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Signal and System Theory II, BSc, Spring Term 2018 Solution

Exercise 1

1 2 3 4 5 Exercise

7 3 7 5 3 25 Points

1. We first get the trivial equations for the first and second states:

θ̇(t) = θ̇(t),

θ̇(t) = θ̇2(t),

which, written in x(t), are
ẋ1(t) = x3(t),

ẋ2(t) = x4(t).

Solution assuming spring force is given by k(θ1 − θ2):
As for the actual dynamics, we get

(m`2)θ̈1(t) = −mg` sin(θ1(t)) + k` cos(θ1(t))(θ2(t)− θ1(t)) + T (t)

(m`2)θ̈2(t) = −mg` sin(θ2(t)) + k` cos(θ2(t))(θ1(t)− θ2(t))

and hence we finally get

ẋ(t) =


x3(t)

x4(t)

− sin(x1(t)) + cos(x1(t))(x2(t)− x1(t)) + u(t)
m`2

− sin(x2(t)) + cos(x2(t))(x1(t)− x2(t))


Solution assuming spring force is given by k`(sin θ1 − sin θ2) which is phys-
ically correct:
As for the actual dynamics, we get

(m`2)θ̈1(t) = −mg` sin(θ1(t)) + k`2 cos(θ1(t))(sin(θ2(t))− sin(θ1(t))) + T (t)

(m`2)θ̈2(t) = −mg` sin(θ2(t)) + k`2 cos(θ2(t))(sin(θ1(t))− sin(θ2(t)))

and hence we finally get

ẋ(t) =


x3(t)

x4(t)

− sin(x1(t)) + ` cos(x1(t))(sin(x2(t))− sin(x1(t))) + u(t)
m`2

− sin(x2(t)) + ` cos(x2(t))(sin(x1(t))− sin(x2(t)))


Solution assuming spring force is given by k`(θ1 − θ2):
As for the actual dynamics, we get

(m`2)θ̈1(t) = −mg` sin(θ1(t)) + k`2 cos(θ1(t))(θ2(t)− θ1(t)) + T (t)

(m`2)θ̈2(t) = −mg` sin(θ2(t)) + k`2 cos(θ2(t))(θ1(t)− θ2(t))
2
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and hence we finally get

ẋ(t) =


x3(t)

x4(t)

− sin(x1(t)) + ` cos(x1(t))(x2(t)− x1(t)) + u(t)
m`2

− sin(x2(t)) + ` cos(x2(t))(x1(t)− x2(t))


Solution assuming spring force is given by k(sin θ1 − sin θ2):
As for the actual dynamics, we get

(m`2)θ̈1(t) = −mg` sin(θ1(t)) + k` cos(θ1(t))(sin(θ2(t))− sin(θ1(t))) + T (t)

(m`2)θ̈2(t) = −mg` sin(θ2(t)) + k` cos(θ2(t))(sin(θ1(t))− sin(θ2(t)))

and hence we finally get

ẋ(t) =


x3(t)

x4(t)

− sin(x1(t)) + cos(x1(t))(sin(x2(t))− sin(x1(t))) + u(t)
m`2

− sin(x2(t)) + cos(x2(t))(sin(x1(t))− sin(x2(t)))


2. Equilibria are found by setting f(x(t)) = 0. This immediately gives x3(t) = x4(t) =

0. Furthermore, we need the other two equations to also be satisfied. For all the
variants above, this is also satisfied if x1(t) = x2(t) = 0.

