
Automatic Control Laboratory D-ITET
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Exercise 1

1 2 3 Exercise

10 11 6 27 Points

1. The Buck converter with the additional switch S′, is represented in Figure 1. Note
that S′ is closed when S is open, and vice versa.

−
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V (t)

Figure 1: Buck converter electrical model

(a) When the switch S is closed, the equations representing the circuit are

KCL : I(t)− Iload − C
dV (t)

dt
= 0

KV L : Vin −RI(t)− LdI(t)

dt
− V (t) = 0.

If we define x(t) =
[
V (t) I(t)

]′
, we can re-write them in the following state-

space form

ẋ(t) = fc(x(t)) =

[
0 1/C
−1/L −R/L

]
x(t) +

[
−Iload/C
Vin/L

]
. [4P]

On the other hand, when the switch S is open, we have

KCL : I(t)− Iload − C
dV (t)

dt
= 0

KV L : −RI(t)− LdI(t)

dt
− V (t) = 0,

that leads to

ẋ(t) = fo(x(t)) =

[
0 1/C
−1/L −R/L

]
x(t) +

[
−Iload/C

0

]
. [4P]

(b) By applying the averaging operation to the two systems, we obtain the following
average dynamics

ẋ(t) = favg(x(t)) =

[
0 1/C
−1/L −R/L

]
x(t) +

[
−Iload/C
uVin/L

]
. [2P]
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2. (a) Since u(t) is the control input, we can re-write the system in the following form

ẋ(t) =

[
0 1/C
−1/L −R/L

]
︸ ︷︷ ︸

A

x(t) +

[
0

Vin/L

]
︸ ︷︷ ︸

B

u(t). [1P] (1)

Let’s now inspect the stability through the matrix A. Its characteristic poly-
nomial is

det(λI −A) =

∣∣∣∣ λ −1/C
1/L λ+R/L

∣∣∣∣ = λ2 +
R

L
λ+

1

LC
,

which has roots

λ1,2 =
−R
L ±

√(
R
L

)2 − 4
LC

2
.

For positive electrical parameters, we have that

√(
R
L

)2 − 4
LC < R

L . Therefore,

Re(λi) < 0 for both i = 1, 2, and we can conclude that the system is asymptot-
ically stable [3P].
Note that, as an alternative, we could have exploited the Hurwitz criterion. In
fact, asymptotic stability is derived from the fact that the three coefficients of
the characteristic polynomial (1, R/L, 1/LC) have the same sign.

(b) The equilibrium condition is obtained by imposing ẋ = 0, and it leads to

x =

[
Vinū

0

]
. [2P]

The first equation is V = Vinū. By dividing both sides by Vin we obtain

V/Vin = ū ∈ [0, 1],

and therefore the condition V/Vin ≤ 1 holds [1P].

(c) From the previously computed equilibrium condition it is evident that, with a
constant input law ū ∈ [0, 1], it is possible to stabilize the system only in the
following subset of the state-space

S =

{
x | x ∈

([
0
0

]
,

[
Vin
0

])}
[2P]

V

I

S
Vin

0

[2P]
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3. (a) Let’s call p̄ =
[
1 1

]′
. Since p̄ 6∈ S, it is not possible to find an admissible ū

such that lim
t→∞

x(t) = p̄ [2P].

(b) If u was unconstrained, the previously computed set S would be

S =

{
x | x ∈

([
−∞

0

]
,

[
+∞

0

])}
,

that corresponds to the vertical line I = 0. Therefore, any equilibrium with
I 6= 0 is not compatible with our system, including p̄ [2P].

(c) The previous conditions are not in contrast with the outcome of the stability
test. In fact, the asymptotic stability property of the system only guarantees
that the trajectory will converge to the equilibrium. What is not guaranteed is
the ability to stabilize the system in any arbitrary point of the state-space. We
know that the trajectory will converge to one of the points in S, depending on
which particular ū is selected [2P].
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Exercise 2

1 2 3 4 Exercise

4 5 6 8 23 Points

1. (4P in total)

(a) The characteristic polynomial is

det(sI −A1) = s2 + 3s− 4 = (s− 1)(s+ 4),

which implies that the poles of A1 are 1, -4. The system S1 has a RHP pole
and it is unstable. [2P]

(b) The controllability matrix is given by

Wc =
[
B1 A1B1

]
=

[
0 1
1 −3

]
Obviously, it has full rank. The system S1 is controllable. [1P]

(c) The observablity matrix is given by

Wo =

[
C1

C1A1

]
=

[
1 1
4 −2

]
It also has full rank. Therefore, the system S1 is observable. [1P]

2. (5P in total)

