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Signal and System Theory II, BSc, Spring Term 2017 Solution

Exercise 1

1 2 3 4 5 Exercise

4 6 4 6 5 25 Points

1. Choose x(t) = [Vc(t) iL(t) θ(t) θ̇(t)]T . Energy in the system is stored in the
current flowing through the inductor, voltage across the capacitor, and potential
and kinetic energy of the pendulum mass.

2. • From the equation of the capacitor, C dVc
dt = −iL. Rearranging, dVc

dt = − 1
C iL.

• Adding the voltages at the node at the top of the circuit, Vc = iLR+LdiLdt +Vb.

Substituting for Vb and rearranging, we have that diL
dt = 1

L(Vc − iLR− k2θ̇).

• Obviously, dθ
dt = θ̇.

• For the rotating mass, Iθ̈ = −`mg sin(θ) + k1iL. Since I = m`2, we have that
dθ̇
dt = −g

` sin(θ) + k1
m`2

iL.

3. The above equations are linear except for the sin(θ) term. Substituting θ for sin(θ),
we arrive at the linearized system


V̇c(t)
˙iL(t)

θ̇(t)

θ̈(t)

 =


0 − 1

C 0 0
1
L −R

L 0 −k2
L

0 0 0 1

0 k1
m`2

−g
` 0



Vc(t)
iL(t)
θ(t)

θ̇(t)


4. We set det(λI −A) = 0. Now,

det(λI −A) = det


λ 1 0 0
−1 λ 0 −k2

0 0 λ −1
0 −k1 1 λ


= λ

(
λ(λ2 + 1)− k2(k1λ)

)
+ (λ2 + 1)

= λ4 + (1− k1k2 + 1)λ2 + 1

= λ4 + (2− k1k2)λ2 + 1

For an stable system, we want all roots of the determinant to have real part ≤ 0.
Using the hint, we let a2 = 2−k1k2. Then, the condition that the system is unstable
⇐⇒ a2 < 2 implies instability for 2− k1k2 < 2 =⇒ k1k2 > 0. Thus, the system is
stable if k1k2 ≤ 0, which means that k1 and k2 have opposing signs (or at least one
is zero).

5. If R = 0, the eigenvalues of the system are all purely imaginary. The system oscillates
at several frequencies, with no energy loss. If R is nonzero, then there is a dissipative
component in the system, and the oscillations would be damped.
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Exercise 2

1 2 3 4 5 Exercise

4 6 5 6 4 25 Points

1. Using x(t) = S−1x̂(t), we can write:

˙̂x(t) = Sẋ(t) = SAS−1x̂(t) + SBu(t)

y(t) = CS−1x̂(t)

which means we get:

Â = SAS−1, B̂ = SB, Ĉ = CS−1.

2. We can simply compute the eigenvalue decomposition of A:

A = V ΛV −1

where Λ is the diagonal matrix of eigenvalues of A. First we get the eigenvalues:

det (λI −A) = λ2 + 7λ+ 12
!

= 0

which means we get λ1 = −3, λ2 = −4 as eigenvalues. For V , we compute the
eigenvectors:

Av
!

= λiv

For λ1, we get that v2 = −3v1 (scaling is irrelevant). For λ2, we get v2 = −4v1.
Hence finally we can write

V =

[
1 1
−3 −4

]
and

V −1 =

[
4 1
−3 −1

]
The desired state transformation is then S = V −1. For the state transition matrix,
we get:

eAt = V eΛtV −1 =

[
−3e−4t + 4e−3t −e−4t + e−3t

12e−4t − 12e−3t 4e−4t − 3e−3t

]
.

3. The output impulse response is given by:

K(t) = CeAtB +Dδ(t)

and we have D = 0. Using the result above for eAt, we can write:

K(t) =
[
1 0

] [−3e−4t + 4e−3t −e−4t + e−3t

12e−4t − 12e−3t 4e−4t − 3e−3t

] [
0
1

]
= e−3t − e−4t

The answer will look the same no matter what coordinates are chosen, since it is
still the same system and the input and output are still in the same coordinates,
only the state changed coordinates.