3. Grade according to student’s solution to part 1
Solution assuming spring force is given by k(θ1 − θ2) or k(sin θ1 − sin θ2):
Using the assumptions, we can write a linear version of the dynamics as

ẋ(t) =


x3(t)

x4(t)

−x1(t) + (x2(t)− x1(t)) + u(t)
m`2

−x2(t) + (x1(t)− x2(t))


which translates into the state-space form

ẋ(t) =


0 0 1 0
0 0 0 1
−2 1 0 0
1 −2 0 0

x(t) +


0
0
1
m`2

0

u(t)

y(t) =
[
1 0 0 0

]
x(t) + 0

The matrices A,B,C,D can now be read off of the above equations.
Solution assuming spring force is given by k`(θ1 − θ2) or k`(sin θ1 − sin θ2):
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Using the assumptions, we can write a linear version of the dynamics as

ẋ(t) =


x3(t)

x4(t)

−x1(t) + `(x2(t)− x1(t)) + u(t)
m`2

−x2(t) + `(x1(t)− x2(t))


which translates into the state-space form

ẋ(t) =


0 0 1 0
0 0 0 1

−1− ` ` 0 0
` −1− ` 0 0

x(t) +


0
0
1
m`2

0

u(t)

y(t) =
[
1 0 0 0

]
x(t) + 0

The matrices A,B,C,D can now be read off of the above equations.

4. Solution assuming spring force is given by k(θ1 − θ2) or k(sin θ1 − sin θ2):
We compute the observability matrix

Q =


C
CA
CA2

CA3


to obtain

Q =


1 0 0 0
0 0 1 0
−2 1 0 0
0 0 −2 1

 .
If we swap rows 2 and 3 of this matrix (this does not change its rank), we get a lower
triangular matrix with non-zero entries on the diagonal, which means it is full rank
and the system is observable.
Solution assuming spring force is given by k`(θ1 − θ2) or k`(sin θ1 − sin θ2):
We compute the observability matrix

Q =


C
CA
CA2

CA3


to obtain

Q =


1 0 0 0
0 0 1 0

−1− ` ` 0 0
0 0 −1− ` `

 .
which is full rank provided ` > 0 for the same reasoning as in the above case.

5. As shown in Part 4, the system is observable. This means that with the given mea-
surement of θ1(t), we can build an observer that observes the entire state accurately.
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Exercise 2

1 2 3 4 5 Exercise

3 5 6 6 5 25 Points

1. The A matrix is upper triangular, therefore, the eigenvalues are the diagonal ele-
ments. The set of eigenvalues of A is λ = {3, α, α}. For asymptotic stability, the
real part of all eigenvalues of the system should be strictly negative. As 3 6∈ R−,
there does not exist any α for which the system is asymptotically stable.

2. When only input u1(t) is applied to the system, we have the following dynamics

ẋ(t) =

3 0 −1
0 α 1
0 0 α


︸ ︷︷ ︸

A

x(t) +

β0
0


︸︷︷︸
B1

u1(t). (1)

The controllability matrix C1 =
[
B1 AB1 A

2B1

]
can be computed as

C1 =

β 3β 9β
0 0 0
0 0 0

 . (2)

As the matrix C1 does not have a full rank of 3, there exists no value of β for which
the system is controllable.

3. For the choice of parameters α = −1, β = −1, the system dynamics are

ẋ(t) =

(3 0 −1
0 −1 1
0 0 −1

+

−1
0
0

 [k1 k2 k3

])
x(t), (3)

=

3− k1 −k2 −1− k3

0 −1 1
0 0 −1


︸ ︷︷ ︸

Acl

x(t). (4)

As the closed loop matrix Acl is upper triangular, the eigenvalues are given by λcl =
{3 − k1, −1, −1}. For the closed-loop system to be asymptotically stable, the real
part of the eigenvalues should be strictly negative. Therefore, for K =

[
k1 k2 k3

]
,

such that k1 > 3, k2 ∈ R, k3 ∈ R, the closed loop system is asymptotically stable.
However, it should be noted that only one of the closed-loop poles can be placed
arbitrarily and the poles at −1 cannot be shifted.

4. When only input u2(t) is applied to the system, we have the following dynamics

ẋ(t) =

3 0 −1
0 α 1
0 0 α


︸ ︷︷ ︸

A

x(t) +

0
1
1


︸︷︷︸
B2

u2(t). (5)
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The controllability matrix C2 =
[
B2 AB2 A

2B2

]
can be computed as

C2 =

0 −1 −3− α
1 α+ 1 α2 + 2α
1 α α2

 . (6)

For controllability, the rank of C2 should be 3, or Det(C2) 6= 0.