(a) By Figure 1, we have the following equations

sX2(s) = U2(s)− 2X2(s),

Y (s) = 2X2(s). [1P]

Hence, the transfer functions of S2 are

X2(s)

U2(s)
=

1

s+ 2
, [1P]

Y (s)

U2(s)
=

2

s+ 2
. [1P]

(b) By taking the inverse Laplace transform, we get the state space equations of
S2:

ẋ2(t) = −2x2(t) + u2(t), [1P]

y(t) = 2x2(t). [1P]

3. (6P in total)

By Figure 2, we have u2(t) = y1(t) = x11(t) + x12(t), which makes:

ẋ2(t) = x11(t) + x12(t)− 2x2(t), [1P]
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so together with u(t) = u1(t), we have the state space equation of S:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

where

A =

0 1 0
4 −3 0
1 1 −2

 , B =

0
1
0

 , C =
[
0 0 2

]
, D = 0. [5P]

(For A, it values [2P], and B, C and D value [1P] resp.)

4. (8P in total)

(a) By (1.a), the poles of S1 are s1 = 1, s2 = −4. By (2a), the pole of S2 is s = −2.
As S is a cascade system of S1 and S2, the poles of S are s1 = 1, s2 = −4, s3 = −2
[1P]. There exists one RHP pole and S is unstable [1P].

(b) Under zero input, the zero input transition x(t) = eAtx(0). By the hint, we
have

x(t) =

 (4a5 + b
5)et + (a5 −

b
5)e−4t

(4a5 + b
5)et + (−4a5 + 4b

5 )e−4t

(8a15 + 2b
15)et + (3a10 −

3b
10)e−4t − (5a6 −

b
6 − c)e

−2t

 , [1P]

Since there exists an unstable pole s1 = 1, we need to make the coefficient of
the term et in x(t) to be zero, in order to keep x finite as t→∞. [2P] Then

we have b = −4a. [1P] And x(∞) =

0
0
0

.

(c) There is no contradiction. When a system is unstable, the output of the system
may be infinite even though the input to the system was finite. It doesn’t mean
that for every initial state, the output of the system is infinite. In (4b), the
input is zero, and the output of the system could be infinite if b 6= −4a, which
also indicates that S is unstable. [2P]
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Exercise 3

1 2 3 Exercise

8 7 10 25 Points

1. (a) For an equilibrium point we should have:

x1 = α
1+x21+x

2
2
x2

x2 = α
1+x21+x

2
2
x1

, [2P]

It can clearly be observed that (0, 0) is an equilibrium point for any α. [1P]

By concatenating both equations we get x1 = α2

(1+x21+x
2
2)

2x1. So at any non-

trivial equilibrium we need to have α2

(1+x21+x
2
2)

2 = 1 [1P*].

Since α > 0 and (1 + x21 + x22) > 0, then we need to have α = (1 + x21 + x22).
This equation has a solution, because α ≥ 1. [1P*]
Substituting this equation α = (1+x21 +x22) in one of the equilibrium equations
we get x1 = α

1+x21+x
2
2
x2 = x2. [1P*]

Then at equilibrium we need to have either x1 = x2 and α = (1 + x21 + x22) =

(1 +x21 +x21), or x1 = x2 = 0. So the equilibrium points are x1 = x2 = ±
√

α−1
2

and x1 = x2 = 0. [1P]

Alternatively, instead of the points marked with *, it’s also correct to first prove
x21 = x22, then x1 = x2, and then α = (1 + x21 + x22).

(b) For α < 1, the equation α = (1 + x21 + x22) has no solution. So the only
equilibrium point in (0, 0). [1P]

2. To linearize the system we need the derivatives of x1(k+1)(x1(k), x2(k)) and x2(k+
1)(x1(k), x2(k)) around the equilibrium point (0, 0):

∂x1(k+1)
∂x1(k)

|(0,0) = α(−2x2(k)x1(k)(1 + x1(k)2 + x2(k)2)−2)|(0,0) = 0
∂x1(k+1)
∂x2(k)

|(0,0) = α((1 + x1(k)2 + x2(k)2)−1 − 2x2(k)x2(k)(1 + x1(k)2 + x2(k)2)−2)|(0,0) = α
∂x2(k+1)
∂x1(k)

|(0,0) = α((1 + x1(k)2 + x2(k)2)−1 − 2x1(k)x1(k)(1 + x1(k)2 + x2(k)2)−2)|(0,0) = α
∂x2(k+1)
∂x2(k)

|(0,0) = α(−2x2(k)x1(k)(1 + x1(k)2 + x2(k)2)−2)|(0,0) = 0, [2P]

