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Exercise 1

1 2 3 Exercise

10 9 8 27 Points

1. The fact that our circuit contains two capacitors suggests using a two-dimensional
state vector, with it’s components corresponding to the voltages at C1 and C2 re-
spectively, i.e.,

x(t) =

(

uC1

uC2

)

.

with Kirchoff’s voltage law, we can set up our first equation

u(t) = uC1(t) + uR2(t) + uC2(t)

= uC1(t) + R2C2u̇C2(t) + uC2(t)

u̇C2(t) = −
1

R2C2
uC1(t) −

1

R2C2
uC2(t) +

1

R2C2
u(t). (1)

The second equation is obtained by applying Kirchoff’s current law

i(t) = iR1(t) + iR2(t)

C1u̇C1
(t) =

u(t) − uC1(t)

R1
+

u(t) − uC1(t) − uC2(t)

R2

u̇C1(t) = −
1

C1

(

1

R1
+

1

R2

)

uC1(t) −
1

C1R2
uC2(t) +

1

C1
(

1

R1
+

1

R2
)u(t).

The resulting two-dimensional state-space model is given by

ẋ(t) =

(

− 1
C1

( 1
R1

+ 1
R2

) − 1
C1R2

− 1
R2C2

− 1
R2C2

)

x(t) +

( 1
C1

( 1
R1

+ 1
R2

)
1

R2C2

)

u(t)

y(t) = (0 1)x(t) + 0 · u(t).

2. With C1 = C2 = 1F and R1 = R2 = 1Ω we get

A =

(

−2 −1
−1 −1

)

and B =

(

2
1

)

As D = 0, the transfer function is given by
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G(s) = C(sI − A)−1B

= (0 1)

(

s + 2 1
1 s + 1

)−1(
2
1

)

= (−1 s + 2)

(

2
1

)

1

(s + 2)(s + 1) − 1

=
s

s2 + 3s + 1
.

3. In this case, we can simply evaluate the transfer function at the frequency of the
input sine signal to calculate the steady state output signal as

y(t) = |G(jω)|U0sin(ωt + φ0 + ∠G(jω)).

With U0 = 1 and φ0 = 0◦ we obtain

y(t) = |G(j1)|sin(1t + ∠G(j1))

|G(j1)| =
|j|

| − 1 + 3j + 1|
=

1

3

∠G(j1) = arctan

(

0
1
3

)

= 0

→ y(t) =
1

3
sin(t).
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Exercise 2

1 2 3 Exercise

7 9 10 26 Points

1. Consider the discrete time system

z(k + 2) − 0.7z(k + 1) + 0.1z(k) = 0.5u(k),

y(k) = z(k + 1). (2)

Let x(k) =

[

x1(k)
x2(k)

]

=

[

z(k + 1)
z(k)

]

. Hence, we have x2(k +1) = z(k +1) = x1(k), and

x1(k + 1) = z(k + 2). By inspection of (2)

x(k + 1) =

[

0.7 −0.1
1 0

]

x(k) +

[

0.5
0

]

u(k),

y(k) =
[

1 0
]

x(k). (3)

Denote then A =

[

0.7 −0.1
1 0

]

, B =

[

0.5
0

]

, C =
[

1 0
]

and D = 0.

2. i) Consider the determinant of λI − A, where λ represents the eigenvalues of the
system. Then, det(λI − A) = λ2 − 0.7λ + 0.1. By equating with zero we get the
eigenvalues of the system, which are λ1 = 0.5 and λ2 = 0.2. Since, |λi| < 1 for
i = 1, 2, the system is asymptotically stable.
ii) Compute the controllability matrix P

P =
[

B AB
]

=

[

0.5 0.35
0 0.5

]

.

P is full rank (Rank(P ) = 2), so the system is controllable.
iii) Compute the observability matrix Q

Q =

[

C

CA

]

=

[

1 0
0.7 −0.1

]

.

Q is full rank (Rank(Q) = 2), so the system is observable.

3. The observer dynamics are given by

x̂(k + 1) = Ax̂(k) + L(y(k) − ŷ(k)) + Bu(k),

ŷ(k) = Cx̂(k).

By subtracting (3) from the previous equation, and since e(k+1) = x̂(k+1)−x(k+1),

e(k + 1) = (A − LC)e(k). (4)
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Since we want the eigenvalues of the observation error e(k) to be both 0.1, we can

design a gain matrix L =

[

l1
l2

]

∈ R
2 such that the eigenvalues of A − LC are both

at 0.1. Hence,

det(

[

λ − (0.7 − l1) 0.1
l2 − 1 λ

]

) = λ2 − (0.7 − l1)λ + 0.1(1 − l2). (5)

By equating the last equation with zero, and since both eigenvalues are equal, we
have that

λ1 = λ2 =
0.7 − l1

2
= 0.1.