3



Signal and System Theory II, BSc, Spring Term 2017 Solution

4. We first introduce variables for Q̂ and rewrite the equation system:[
0 −12
1 −7

] [
q1 q2

q2 q3

]
+

[
q1 q2

q2 q3

] [
0 1
−12 −7

]
=

[
−24 0

0 −12

]
This system gives us 3 equations:

−24 = −12q2 +−12q2

0 = −12q3 + q1 − 7q2

−12 = q2 − 7q3 + q2 − 7q3

From which we get (in this order) q2 = 1, q3 = 1, q1 = 19.

5. If we used Â, we would get a diagonal Q̂ due to Â only scaling Q̂ and R dictating
the offdiagonal entries having to be 0. We expect the Q to be positive semidefinite
and unique nonetheless, because the system is asymptotically stable (eigenvalues are
−3 and −4) and both A and Â are invertible.
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Exercise 3

1 2 3 4 5 Exercise

5 6 4 6 4 25 Points

1. We verify the two required properties:

eĀ0 =

[
1 0
0 1

]
= I

For the second property:

d

d
teĀt =

[
−e−t e−t − te−t

0 −e−t
]

but also [
−1 1
0 −1

]
eĀt =

[
−e−t e−t − te−t

0 −e−t
]

which verifies that the state transition matrix as given in the task is correct. Since
we can immediately see that the eigenvalues are λ1 = λ2 = −1, we know that
the system is asymptotically stable (and therefore also stable). The controllability
matrix is given by

P =
[
B̄ ĀB̄

]
=

[
0 1
1 −1

]
which has full rank (determinant is −1), hence the system is controllable.

2. The matrix A is given by

A = eĀT =

[
e−T Te−T

0 e−T

]
whereas we can compute B using:

B =

∫ T

0
eĀ(T−τ)B̄dτ

=

∫ T

0

[
e−(T−τ) (T − τ)e−(T−τ)

0 e−(T−τ)

] [
0
1

]
dτ

=

[∫ T
0 (T − τ)e−(T−τ)dτ∫ T

0 e−(T−τ)dτ

]
=

[∫ T
0 (T − τ)eτ−Tdτ∫ T

0 eτ−Tdτ

]

=

[
Te−T

∫ T
0 eτdτ − e−T

∫ T
0 τeτdτ

e−T
∫ T

0 eτdτ

]

=

[
T (1− e−T )− e−T [eτ (τ − 1)]T0

e−T (eT − 1)

]
=

[
T (1− e−T )− (T − 1)− e−T

e−T (eT − 1)

]
=

[
1− e−T − Te−T

1− e−T
]
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3. It is asymptotically stable for all of them, since e−T < 1 for all positive T . As for
controllability, we first define a = e−T and we then get that

P =
[
B AB

]
=

[
(1− a− Ta) a(1− a− Ta) + Ta(1− a)

1− a a(1− a)

]
=

[
(1− a− Ta) a− a2 + Ta− 2Ta2

1− a a− a2

]
The determinant of this is then:

det(P ) = (1− a− Ta)(a− a2)− (1− a)(a− a2 + Ta− 2Ta2)

= a− a2 − Ta2 − (a2 − a3 − Ta3)− (a− a2 + Ta− 2Ta2)

+ (a2 − a3 + Ta2 − 2Ta3)

= −Ta(a2 − 2a+ 1) = −Ta(a− 1)2

Since we know that T > 0 and 0 < a < 1, the determinant can never be 0 and the
system is controllable for all T > 0.

4. We have that
xk+1 = xk + T (Āxk + B̄uk)

= (I + TĀ)xn + TB̄uk

hence we have that

Ã =

[
1− T T

0 1− T

]
B̃ =

[
0
T

]
5. The eigenvalues are 1−T , hence the system will have eigenvalues with absolute value

less than 1 (making it asymptotically stable) for 0 < T < 2. For controllability, we
have that

P =

[
0 T 2

T T − T 2

]
which has determinant −T 3. That means the system is controllable for all T > 0.