Det(C2) = −1 · (−α2 + 3α+ α2) + 1 · (−α2 − 2α+ (3 + α)(1 + α)) = 3− α

Therefore, for α 6= 3, system is controllable.

5. Consider the case when α = −1, β = −1 and both the inputs u1(t), u2(t) are applied
simultaneously. The system dynamics are given by

ẋ(t) =

3 0 −1
0 α 1
0 0 α


︸ ︷︷ ︸

A

x(t) +

β 0
0 1
0 1


︸ ︷︷ ︸

B

[
u1

u2

]
. (7)

The resulting controllability matrix C3 is composed of the elements of C1 and C2, i.e.,

C3 =

β 0 3β −1 9β −3− α
0 1 0 α+ 1 0 α2 + 2α
0 1 0 α 0 α2

 . (8)

As the parameter value of α 6= 3, the matrix C3 has full row rank already from the
columns that are also present in C2 above and the system is controllable. The value
of β is irrelevant for this. As the system is controllable, there exists a controller
which can drive the states from any point in R3 to the origin in any given time.
Therefore, the boss is correct.

Note that another way to solve this problem is to just say that since the system has
already been shown to be controllable for the parameters with the input u2(t) alone,
all that one has to do is set the input u1(t) to zero and reuse that result, no need
for new computations. If a system is controllable, it can be steered from any state
to any other state in any given time with the right input.
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Exercise 3

1 2 3 4 Exercise

5 9 3 8 25 Points

1. The equilibria of the system are defined by

0 = x2 (9)

0 = −x1 +
1

3
x3

1 − x2, (10)

By solving for x1 and x2, we find that x̄1 = (0, 0), x̄2,3 = (±
√

3, 0) are the equilibria
of the system.

We linearize around x̄1,2,3 and obtain the following matrices, with

Ai =
df

dx
|xi=x̄i , i = {1, 2, 3}

defined by

A1 =

[
0 1
−1 −1

]
, A2,3 =

[
0 1
2 −1

]
,

Either by explicitly calculating the eigenvalues of Ai or using the Hurwitz criterion,
one can show that x̄1 is locally asymptotically stable and that both x̄2,3 are unstable.

2. There are two main alternatives for solving this question.

(a) Lasalle Argument (Theorem 7.4) Note that

• The set S is closed and bounded as seen graphically and hence compact.

• The function V (x) is well-defined and differentiable on the set S. The
derivative along the system trajectories can be derived as

V̇ (x) =
1

6
x4

1 −
1

2
x2

2 −
1

2
x2

1

The derivative is negative definite on the set S. This can be seen as follows:
If we look for the maximum of the derivative for any x1 and x2, we can see
that the x2 term is at most 0 independently of x1. The x1 term is then

1

6
x4

1 −
1

2
x2

1 = x2
1

(
1

6
x2

1 −
1

2

)
For the derivative to be always negative, the above has to be negative for
all the admissible x1. The x2

1 in front is always positive, but the term in
the brackets is negative as long as |x1| <

√
3 as was given in the task.

This proves the invariance of the set S.
According to Lasalle Theorem, all the trajectories starting in S will con-
verge to the largest invariant set M contained in the set {x ∈ S| V̇ (x) = 0}.
We notice that ∀x ∈ S, x̄1 = (0, 0) is the only point that lies in the set M .
Hence all the trajectories starting in S, will converge to the origin as t→∞.
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(b) Lyapunov Direct Method (Theorem 7.3), where the following conditions are
fulfilled for the set S described by the given Figure.

• One can guess that graphically, the function V (x) takes positive values on
the specified set S which contains the point (0, 0), so that V (0, 0) = 0 and
V (x) ≥ 0, ∀x ∈ S.

• We take Lie derivative of V (x) along the system trajectories, obtaining

V̇ (x) =
1

6
x4

1 −
1

2
x2

2 −
1

2
x2

1

We verify that the obtained derivative is negative definite on the set S as
shown in the other solution approach. Note that graphically, one cannot
guess if V (x) is decreasing or not inside the set S.