Hence, l1 = 0.5. Due to the fact that λ1 = λ2, the last term of (5) must be
0.1(1 − l2) = 0.12. Therefore, l2 = 0.9.
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Exercise 3

1 2 3 4 Exercise

5 7 9 6 27 Points

1. The state space representation of the system can be given as

ẋ1(t) =
x2(t)

x2(t)2 + 1
x1(t)

ẋ2(t) = −
x2(t)

x2(t)2 + 1
x1(t)

where x1(t) = y(t) and x2(t) = z(t).

The dimension of the system is 2. The system is autonomous since it has no input.
The system is nonlinear.

2. There are an infinite number of equilibria. Specifically, any point on the line y = 0
is an equilibrium. Likewise, any point on the line z = 0 is also an equilibrium.

3. Linearizing the system about y = ŷ and z = ẑ, we obtain the Jacobian matrix

A =

[

ẑ

ẑ2+1
− ẑ2−1

(ẑ2+1)2
ŷ

− ẑ

ẑ2+1
ẑ2−1

(ẑ2+1)2
ŷ

]

.

If ŷ > 0 (or ŷ < 0) then for (ŷ, ẑ) to be an equilibrium ẑ = 0. The Jacobian matrix
reduces to

A =

[

0 ŷ

0 −ŷ

]

..

The eigenvalues for A are λ = 0 and λ = −ŷ. Therefore, if ŷ > 0 we cannot evaluate
the stability of the system through linearization since one of the eigenvalues is zero.
In case the system has ŷ < 0, the system is unstable due to a positive eigenvalue.

If ẑ > 0 (or ẑ < 0) then for (ŷ, ẑ) to be an equilibrium ŷ = 0. The Jacobian matrix
reduces to

A =

[

ẑ

ẑ2+1
0

− ẑ

ẑ2+1
0

]

.

The eigenvalues for A are λ = 0 and λ = ẑ

ẑ2+1
. Therefore, if ẑ < 0 we cannot evaluate

the stability of the system through linearization since one of the eigenvalues is zero.
In case the system has ẑ > 0, the system is unstable due to a positive eigenvalue.
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Figure 1: Plot of vector field, invariant set y + z = 1, and all equilibria for Exercise 3.

4. Consider the function

V (y, z) = y + z.

Differentiating V by time, we have that

V̇ (y, z) =
dV

dy
ẏ +

dV

dz
ż = 0.

Therefore, if V (y, z) = y+z = c, then y+z = c always since V̇ (y, z) = 0 independent
of y, z, and c ∈ R.

All equilibria and the invariant set corresponding to c = 1 are illustrated in Figure 1.
According to the Figure, the invariant line y + z = 1 goes through two equilibrium
points, (y, z) = (1, 0) and (y, z) = (0, 1). According to part 3 above, we know that
the equilibrium ẑ > 0 is unstable, therefore we can expect the system to move away
from equilibrium point (y, z) = (0, 1). If the system starts at the point (y, z) where
y + z = 1, y > 0, and z > 0, then the system will move along the line away from
(y, z) = (0, 1) and converge at (y, z) = (1, 0). When y > 0 and z < 0, it always holds
that ẏ < 0 and ż > 0, therefore when the system starts at (y, z), y > 0 and z < 0,
we expect the system to converge at (y, z) = (1, 0).
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Exercise 4

1 2 3 Exercise

6 4 10 20 Points

1. Assuming that the matrix A is diagonalizable, one can use the matrix of eigenvectors
W to induce a change of coordinates:

A = WΛW−1

with which the state transition matrix can be represented by:

Φ(t) = eAt = WeΛtW−1.

Therefore one can read of the eigenvalues directly from:

eΛt =

[

e−t 0
0 e2t

]

⇒ Λ =

[

−1 0
0 2

]

.

The eigenvalue obtained are λ1 = −1 and λ2 = 2, which makes the system unstable

since Re[λ2] > 0. Clearly the system can not be asymptotically stable.

2. The eigenvectors have to be linearly independent, since the system has distinct
eigenvalues λ1 and λ2.

3. The time derviative of Φ evaluated at time t = 0 is

d

dt
Φ(t)|t=0 = AeAt

|t=0 = A.

Taking the derivative of the given transition matrix, we obtain:

d

dt
Φ(t) =

1

3

[

−2e−t + 2e2t 2e−t + 4e2t

e−t + 2e2t −e−t + 4e2t

]

,

and evaluating at t = 0:

A =
1

3

[

−2 + 2 2 + 4
1 + 2 −1 + 4

]

=

[

0 2
1 1

]

.
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