6. T = 1 makes Ã nilpotent. This would suggest that the discrete time system would
converge to zero in just 2 steps if one input is applied. However, from our answer in
Part 2 we know that is not the case for the sampled data system, that converges to
zero asymptotically at the rate e−1.
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Exercise 4

1 2 3 4 5 Exercise

3 4 5 7 6 25 Points

1. The transfer function is given by G(s) = C(sI − A)−1B, for the system Σ1 this
results in

G1(s) =
[
0 1

] [s+ 1 0
−2 s− a

] [
1
0

]
,

=
[
0 1

] 1

(s+ 1)(s− a)

[
s− a 0

2 s+ 1

] [
1
0

]
,

=
2

(s+ 1)(s− a)
.

2. Because there are no pole-zero cancellations for any value of a the system is observ-
able and controllable for all values of a. This allows us to draw conclusions about
stability of the system Σ1 based on its transfer function G1(s). The poles of the
transfer function are p1 = −1 and p2 = a. We conclude that for a < 0 it holds
that <{pi} < 0 for i ∈ {1, 2} and the system is asymptotically stable. This is true
regardless of whether or not the matrix A is diagonalizable. For a = 0 the poles
are distinct, i.e., p1 = −1 and p2 = 0, it follows that the matrix A is diagonalizable
and the system is stable because of <{p2} = 0. Because asymptotic stability implies
stability, the system is not only stable for a = 0 but for a ≤ 0. Moreover, it is
unstable for a > 0 because <{p2} > 0.

3. The magnitude of G1(s) with a = −1 is given by

‖G1(jω)‖ = ‖ 2

(jω + 1)2
‖,

=
2

‖jω + 1‖2
,

=
2

√
ω2 + 1

2 ,

=
2

ω2 + 1
.

It directly follows that ‖G1(jω?)‖ = 1 holds for ω? = −1 and ω? = 1, we are only
interested in the positive solution. To compute the phase at ω = 1, we first compute
G1(jω) for a = −1 and ω = ω? = 1. This results in

G1(jω?) =
2

(j + 1)2
= −j.

In other words, for a = −1 it holds that <{G1(jω?)} = 0 and ={G1(jω?)} = −1,
i.e. the phase angle at ω = ω? is −90◦. By inspecting the phase margin in the two
Bode plots we conclude that Bode plot (a) shows the system Σ1 with a = −1.
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4. The transfer function G1(s) has an unstable pole at s = 1
4 . Therefore, the variable

P in the lecture notes of the Nyquist stability criterion is one. This implies that for
stability of the closed loop system we need to satisfy the equation N = −P = −1,
where N denotes the number of clockwise encirclements of the Nyquist curve around
the critical point − 1

K . Therefore we require one counter-clockwise encirclement of
the point − 1

K to ensure stability of the closed loop. By considering the Nyquist
diagram shown in Figure 1 this is ensured when − 1

K < 0, and − 1
K > −8 hold. In

other words, the closed-loop is stable for K > 1
8 .
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Figure 1: Nyquist diagram of the open-loop transfer function of Σ1.

5. The transfer function of the closed loop can be computed as follows:

G(s) =
G2(s)G1(s)

1 +G2(s)G1(s)
,

=

1
2

s−1
4

s+3
2

(s+1)(s−1
4 )

1 + 1
2

s−1
4

s+3
2

(s+1)(s−1
4 )

,

=

1
(s+3)(s+1)

1 + 1
(s+3)(s+1)

,

=
1

s2 + 4s+ 4
=

1

(s+ 2)2
.

The transfer function G(s) is stable. However, there is a pole-zero cancellation of the
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unstable pole at 1
4 . Any mismatch in the location of this pole and the corresponding

zero in the transfer function of the controller will result in an unstable closed-loop
system. Therefore, because the parameters of the system are never known exactly,
this controller will, in practice, not stabilize the system Σ1.
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