Then, the origin is locally asymptotically stable ∀x ∈ S according to the Direct
Method of Lyapunov.

3. The origin cannot be globally asymptotically stable, since there are other equilibria
than zero. If the system is initialized at one of these, it will not converge to zero.

4. The discretized system can be written as

xk+1 = xk + δ

[
x2,k

−x1,k + 1
3x

3
1,k − x2,k

]

and if we then assume ‖xk‖ is small, we can approximate x3
1,k ≈ 0 and deduce that

xk+1 = xk + δ

[
0 1
−1 −1

]
xk

which can be rewritten as

xk+1 =

[
1 δ
−δ 1− δ

]
xk .

We can now compute the eigenvalues of the discretized system matrix:

det

(
λI −

[
1 δ
−δ 1− δ

])
= (λ− 1)(λ− 1 + δ) + δ2

= λ2 + (δ − 2)λ+ (1− δ + δ2)

which means the eigenvalues become

λ1,2 = −δ
2
±
√

3
δ

2
i+ 1

This in turn means that if δ = 1/2, the eigenvalues become λ1,2 = 3
4 ±

√
3

4 i , which
both have absolute value less than 1, meaning that the origin is asymptotically
stable.

8
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Alternatively, one can search for the range of δ > 0, for which the system matrix
has eigenvalues less than one. It must hold that |1 + δλi| < 1, where λi are the

eigenvalues of the matrix A. It can be found that | δ24 + 1− δ + 3
4 | < 1. From which

follows that 0 < δ < 1. Hence for δ = 1
2 , the origin of the discretized system is

asymptotically stable.

We cannot distinguish between local and global asymptotic stability because if the
linearized system is asymptotically stable, it is always globally asymptotically stable,
whereas the original system may not be. This is because information is lost when the
linearization is performed. In other words, the linearization is only accurate when
its assumptions are satisfied, which they are not if one is away from the equilibrium.

9
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Exercise 4

1 2 3 4 5 6 Exercise

4 7 5 5 2 2 25 Points

1. The state-space form of this system is:

ẋ1(t) = ẏ(t) = x2(t)

ẋ2(t) = ÿ(t) = −R
m
ẏ(t)− k

m
y(t) +

1

m
F (t)

and we hence get

A =

[
0 1

− k
m −R

m

]
, B =

[
0
1
m

]
C =

[
1 0

]
, D = 0

2. We can use the standard formula to derive the transfer function G(s):

G(s) = C(sI −A)−1B

=
[
1 0

] [ s −1
k
m s+ R

m

]−1 [
0
1
m

]
=

[
1 0

]
s2 + R

ms+ k
m

[
s+ R

m 1

− k
m s

] [
0
1
m

]
=

1
m

s2 + R
ms+ k

m

There are no pole-zero cancellations thus the system is both controllable and ob-
servable for all parameter values.

3. With the given parameter values, we get

G(s) =
1
10

s2 + 0.2s+ 1

which when compared to

G(s) =
Kωn

s2 + 2ζωns+ ω2
n

yields ωn = 1, ζ = 0.1,K = 0.1. Hence we have resonance since ζ = 0.1 < 1√
2

at

ω =
√

1− 2 · 0.01 ≈ 1 rad/s, with a magnitude of

|G(jω)| =
1
10

2 · 0.1
√

1− 0.01
≈ 1

2

4. The Nyquist plot is shown in Figure 1. The unit circle is not drawn in the plot, but
we see that everything is included in the unit circle.
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G
(jω

))

Nyquist plot of G(jω)

Figure 1: Nyquist plot of G(s)

5. From the plot, we can see that both gain as well as phase margin are infinite: The
plot can either be scaled as much as we like and the point −1 will never become
encircled (gain margin infinite), or the plot can be rotated as much as we like and
−1 will not become encircled either.

6. No, combinations of gain and phase changes can easily make the point −1 encircled,
rendering the system feedback unstable.
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