Now we can linearize the nonlinear discrete-time equation around (0, 0):[
x1(k + 1)
x2(k + 1)

]
=

[
0 α
α 0

] [
x1(k)
x2(k)

]
, [1P]

which has eigenvalues

∣∣∣∣ λ −α
−α λ

∣∣∣∣ = λ2 − α2 = 0 [1P, give anyway if step is

omitted, but next is correct] so λ = α,−α. [2P]
Therefore the equilibrium (0, 0) is locally asymptotically stable if α < 1. [1P]
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3. For α = 1 we have the system:

x1(k + 1) = x2(k)(1 + x1(k)2 + x2(k)2)−1

x2(k + 1) = x1(k)(1 + x1(k)2 + x2(k)2)−1

We check if the given function V ((x1(k), x2(k))) = x1(k)2 + x2(k)2 satisfies the
conditions of the Lyapunov second method with x̃ = (0, 0):

i. V ((0, 0)) = 02 + 02 = 0 [1P]

ii. V ((x1, x2)) = x21 + x22 > 0, ∀(x1, x2) 6= (0, 0) [2P]

iv. V ((x1(k + 1), x2(k + 1))) = x1(k + 1)2 + x2(k + 1)2

= (x1(k)2 + x2(k)2)(1 + x1(k)2 + x2(k)2)−2 [1P]
< x1(k)2 + x2(k)2 = V ((x1(k), x2(k))), ∀(x1(k), x2(k)) 6= (0, 0),
because (1 + x1(k)2 + x2(k)2) > 1 ∀(x1(k), x2(k)) 6= (0, 0) [2P]

v. The analysis is for S = R2 (To get full credit, there is no need to write this as
a separate bullet as long as the rest are proven for all x ∈ R2). [1P]

vi. ‖(x1, x2)‖ → ∞ =⇒ V ((x1, x2)) = ‖(x1, x2)‖2 → ∞ (needs to be justified in
some way, for example indicating that V (x) is the square of the norm)[2P]

So the the equilibrium point (0, 0) is globally asymptotically stable. [1P]
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Exercise 4

1 2 3 4 5 Exercise

3 5 4 7 6 25 Points

1. Setting denomenator to 0 we obtain (s − σ)2 = −ω2
0. Hence, the poles are p1,2 =

σ± jω0.[2P] Thus, the system is asymptotically stable if and only if Re p1,2 < 0, i.e.
σ < 0. [1P]

2. Note that

G(s) =
Y (s)

U(s)

(s2 − 2sσ + σ2 + ω2
0)Y (s) = ω2

0U(s)

which leads to the following ODE, using inverce Laplace transform

ÿ(t)− 2σẏ(t) + (σ2 + ω2
0)y(t) = ω2

0u(t).[5P]

3. By putting x1(t) = ẏ(t) and x2(t) = y(t) we obtain the following system: A =[
2σ −(σ2 + ω2

0)
1 0

]
, B =

[
ω2
0

0

]
, C =

[
0 1

]
, D = 0. [4P]

4. For σ = −1, ω0 = 1 we have,

(a)

G(jω) =
1

−ω2 + 2jω + 2
=

(2− ω2)− 2ωj

(2− ω2)2 + 4ω2
=

(2− ω2)− 2ωj

4 + ω4
,

|G(jω)| = 1

ω4 + 4

√
(2− ω2)2 + (2ω)2 =

1√
ω4 + 4

, [2P]

(b)

∠G(jω) = arctan

(
−2ω

2− ω2

)
= − arctan(2).[2P]

(c) In this case, we can simply evaluate the transfer function at the frequency of
the input sine signal to calculate the steady state output signal as

y(t) = |G(jω)| sin(ωt+ ∠G(jω)).[1P]

With ω = 1 [1P] we obtain

y(t) = |G(j1)| sin(t+ ∠G(1j))

|G(j1)| = 1√
5

(for ω = 1)

∠G(jω) = − arctan(2) (for ω = 1)

→ y(t) =
1√
5

sin(t− arctan(2)).[1P]
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5. (a) Transfer function of the closed loop is given byG1(s) = 1
1+KG(s) [2P] =

(s−σ)2+ω2
0

(s−σ)2+(1+K)ω2
0
.

(b) Note that R(s) = 1
s [1P] . For σ = 0 steady state error, using Final Value

Theorem is

lim
t→∞

e(t) = lim
s→0

sG1(s)R(s) = lim
s→0

s
(s− σ)2 + ω2

0

(s− σ)2 + (K + 1)ω2
0

1

s
=

1

K + 1
.[2P]

Such K <∞ does not exist, since limt→∞ e(t) = 1
K+1 .[1P].
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