2}=0.9$.

Exercise 3

1	2	3	4	Exercise
5	7	9	6	27 Points

1. The state space representation of the system can be given as

$$
\begin{aligned}
& \dot{x_{1}}(t)=\frac{x_{2}(t)}{x_{2}(t)^{2}+1} x_{1}(t) \\
& \dot{x_{2}}(t)=-\frac{x_{2}(t)}{x_{2}(t)^{2}+1} x_{1}(t)
\end{aligned}
$$

where $x_{1}(t)=y(t)$ and $x_{2}(t)=z(t)$.
The dimension of the system is 2 . The system is autonomous since it has no input. The system is nonlinear.
2. There are an infinite number of equilibria. Specifically, any point on the line $y=0$ is an equilibrium. Likewise, any point on the line $z=0$ is also an equilibrium.
3. Linearizing the system about $y=\hat{y}$ and $z=\hat{z}$, we obtain the Jacobian matrix

$$
A=\left[\begin{array}{cc}
\frac{\hat{z}}{\bar{z}^{2}+1} & -\frac{\hat{z}^{2}-1}{\left(z^{2}+1\right)^{2}} \hat{y} \\
-\frac{z}{\hat{z}^{2}+1} & \frac{\hat{z}^{2}-1}{\left(\hat{z}^{2}+1\right)^{2}} \hat{y}
\end{array}\right] .
$$

If $\hat{y}>0($ or $\hat{y}<0)$ then for (\hat{y}, \hat{z}) to be an equilibrium $\hat{z}=0$. The Jacobian matrix reduces to

$$
A=\left[\begin{array}{cc}
0 & \hat{y} \\
0 & -\hat{y}
\end{array}\right] . .
$$

The eigenvalues for A are $\lambda=0$ and $\lambda=-\hat{y}$. Therefore, if $\hat{y}>0$ we cannot evaluate the stability of the system through linearization since one of the eigenvalues is zero. In case the system has $\hat{y}<0$, the system is unstable due to a positive eigenvalue.
If $\hat{z}>0($ or $\hat{z}<0)$ then for (\hat{y}, \hat{z}) to be an equilibrium $\hat{y}=0$. The Jacobian matrix reduces to

$$
A=\left[\begin{array}{cc}
\frac{\hat{z}}{\hat{z}^{2}+1} & 0 \\
-\frac{z}{z^{2}+1} & 0
\end{array}\right] .
$$

The eigenvalues for A are $\lambda=0$ and $\lambda=\frac{\hat{z}}{\hat{z}^{2}+1}$. Therefore, if $\hat{z}<0$ we cannot evaluate the stability of the system through linearization since one of the eigenvalues is zero. In case the system has $\hat{z}>0$, the system is unstable due to a positive eigenvalue.

Figure 1: Plot of vector field, invariant set $y+z=1$, and all equilibria for Exercise 3.
4. Consider the function

$$
V(y, z)=y+z
$$

Differentiating V by time, we have that

$$
\dot{V}(y, z)=\frac{d V}{d y} \dot{y}+\frac{d V}{d z} \dot{z} \quad=0
$$

Therefore, if $V(y, z)=y+z=c$, then $y+z=c$ always since $\dot{V}(y, z)=0$ independent of y, z, and $c \in \mathbb{R}$.
All equilibria and the invariant set corresponding to $c=1$ are illustrated in Figure 1. According to the Figure, the invariant line $y+z=1$ goes through two equilibrium points, $(y, z)=(1,0)$ and $(y, z)=(0,1)$. According to part 3 above, we know that the equilibrium $\hat{z}>0$ is unstable, therefore we can expect the system to move away from equilibrium point $(y, z)=(0,1)$. If the system starts at the point (y, z) where $y+z=1, y>0$, and $z>0$, then the system will move along the line away from $(y, z)=(0,1)$ and converge at $(y, z)=(1,0)$. When $y>0$ and $z<0$, it always holds that $\dot{y}<0$ and $\dot{z}>0$, therefore when the system starts at $(y, z), y>0$ and $z<0$, we expect the system to converge at $(y, z)=(1,0)$.

Exercise 4

1	2	3	Exercise
6	4	10	20 Points

1. Assuming that the matrix A is diagonalizable, one can use the matrix of eigenvectors W to induce a change of coordinates:

$$
A=W \Lambda W^{-1}
$$

with which the state transition matrix can be represented by:

$$
\Phi(t)=e^{A t}=W e^{\Lambda t} W^{-1}
$$

Therefore one can read of the eigenvalues directly from:

$$
e^{\Lambda t}=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{2 t}
\end{array}\right] \Rightarrow \Lambda=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right] .
$$

The eigenvalue obtained are $\lambda_{1}=-1$ and $\lambda_{2}=2$, which makes the system unstable since $\operatorname{Re}\left[\lambda_{2}\right]>0$. Clearly the system can not be asymptotically stable.
2. The eigenvectors have to be linearly independent, since the system has distinct eigenvalues λ_{1} and λ_{2}.
3. The time derviative of Φ evaluated at time $t=0$ is

$$
\frac{d}{d t} \Phi(t)_{\mid t=0}=A e^{A t}{ }_{\mid t=0}=A .
$$

Taking the derivative of the given transition matrix, we obtain:

$$
\frac{d}{d t} \Phi(t)=\frac{1}{3}\left[\begin{array}{cc}
-2 e^{-t}+2 e^{2 t} & 2 e^{-t}+4 e^{2 t} \\
e^{-t}+2 e^{2 t} & -e^{-t}+4 e^{2 t}
\end{array}\right]
$$

and evaluating at $t=0$:

$$
A=\frac{1}{3}\left[\begin{array}{cc}
-2+2 & 2+4 \\
1+2 & -1+4
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]
$$

